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1. The setup of the problem; some general remarks

The problem of sequential estimation attracted some fresh interest recently.
We can note, basically. two directions in the corresponding recent literature:
asymptotic investigations (see for instance [1], [2]. [3], [4]) and exact formulas
for “small samples” (see [5]. [6], [7], [8]). We shall give here an account of
some recent results in both these directions.

In articles [ 1] to [4] a Bayesian approach to the sequential estimation of para-
meters is considered. Here we use another, non-Bayesian approach.

We can consider sufficiently large families of stochastic processes with inde-
pendent increments (and discrete or continuous time). We shall always study
scalar processes unless stipulated otherwise.

In the case of discrete time, we shall suppose it integer valued so that our
process will be reduced to the repeated sample of a certain population with a
distribution in a.family 2, characterized by a density f(x. 8) with respect to the
Lebesgue or the counting measure. The parameter § will be always scalar, unless
stipulated otherwise.

We shall consider here mostly the processes with discrete time, addressing
ourselves, say, to the standard Poisson process only in Section 3.

However, many of the results expounded here can be transferred to the con-
tinuous time case.

In both cases we shall consider Markov stopping times 7 (see [9] for the
definition) and scalar statistics 7', that are unbiased estimates of a scalar function
g(0) of the parameter 6

(1.1) Eo(T,) = g(0).

Moreover, we must choose among such unbiased estimates a statistic T, with the
minimal variance Dy(T,) under the condition

(12) EG(T) é n,

where 7 is a given number. From (1.2) it follows that Py(t < o) = 1.

Note that if such a statistic exists, this statistic and the corresponding stopping
rule may depend upon 6. Thus a statistic which is optimal in the above sense
uniformly with respect to 6 does not exist in general.
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However, if instead of exact optimality we consider asymptotic optimality,
for n — oo (which, of course, corresponds to the individual cost of an experiment
converging to zero), the situation changes: the existence of the asymptotically
optimal stopping rule and statistic 7'; is proved for the Bayes setup in the works
of Bickel and Yahav [1] to [4].

In the present article we shall indicate asymptotically optimal estimates 7',
and stopping rules in the above mentioned setup. The presence or absence of
the discontinuities in the corresponding information quantities will be very
essential for the subject. An exact quantitative formulation will be given later.

We shall give some results for “‘small samples’ about existence conditions for
sampling plans which are efficient in the Rao-Crameér sense, about the types of
such plans, and about the characterization of first hit plans by the simplest
properties of Markov stopping times.

2. Asymptotic results in the case of the absence of discontinuities in the information
quantities

In the present section we want to propound the point of view which indicates
that, roughly speaking, if there are no discontinuities in the information quan-
tities and the cost of the experiment is small, the sequential estimation in the set-
up described above can give only an infinitely small gain in comparison with the
fixed sample method of estimation. We shall consider the family %, of distribu-
tions with the density f(x, 8) with respect to the Lebesgue measure (some other
requirements will be imposed later on).

Here we shall restrict our attention to the processes with independent incre-
ments and discrete time, that is, the simplest case of a repeated sample x,,x,." -
For the continuous time case the corresponding theory is not yet worked out;
to all appearances it can be made by analogy.

We shall look for an asymptotically unbiased estimate 7', of the parameter 6
which minimizes the variance Dy(7,) up to the infinitely small quantities of a
given order under conditions E47 < n and n — .

We shall show that, roughly speaking, in the absence of discontinuities in the
information quantities such a statistic 7, can be constructed in the class of trivial
stopping rules (t = constant).

In the proof, we shall rely upon some theorems of Ibragimov and Hasminski
on the asymptotic behavior of generalized Bayes estimates for constant sample
sizes [12].

By the absence of discontinuities in the information quantities we mean the
fulfillment of the following conditions of Ibragimov and Hasminski which we
shall strengthen somewhat for the sake of convenience in the exposition.

CoxprrioN 1. The density f(x, 0) with respect to the Lebesque measure is
measurable in both arguments, and ”|0|f(ac, 0) f(x. 0y) dxd0 < oo for each point
0, in the interval of the values of the argument ©.

CoxpITION 2. As |6] - oo, the integral | f(x, 0) f(x. 8,) dx — 0.
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ConprTiON 3. Ase — 0, the integral | f'~*(x. 0,) dx — 1.
CoxbrITioX 4. For each set of real numbers 6, - - -, 0, and for appropriately
chosen intervals [0, T,], - - -, [0, T,], we shall have for all t;€ [0, T;] and |0

(2.1) J ﬁ (M)U flx, 0,) dx

j=1 Sz, 05)
=1+£a 91 0 +O(é°‘
where the number o does not depend upon 6, - 9 and tke Sfunction a(-) # 0.
ConprTioN 5. Forall 0, 0, with |0;] < H < o0,i = 1,2, we hcweforé -0

.0 0
(22) Hbﬁ§x£:igﬁﬂm%+é%wréKWM%—&M
2 f.Z' 00+§9) _
(2.3) Hlo [ 0 T 502]}f(x 6, + £6,) < [€]%e,(|02 — 04)).

where [ f(x, 0y + &£0,)] coincides with f(x, 0, + £0,) if f(-, ) # 0 and equals 1
if f(-,+) = 0. The functions c;(h), i =1, 2, depend upon H, and c;(k) — 0 for
h— 0.

Under Conditions 1 to 5 the theorems of Ibragimov and Hasminski [12] can
be applied to the study of the asymptotic behavior of the variance of the Pitman
estimate for a repeated sample.

We form the Pitman estimates 0, for the parameter 6. as

(2.4) 0, = [ 0p,(6)db.

where

Hf
fnfxe

First consider the case of the location parameter, that is, f(x, 0) = f(x — 8).
Apart from Conditions 1 to 5, we also assume the finiteness of the following
quantities (a) | 22 f(x b) the information type quantities Eqo|/™ (x;)|* with
n <5 and s < 20, and ( ) Eo maxg <. |/ (x; — 0)° with s < 20 and e >0,
where ¢ is a small given number. Here ¢ (x) = log f(x). and the above include
the Fisher information quantity I = E(d log f/dx)?

Then, according to [12] we can assert that the unbiased Pitman estimate (2.4)
for the location parameter 6, has a finite variance; moreover

(2.5)

(2.6) E,, — 0)* = 1 + 4 1+ 0( l)
1 n? n

where ¢, is a constant depending upon f(x) only.

In the general case, let £ (x, ) = log f(x, 8) and let I, = E(0//00)* be the
Fisher information number. If there is an & > 0 such that the moments
E,|£i" (x, 0o)|°, with » < 5 and s £ 20, and E, maxg <. |/5(x;. 0o — 0)|°, with
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s < 20, are finite and if max,E,02 < o0, we have

2.7) B,@, — 0y = 29 o(l),
n n
] 1 0 1
(2.8) E,6, — 9)2 = Ig—n + C;(z) + 0(;),

where the ¢;(0) for i = 0. 1, are certain constructively given functions.

We return to the location parameter and formula (2.6). Here §, is an un-
biased estimate of the parameter 6 which possesses a variance. The relation
(2.6), by comparison with the well known Rao-Cramér inequality shows that
asymptotically, for large values of n, the estimate 9[,,] is very good.

Consider a Markov stopping rule 7 with E4t < 00, and an unbiased estimate
T. of the location parameter 6.

According to the well known Wolfowitz inequality (see [13]), we have

1
2.9 D(T,)) = .
(2.9) (T;) 2 E,0)
If the condition
(2.10) - Est < n

holds. Then (2.6) implies directly that

N 1
(2.11) D(T,) = DB, [1 + 0<£>:|

We can formulate (2.11) as the following theorem.

THEOREM 1. Assume that the Ibragimov-Hasminski conditions for the absence
of discontinuities in the information quantities are satisfied. Then for any unbiased
sequential estimate of the location parameter 0 subject to the restriction Eg(t) £ n,
the relative improvement of the variance over that of the constant sample size
method is at most of the order o(1/n).

For the general case, taking into account the bias (see Equations (2.7) and
(2.8)), we get a similar result.

In that case we must take an estimate 0, having bias o(1/r). We obtain
Theorem 2.

THEOREM 2. Assume that the Ibragimov-Hasminski conditions for the absence
of discontinuities in the information quantities are satisfied. Then for any unbiased
sequential estimate of the location parameter 0 subject to the restriction Eq4(t) < n,
the relative improvement of the mean quadratic deviation is at most o(1/n).

For the proof of Theorem 2, we use (2.7) and (2.8). As an asymptotically
optimal estimate for the sample size n, we take 9[,,]. In forming the Wolfowitz
inequality, we use (2.8). In other respects we argue as before.

Note that in the Theorems 1 and 2 we consider the mean quadratic deviation
from the parameter value of the estimate 9[,,] itself, not that of the normed limit
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distribution. The computation of such a deviation often presents considerable
difficulties (for analogous computations relating to the maximum likelihood
estimates, see, for instance, [14]).

3. Sequential estimation in the case of discontinuities in the information quantities

In this section we shall give certain examples where the presence of discon-
tinuities in the information quantities leads to the existence of sequential
estimation procedures giving a considerable gain in the variance of the estimate
over that of the fixed sample size method. Our examples relate to the location
parameter 6 and the density f(x — 6) which is continuous for |x — 0| < 3
and has the carrier Ix -0l <3

As f(x — 0) = 0 for |[x — 0] > 5. we have discontinuity in the expressions
for the Fisher information quantity and cannot use the Rao-Crameér and
Wolfowitz inequalities.

We assume that f satisfies conditions insuring, for sample sizes n = 2. the
existence of the Pitman estimate

(3.1) g, = f Op,(0) db,

where »
(3.2) P = [1 S — 6) Uﬂl fla: = 6) de} .

As is well known (see [10] where the literature is indicated), the Pitman estimate
0, will be unbiased and optimal with respect to the variance estimate of 8 in the
class of all “regular” estimates 7, (that is, such that T,(x; + ¢. -, 2, + ¢) =
T(x,, --,x,) + c). Therefore we can let this estimate exemplify the constant
sample size » and compare its variance with that of estimates given by sequential
methods for gt < n.

For the simplest case of the uniform distribution f(x) = 1 with I1| <1 we
have (see [10]) 0, = (X max — Zmin) and D(B,) = [2(n + 1)(n + 2)]7 1. Choose
the stopping rule t = min, {n; . — Tmn > 1 — &(n)} and use the estimate ..
For a suitable ¢(r) it will be unbiased such that E,(t) = n and D(0,) = 102 It
follows that

(3.3) D(6,)/D(b,) > %

for n —» oo and that the sequential estimation improves the asymptotic variance
by a factor of three.

Note that in this case for any strictly monotonic function W the stopping times
T = min{n; |Tpayx — Tmin| > 1 — @} minimize the risk function W(|x —0]) + et
for an appropriate choice of «.

It is interesting that a similar result holds for much more general distributions.
L. I. Iaura and A. N. Shalyt were kind enough to make a calculation requested
by the present authors. It was based upon the article of Ibragimov and Hasminski
and led to the following theorem.
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THEOREM 3.  Let the density f(x) having the carrier |x| < %, be symmetric and
continuous together with its first derivative for |x| < 3. Assume f(x) =1 for
0<% — || <¢ where ¢ >0 is a constant. Then the stopping rule t =
min{v: &), — Tmin > 1 — 2/n} leads to the unbiased estimate 0, = L(at,. — %)
and gives a variance asymptotically three times smaller than the fixed sample size
method.

Thus we see that the presence of discontinuities in the information quantities
may lead to a considerable gain in variance by use of sequential instead of
constant sample size estimation. The study of such a connection between dis-
continuities in the information quantities and the improvement of the estimation
quality in the sequential case seems to be interesting.

We must remark that these discontinuities do not always lead to an asymptotic
gain in the variance. Thus, Shalyt informed the authors that for the density
flx — 60) = exp{—(x — 0)} for x = 0 and f(x — 0) = 0 for x < 6, there is
no such gain.

4. Binomial and multinomial processes: the Poisson process

In this section we shall first consider estimation plans for processes with
discrete time and a finite number of states. Such processes, inasmuch as the
structure of the set of values of the corresponding random variable is not
essential, are described by the multinomial scheme. The frequency vector
describing the appearance of different states is a sufficient statistic in this case.

The estimation plans for the binomial case were studied in [5] and [6]. In
particular, in [5] a statistic is given which is an unbiased estimate of the vector
of probabilities of the states or of a given polynomial function of these proba-
bilities. It is natural to indicate the plans for which such an estimate is unique.

A Markov stopping rule 7 is called complete if the only unbiased estimate of
zero is the trivial statistic 7, = 0. In the case of bounded binomial schemes a
necessary and sufficient condition for completeness of a Markov stopping rule
is indicated in the work of De Groot [5]. In the multinomial case the following
theorem of Zaidman holds.

THEOREM 4A. For the completeness of a Markov stopping rule it is necessary
that it be nonrandomized.

This means that all the points of the phase space are subdivided into three
groups: the set of boundary points B, the set of transition points, and the set of
unattainable points. A plan with such a Markov stopping rule and with the
statistic obtained by the Rao-Blackwell process will be called a first hit plan in
what follows.

A plan called ““finite for 8" if B4t < 0, and “‘finite’” if it is finite for all 6 € ©.
If no proper subset B’ < B is a set of boundary points of a finite plan, the plan
is called a minimal plan.

THEOREM 4B. For the completeness of a first hit plan minimality is necessary.

The proof of this theorem as well as Theorem 44 is based upon the construction
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of a nontrivial unbiased estimate of zero when the conditions of the theorem are
violated.

Necessary and sufficient conditions of a geometrical nature for the complete-
ness of multinomial first hit plans have not yet been found. However there are
sufficient conditions valid for a large class of plans. In particular, the following
theorem holds.

THEOREM 5. Suppose that for an n-normal bounded plan, for each x € B there
is @ number i such that all the points y = (y,, - -, y,) satisfying the conditions

(4.1) Yi > Xy, Y = xj, J#F i Z?/j =dx; + 1,
j

are unattainable. Then the plan is complete.

The proof of this theorem is effected by induction. All the points of the
boundary B are subdivided into the sets By, By, . - - - . B, on which the statistic
7 has constant values (k being the minimal value). Further construct a new plan
S’ in which the set By is included in the set of transition points, whereas By .
isextended to By, ; = B, + B, so as to make the new plan S’ closed and minimal.
The induction hypothesis is that S is a complete plan (the induction basis is the
constant sample size plan T = /). Under these conditions we must prove that if
¢(x) is a function on B and

4.2) E,$ =0

p being the vector of the state probabilities, then ¢ = 0. Now the process of
induction requires proving that ¢ = 0 on B,. The completeness of S’ requires
proving that for each y € S’ we must have the equality

(4.3) EK(0,x)p(x) = 0,

where the summation extends over all the points x € S; which can be reached
starting from the point y, and where K(0, x) is the number of trajectories reaching
x and starting from the origin. Under the conditions of the theorem, the system
(4.3) proves to have as many equations as variables and its matrix is triangular.
This follows from the possibility of indexing the points of B, and B, in such a
way that passage from the ith point of B, to the jth point of B, is impossible for
j > i (this indexing will be needed later also). Moreover as the matrix of the
system (4.3) is nonsingular, we have ¢ = 0 on B, which terminates the induction.

Note that for the binomial case condition, (4.1) is necessary because it is
fulfilled only for the plans deseribed by De Groot [5]. The plans described in
Theorem 5 have another interesting property, which is in a sense the inverse of
the completeness property.

TueoreEM 6. If S and S’ are two different first hit plans under the conditions
of Theorem 5, then

(4.4) E,t + E, 7.

This theorem is proved by the same process of induction as the previous one.
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We prove step by step the coincidence of the sets B and B’. Having proved for an
appropriateset R, R = Band R = B’. westudy £,(t. B\R)and K ,(t. B"\R) where

(4.5) E,(t. M) = P,(M)E (t|x e M),

where P,(M) is the probability of reaching M from the origin, and where
Ep(1:|x € M) is the conditional expectation of 7 given that we start from x € M.
The functions £ (1. B\R) and E,(t. B'\R) are polynomials in P;.

Let plan S have the corresponding boundary set B = {B,. . B,} and let
plan S" have the set B’ = {By., -+ -, B;.} (see the proof of Theorem 5). Without
loss of generality suppose that k < k'. We shall provethat k = k"and B, = B,..
The vectors of B, can be subdivided into several subsets, each indexed as in the
proof of Theorem 5, by writing the components of vectors in a sequence fixed
for each subset separately and indexing in decreasing lexicographical order,
beginning with the vector (k. 0, - - -, 0) in the sequence selected for this set.

We take the first of these subsets of B, and the first of its vectors «° and make
the first component of the vector of the state probabilities tend to 1. We get
lim £,7 = K(0. x%)k and so the vector x° must belong to B’. Then we continue
the process in the same way with the stipulation that before making the first
component of the probability vector tend to 1. we must divide £,(t, B\R) and
E,(t. B'\R). which are equal. by [1Px?.

The proof does not hold for an arbitrary complete plan (except for the
binomial case) but one can conjecture that not only complete, but even simply
minimal plans have this property. However, this question remains open. For
nonminimal plans there are examples of families of plans with the same E 1.

For sampling without repetition there is no separate completeness problem
because the following theorem holds.

THEOREM 7. For a plan S to be complete for sampling without repetition it is
necessary and sufficient that it be complete for the repeated sample method.

We pass now to the Poisson process. This process can be treated as the limit
case of the binomial process and the results relating to it are limit cases of the
analogous facts for the Bernoulli scheme. For instance. the analogues of
Theorems 5 and 6 are as follows.

THEOREM 8. For the completeness of a bounded first hit plan S given by a set
of boundary points. consisting of a finite number of segments parallel to the time
axis. in the space of the sufficient statistics (¢. n(t)). it is necessary and sufficient
that the common length of these segments be equal to the essential value of the
maximum stopping time corresponding to this plan.

THEOREM 9. A complete bounded first hit plan with a finite number of boundary
segments is determined by the values of the mean stopping time of this process as a
Sfunction of the intensity A.

The proofs of these theorems are analogous to the proofs for the binomial case
and use induction on the length of the maximum stopping time. (See also

[7]. [8])
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5. Description of efficient sequential plans for the renewal process

In the present section we shall consider plans of sequential estimation for
parameters of stochastic processes with independent increments which are
renewal processes.

We shall consider sequential plans which are efficient in the sense of
Wolfowitz’s identity on a certain interval of parameter values. Investigations
of this kind were started by De Groot [5] in 1959 and developed considerably
by Trybula [6] in 1968. Trybula considered the Poisson process. Brownian
motion, and so forth. In Section 7 of his interesting work he makes some general
remarks on efficient plans of sequential estimation for homogeneous processes
with independent increments.

One can consider homogeneous processes with independent increments and
with discrete or continuous time.

Consider the case of discrete time. This will correspond to the repeated
sample x,, x,, " - .

We shall suppose that the quantities x; have a density f(x. 8) > 0 with respect
to the Lebesgue measure or the counting measure with carrier consisting of
integer numbers. The parameter § will lie in a certain interval ® of the real axis.
Let 7 be a Markov stopping time and let L(x, 1, 8) be the likelihood function.
We shall suppose that requirements sufficient for fulfillment of the Rao-Crameér
information inequalities hold (regarding these requirements, see for instance
[15], [16]). Let T, be an estimate which is unbiased and efficient in the sense of
the variance for a given function g(8) of the parameter in a certain interval of
parameter values. In this case
(5.1) T — g(0) = h(o) 1L

a0
Suppose now that the function g(6) has a derivative g'(0) having no zeros on a
certain interval I; < ®. Then we can replace the parameter 6 by the parameter
0, = g(0) and use the following theorem proved by Kagan in [17].

Tureorem 10. (Kagan). Assume that the following conditions are satisfied :

(1) the density f(x, 0) satisfies the standard regularity conditions (see. for
instance, [17]):

(2) the Markov stopping time T is such that for a certain n > 2 the set
{t = n} = M,contains A = Ay x Ay x -+ x A, wherethe A;are the intervals
of R!:

(3) the statistic [T, T] is sufficient for 0 in a certain interval ;

(4) the mapping T, — R' is nontrivial on A and for each pair of values 8. ¢
in the interval mentioned above, there exists an i. 1 £ i = n, such that for
x €A, f(x, 0) is not a multiple of f(x. 0').

Then f(x, 8) is of exponential type.

Thus, under the conditions of the theorem the density f(x. 0) corresponds to

the exponential family of distributions

(5.2) flx, 0) = exp{0T(x) — p(6)}
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for a certain interval of values of 6. Here p(0) is the norming function and 7(x)
is a statistic such that for each value 1 = n, T, = T, = Z/_, T(x;) gives the
value of the sufficient statistic. An analogous result will hold also for densities
with respect to the counting measure with carrier consisting of integers.
Without restricting the generality, we can suppose that relations (5.1) and
(56.2) hold in an interval of values of 8 where we can choose the values 0,, and
0,, and we can write equation (5.1) for them. Following articles [5] and [6] we
can subtract one equality from the other. Then we shall get the linear relation

(5.3) al, + bt + ¢ =0

so that a sequential estimation plan which is efficient in the sense of the variance
and corresponds to T must be a first hit plan determined by the linear relation
(5.3).

Let us suppose now that the sufficient statistic 7', is integer valued and non-
negative so that the process {T}, { = 1, 2. - - - } is a renewal process. Let us mark
the integer values time on the x axis and the values of the statistic 7, on the y
axis. Then our process will be represented in the first quadrant.

In order that the plan with the boundary (5.3) be closed for a certain interval
of values of the parameter 6 the fulfillment of the following relation is necessary:

(5.4) t = AT, + B,

4 and B being positive integers.

Denote by C1(S) the set on which the plan S is closed (see [9], [10]), that is,
the set of values 0 for which Ey1 < 0.

Suppose that on an interval I = ©, E,t and E,t? exist. Let K(t, T\) be the
number of ‘‘trajectories’ starting from the point (0, 0) and reaching the point
(1, T;) on the plan boundary (it is finite because we consider only renewal
processes). Then we have

(5.5) ZK‘: T.)exp{0T, — tp()} = 1.

Differentiating this 1dent1ty with respect to 0 for 8 € I, we get under certain
natural conditions the Wald identity ¥,7, = p'(6)Eyt. From this and from
(5.4), it follows that

(5.6) Eqyt = B[1 — Ap'(0)]7 .
Then (5.4) implies

EOT = fIt + B,
(5.7) Egt> — AE,T. + BE,t = 0,

E,T.t — AE(T?) — BE,T, = 0
and a straightforward calculation gives
(5.8) Dyt = A*Bp"(0)[1 — 4p'(0)]°.

(The calculation was made by Nz. M. Halfina to whom the authors wish to
express their gratitude.)
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This expression coincides with 75 !. By dint of Wolfowitz’s inequality this
implies the efficiency of the unbiased estimate of the function (5.6) obtained from
plan 8, in the interval I < CI(8). All other efficiently estimable functions can
be obtained from (5.6) with the help of linear transformations with constant
coefficients (see [16]).

If f(x, 0) is the density with respect to the Lebesgue measure we shall again
suppose that the statistic 7'(x) is nonnegative. It is assumed to have a continuous
density. In that case only constant sample size plans can be efficient, as a rule.
Some particular cases of the processes with independent increments were con-
sidered by Trybula [6]. To study them systematically as we did for the discrete
time case a generalization of Kagan’s theorem from [17] for the continuous
time case is needed. It has not yet been obtained.

6. Unsolved problems

We shall indicate here some unsolved problems of the theory of sequential
estimation which seem to present a certain interest:

(1) generalize the results of Ibragimov and Hasminski to the case of multi-
variate distributions and formulate corresponding consequences for sequential
analysis:

(2) compare the asymptotic properties of sequential estimation and fixed
sample size method for nonquadratic losses and in the absence of discontinuities
in the analogue of the information quantities:

(3) formulate and extend the above problems in the continuous time case:

(4) study the appearance of discontinuities in the information quantities and
the possibilities of applying sequential analysis to improve the quality of the
estimate in the case of discrete time and scalar or vector parameters for experi-
ments which have a small cost;

(5) study the same question for the case of continuous time and scalar or vector
parameter;

(6) find the geometric conditions for completeness of unbounded binomial
plans which are closed only on a proper subset of the set (0, 1);

(7) find the geometric conditions for completeness of multinomial plans;

(8) in the multinomial case, investigate the possibility that a bounded minimal
plan be determined by the values of E,7;

(9) investigate the most general conditions for the existence of linear optimal
estimation plans for homogeneous processes with independent increments and
discrete or continuous time.
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