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The essential goal of R. A. Fisher's fiducial argument was to make posterior
inferences about unknown parameters without resorting to a prior distribution.
Over the past decade, there have been two major attempts at developing a
.statistical theory that would accomplish this convincingly. One of these efforts
has been described in a series of publications by Fraser, the other ir. papers by
Dempster. From the early work [4], [11], [12], [13], which was tied to a
fiducial viewpoint, both authors developed statistical theories that were distinct
from the fiducial argument, yet achieved the goal of non-Bayesian posterior
inference [5], [6], [7], [8], [14], [15], [16].

Despite technical and other differences, the main ideas underlying this later
work by Dempster and by Fraser appear to be similar. Fraser's papers, analyzing
statistical models that possess a special kind of structure, arrive at "structural
probability" distributions for the unknown parameters. Dempster's papers,
dealing with less specialized models, derive "upper and lower probabilities" on
the parameter space. Disregarding some technicalities, these upper and lower
probabilities reduce to structural probabilities for the models considered by
Fraser.
To this extent, upper and lower probabilities are a generalization of structural

probabilities. However, there appear to be differences in interpretation. Fraser
has given a frequency interpretation to structural probabilities in [11], [12] (but
not in later work); this interpretation depends upon the special form of the
statistical models in his theory, and does not apply to Dempster's theory.
Dempster has provided no simple interpretation for upper and lower probabili-
ties; he suggested in [7] that his theory might be "an acceptable idealization of
intuitive inferential 'appreciations'." More recently, he has embedded his theory
within a generalized Bayesian framework [9], [10]. The justification for the latter
is unclear at present (see the discussion to [9]).

Lacking in both the Dempster and Fraser theories are systematic methods for
dealing with estimation and hypothesis testing problems (or suitable analogues
of such). A method of constructing tests was described by Fraser in [16], but no
performance criteria were established. Dempster [5] defined upper and lower
risks but did not pursue their application; the statistical meaning of these risks
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2 SIXTH BERKELEY SYMPOSIUM: BERAN

is not evident under his interpretation of upper and lower probabilities. Since
even simple models suggest a variety of natural estimates and tests, some theory
seems necessary as a guide to choice of procedure.
The results presented in this paper proceed in several directions. A statistical

interpretation for upper and lower probabilities and risks is described in Section
2; this rationale leads naturally to a minimax criterion for statistical procedures
and, in principle, to an alternative to standard decision theory. The desirability of
such an alternative stems from well-known awkward features of standard
decision theory, such as the possibility that a test of low size and high power
may make a decision which is contradicted by the data (see Hacking [17]). A
heuristic account of these ideas in a less general context has previously been
given by the author in [1].

Section 3 of the paper develops basic mathematical properties of upper and
lower probabilities and risks in the light of Choquet's [3] theory of capacities.
The results include extensions of properties given by Dempster in [6].

In Section 4, convenient conditions are established for the existence of mini-
max procedures (as defined in Section 2). An example in a nonparametric setting
follows.

2. Statistical background
An experiment is performed, resulting in observation x. It is known that the

observed x was generated from a parameter value t and a realized random
variable e by the mapping
(2.1) x = 4(e, t).

Moreover, t lies in a parameter space T. x lies in an observation space X. and e is
realized according to a probability measure P on an elementary space E. Both
P and the mapping 4 are known. The problem is to draw inferences concerning
t from x and the model.
The following formal assumptions are made: X is a Borel subset of a metric

space and is endowed with the u-algebra X of all Borel sets. T and E are complete
separable metric spaces, endowed with a-algebras Y and S. respectively. Y
consists of all Borel sets in T. P is defined on-the Borel sets in E and S is the com-
pletion with respect to P of the a-algebra of these Borel sets; thus & contains
all analytic sets. The function 4: E x T -. X is Borel measurable.

Formally., performing the experiment described above amounts to realizing,
through physical operations, a specific triple (x, t, e) E X x T x E. Before the
experiment is carried out (or the outcome x is noted), the following prospective
assertions can be made about the triple to be realized: the chance that e E B,
B E &, is P(B); t is an unspecified element of T: the observable x is related to t
and e through (2.1).
Once the experiment has been performed and x has been observed, the par-

ticular triple (x, t, e) that was realized can be described more precisely. If

(2.2) T,(e) = {t E T: x = 4(e, t)},
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it is evident that the e realized in the experiment must lie in

(2.3) E, = {eeE: T.(e) # 0},

and whatever that e is, the realized t must belong to the corresponding T (e).
Since Ex = projE[R- 1(x)], E. is analytic under the assumptions and so lies

in .,. Let P[BIEJ] denote the conditional probability defined by

(2.4) P[BIEj] = P[B rcE B E &,
P[Ej]

provided P[EX] > 0. If P[Ej1 = 0. it may still be possible to condition upon
a suitable statistic. In any event, a modification of 4 so as to include round off
error incurred in observing x will generally result in P[EX] > 0.

Thus, after the experiment has been performed and x has been observed, the
following prospective statements can be made about the realized triple (x. t. e):
x is as observed; e E Xx and the chance that e E B, B e 6!. is P[B EJ]; whatever
e is, t is an unspecified element of the corresponding set T,(e): relation (2.1) is
necessarily satisfied. This collection of assertions about the triple (x. t. e) will
be called the posterior model i1. for the experiment. Both Dempster and Fraser
have previously considered reductions of this type. though not in terms of
experimental triples.

Since the realized experiment (x, t, e) is described more precisely by the pos-
terior model /#., than by the original model, it is proposed to evaluate statistical
procedures of interest by their average behavior over a hypothetical sequence of
independent experiments, each of which is generated under the assumptions of
1. The aim is to measure how well a statistical procedure performs when
applied to hypothetical experimental triples that are as similar as can be arranged
to the actual triple (x, t. e).

Let D denote a space of decisions and let t: T x D -+ R+ be a nonnegative
loss function. Let 3 + denote the a-algebra of all Borel sets in R+. and assume
that for every d E D, ((. d) is a measurable mapping of (T, Y) into (R+. M+).
Suppose d E D is a specific decision whose consequences are to be evaluated
relative to the posterior model /xk under the loss function f.

Let {(x, ti, ei), i = 1, 2, *} be a sequence of independent hypothetical experi-
ments generated under the posterior model; in other words, e1. e2. are
independent random variables, each distributed according to P[- IEr]. ti is
selected arbitrarily from T.(ej), x is the observed data. For each i. the equation
x = 4(ej, ti) will necessarily be satisfied.

Let the general notation prop, (7ri) denote the proportion of true propositions
among the propositions {ni, 72 *-- }. The average loss incurred over the
first n hypothetical experiment as a result of taking decision d is n - 1 1 ((ti, d).
Since 4 _ 0,

(2.5) n E (ti, d) = {x propn[t(tj1 d) > z] dz.
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If A(z, d) = {t e T: t(t, d) > z}, then A(z, d) e Y for every z e R+ and d e D,
and {t(ti,d) > z} = {ti A(z,d)}. Therefore,

(2.6) Jf propn [T (ei) c A (z, d), T. (ei) 70] dz.

rOoI n
< Y ((ti. d)

ni=

proP. [Tx (ei) n A (z, d) 0] dz.

Now,

(2.7) prop.[T.(ei) (-A(z, d) 7 0] dz = fi J Ic(z) dz,

where Ci = {z e R+: T.(ei) rn A(z, d) 7 0} and IC.(z) is the indicator of Ci.
Moreover,

(2.8) JIc (z) dz = sup f(t. d),
fo te TX(ej)

and for every d eID, the function on the right of (2.8) is a measurable mapping
of (E, &) into (R+. 39).
By Fubini's theorem,

(2.9) E f Ic.(Z) dz = f v[A(z, d)] dz,

where for A e ,

(2.10) v.(A) = P[e: T.(e) r-'A 01E.J
and the expectation is with respect to P[-IE.].
Since {e: T.(e) nA =k o} = projE[R- (x) rE x A], this set is analytic,
belongs to & and therefore vx(A) is defined. The strong law of large numbers,
applied to (2.7), shows that as n oo, the upper bound in (2.6) converges with
probability one to

(2.11) sx(f,d) = Jv.[A (zn d)] dz.

A dual argument shows that the lower bound in (2.6) converges with probability
one, as n -x o, to

(2.12) r.(1,d) = uc1ux[A(z.d)]dz,
where for A e J

(2.13) u (A) = P[e: T,(e) c A, 1' (e) 7 0IEj].
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Thus, the lower risk r,(e, d) and the upper risk sx(f, d) measure the smallest and
largest long run average loss that could be incurred as a consequence of decision
d. The evaluation is made under the posterior model ,C. The relative desirability
of various decisions d E D may be assessed by reference to the corresponding
risks. More generally, a decision procedure 6: X -+ D may be compared with
other decision procedures by studying the risks as functions on X.
For f _ 0, s. (e, d) and r. (/, d) are equivalent to the upper and lower expecta-

tions defined by Dempster in [5], [6]; v. and ux are the corresponding upper and
lower probabilities defined on (T, Y). A frequency interpretation for ux, v, is
obtained by specializing e in the foregoing; see [1] for the result.
The frequency interpretation for r. and s. suggests the following simple opti-

mality criterion.
DEFINITION 2.1. A decision d E D is minimax under loss function f and

observations x if sx(( d) < s_ ({, d') for every d' E D.
This definition differs slightly from an earlier one given in [1]. An extension

of the definition to decision procedures is

DEFINITION 2.2. A decision procedure 6: X -- D is minimax under loss
function t ifs.(t. 6(x)) _ sb({.6'(x))for every x E X and every 6': X -+ D.

Finding a minimax decision procedure amounts to finding a minimax decision
for each x e X. The existence of minimax decisions is discussed in Section 4.

3. Formal properties

Several basic theorems about ux, v., rx, s8 are proved in this section. Some
of the results have been obtained for finite T by Dempster [6]. Further related
results, in different contexts, may also be found in Choquet [3]. Huber [18],
and Strassen [19]. For notational convenience, the subscript x is dropped
throughout the rest of this paper.

Let 4 be a real valued set function defined on Y. For B. A,1 A2. . A in
gr. let

(3.1) AP = +(B) - Zk(B u Ai) + ZO(B u Ai u Aj)
- + (- I)P4(BUAI U AuP),

and let

(3.2) VP = +(B) - q(BrA) + (BrAirAj)
- + (-I)PO(B nA, r-).. r)AAP).

The sums in (3.1) and (3.2) are taken over all possible distinct combinations of
indices, excluding combinations that repeat indices. Following Choquet [3],
we say that 0 is alternating of orderp if Ap .0 for arbitrary B. A,1. Ap e J
and is monotone of order p if Vp _ 0 for arbitrary B, A , Ap E.

PROPOSITION 3.1. The set function v is alternating of all orders. The set
function u is monotone of all orders.
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PROOF (essentially due to Choquet). The probability P[.-E,] is monotone
and alternating of all orders. Now

(3.3) v(A) = P[I(A)IEJ1, A E ;

where #(A) = projE[- (x)n E x A]. If Al, A 2E8T

(3.4) O(A1uA2) = /(A1)wu (A2),

therefore v is alternating of all orders. The complete monotonicity of u then
follows by property (c) of Proposition 3.2.

PROPOSITION 3.2. The set functions u and v defined on F have the following
properties:

(a) u(0) = v(0) = 0;
(b) u(T) = v(T) = 1;

(c) u(A) + v(WA) = 1;
(d) u(A) . v(A);
(e) ifA c B, u(A) _ u(B) and v(A) . v(B):
(f) u(A uB) + u(A rnB) . u(A) + u(B),

v(A uB) + v(A nB) _ v(A) + v(B);
(g) ifA.JAe. (A.)I (A), while if A,,TA, v(A,,)Tv(A).
PROOF. Properties (a), (b), (c), (d) are immediate from the definitions of u

and v. Property (e) is equivalent to V1 _ 0 for u and A1 _ 0 for v, while
property (f) is implied by V2 > 0 for u and A2 . 0 for v. These inequalities
were established in Proposition 3.1. Finally, from (3.3), v(A,) = P[0(A")IEj1.
If A,tA.
(3.5) (A.) T U (A.) = io U An = O/(A).

I I

This implies the second half of (g). The first half now follows from (c).
REMARK 3.1. The counterpart of (g) with u and v interchanged does not hold

in general.
REMARK 3.2 Properties (c), (d) and the first property in each of (a), (b), (e),

(f), (g) imply the remaining properties. All further propositions proved in this
section are consequences of Proposition 3.2 alone.
PROPOSITION 3.3. The following inequalities hold on Y . If A n B = ,. then

(a) u(A) + u(B) . u(A uB) . u(A) + v(B),
(b) u(A) + v(B) . v(A u B) . v(A) + v(B).

PROOF. The lower bound in (a) and the upper bound in (b) follow from (f)
of Proposition 3.2. Since A n B = 0. B c WA. Therefore.

(3.6) v(B) + v('A rn B) = v(4.A rn B) + v(6A rn 'B) _ v('6A),
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which is equivalent to

(3.7) v(B) + 1 - u(A uB) _ 1 - u(A).

The upper bound in (a) holds, consequently. A dual argument establishes the
lower bound in (b).
REMARK 3.3. The upper bounds in (a) and (b) are valid without the con-

dition A nB = 0.
PROPOSITION 3.4. The following inequalities hold on S:

(a) u(A uB) + u(A rB) _ u(A) + v(B),
(b) v(A uB) + v(A r B) _ u(A) + v(B).
PROOF. Since Au B = Bu (A-B) and since A = (A-B)u (A r) B), Proposi-

tion 3.3 shows that

(3.8) v(A uB) _ u(A-B) + v(B)

and

(3.9) u(A) . u(A-B) + v(A r B).
These two inequalities imply (b). Inequality (a) is proved by taking complements
in (b).
PROPOSITION 3.5. If A, B, C E Y and B c( A, then

(a) v(A u C) - v(A) . v(B u C) -v(B),
(b) u(A r) C) - u(A) . u(B r) C) -u(B).

PROOF (Choquet). If X = B u C and Y =A. then X u Y =Au C and
X r Y = Bu (A r) C) RB. Therefore,

(3.10) v(AuC) + v(B) _ v(XuY) + v(Xr Y) _ v(BuC) + v(A)

by Proposition 3.2. This establishes (a). Inequality (b) is derived by taking
complements in (a).

PROPOSITIoN 3.6. If the {Ai} and {Bi} belong to .Y and Bi 'A . then

(a) v(U7 A ) - v(U1 Bi) < YE [v(A ) - v(Bi)]
(b) u(nf Ai) - u(n' Bi) _ X1[u(Ai) - u(Bi)].
PROOF. The result is established by Choquet [3] for finite unions and inter-

sections (through induction and Proposition 3.5). Taking limits and using (g)
of Proposition 3.2 completes the proof.

PROPOSITION 3.7. For every sequence {An} in YI

(a) v(limninfA,) < lim_ infv(An),
(b) u(limn sup A") > limp sup u(An).

PROOF. Since Am D infn,m An and since infn,im A,Tlimn infA, as m -oo,
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(3.11) lim inf v(Am) _ lim v(inf An) = v(lim inf A),
m m-co n2m n

using (e) and (g) of Proposition 3.2. A dual argument proves (b).
REMARK 3.4. The roles of u and v cannot, in general, be interchanged in

Proposition 3.7.
PROPOSITION3.8. Let 95 = {A e39: u(A) = v(A)}.Then5°isaa-algebraand

u = v is a probability measure on (T, 9).
PROOF. Clearly 0, T E If IfA e 9 then WA e 9i; indeed u(A) = v(A) implies

v(WA) = u(g'A) by (c) of Proposition 3.2. If the {Ai} e 9f and are disjoint, then
U Ai e 9'; indeed by Proposition 3.3, for any integer n > 1,

n n n n
(3.12) ( Ai >- u(Ai) = E v(A ) V( UAi).

Therefore, u(Un Ai) = v(Uni Ai). Moreover, by Propositions 3.7 and 3.2,

(3.13) u(O Ai) = u(lim U Ai) > lim sup u( A)
1 / ~n 1n 1

= lim sup V(J Ai) = v(o Ai),

so that u(U" A1) = v(U" Ai). The fact that u = v is a probability on (T, S9)
follows from Propositions 3.2 and 3.3.
REMARK 3.5. This theorem links upper and lower probabilities to structural

probabilities. For Fraser's models, 9f contains all Borel sets. In general, however,
9f may be trivial.

Let W denote the vector lattice of measurable functions mapping (T, 3T) into
(R, 1), the real line endowed with the a-algebra of all Borel sets. Let W+ =

{f e W: f _ O}. The following definitions are abstracted from the upper and
lower risks of Section 2.

DEFINITION 3.1. ff eIf', the upper integral s(f) and the lower integral r(f)
are defined as

s(f) = J v[f(t) > z] dz,
(3.14)

r(f) = {u[f(t) > z]dz.

To extend the definitions to f E ', let f+ = f v 0 and f = -f v 0, so that
f =f. + - .

DEFINITION 3.2. Ifff %, the upper integral s(f) and the lower integral r(f)
are defined as

s(f) = s(f+) -r(f
(3.15) r(f) = r(f+) -s(f
excluding the indeterminate case oo - oo.
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Definition 3.2 can also be motivated by a frequency interpreration.
PROPOSITION 3.9. The following assertions hold for functions in W:

(a) if r(f) and s(f) both exist, then r(f) _ s(f);
*{ + bs(f) if b _ Oand s(f ) exists

( + br(f) if b _ Oand r(f) exists;
(a+bf) _ a + br(f) if b _ Oand r(f) exists

a + bs(f) ifb . O and s(f) exists;
(d) if s(f ), s(g) both exist andf < g, then s(f ) < s(g);
(e) if r(f ), r(g) both exist andf _ g, then r(f ) . r(g);
(f) if the {s(fn)} all exist and r(f,- ) < oo for at least one n, then fnTf implies

that s(f ) exists and s(fn)Ts(f);
(g) if the {r(f.)} all exist and r(fn+) < oo for at least one n, then f. I f implies

that r(f ) exists and r(fn) 1 r(f ).

PROOF. Assertion (a) holds for f e ' + by (d) of Proposition 3.2, and hence
as stated. If f e W+, a > 0, and b > 0, a change of variable in Definition 3.1
shows that

s(a + bf) = a + bs(f),
(3.16) r(a + bf) = a + br(f).
Therefore, if a _ 0, b _ O, f %W, and s(f ) exists,

(3.17) s(a + bf) = s(a + bf+) -r(bf-)
= a + bs(f+) -br(f-) = a + bs(f).

The other cases in assertions (b) and (c) are proved similarly.
Forf, g e W+, assertions (d) and (e) are immediate from (e) of Proposition 3.2.

Iff, g e %, f _ g, thenf+ < g+, f- _ g-, and assertions (d) and (e) follow as
stated.
To prove (f) and (g), note that if the {Ifn} e + and fnTfe +, then for any

z eR+,

(3.18) {fn(t) > z} T U {f.(t) > z} = {f(t) > z},

consequently s(fL) T s(f ) by (g) of Proposition 3.2. Similarly, if {f + and
f.4fec', then r(f,)4Ir(f). Now suppose the {ff} ec' and fnTf. By the fore-
going, s(f.+)Ts(f+) and r(f-)4Ir(f-). Since r(f.-) < oo for at least one n,
r(f) < oo; therefore s(f) exists and (f) follows. Assertion (g) is proved
analogously.

REMARK 3.6. In general, the roles of r and s cannot be interchanged in (f)
and (g) above.
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PROPOSITION 3.10. Let f, g e W.

(a) If either s(f+) + s(g+) < oo or s(f-) + r(g-) < oo, then r(f) + s(g)
< s(f v g) + s(f A g) . s(f) + s(g).

(b) If either s(f-) + s(g-) < oc or r(f+) + s(g+) < oo, then r(f) + r(g)
< r(f v g) + r(f A g) _ r(f) + s(g).

PROOF. Let f, g E W+. Since for any z e R

(3.19) f{f(t) v g(t) > z} = {f(t) > z} u {g(t) > z,

({f(t) A g(t) > z}- {f(t) > z} n {g(t) > Z},

inequalities (a) and (b) follow from Propositions 3.2 and 3.4. If f, g E W, then

(f v g)+ =f+ v g+, (f A g)+ =f+ A g+,
(3.20) (f vg)=f v g, (f A g)=f A g,

and the proposition follows from the results on W'+
PROPOSITION 3.11. Let {fn} be a sequence of functions in W.

(a) IfgeW,r(g-) < o,andf, . gfor all n, then s(lim.inffn) _ limn infs(f.).
(b) IfgeW,r(g+) < oo, andfjn< gfor all n, then r(limnsupf") _ limn sup r(f").

PROOF. In (a), since infm.nfm _ g, r([infm.nfm]-) _ r(g-) < oo for all n,
and therefore s(infm.nfm) exists for all n. Similarly, r(f,-) < oo for all m, so
that s(fm) exists for all m. By Proposition 3.9, s(limn inffn) exists and as n -* oo,

(3.21) inf s(fm) _ s( inffm )T s(lim inffn),m2n m2n n

which proves (a). A dual argument establishes (b).
Let {An: An E ., n = 0, + 1, + 2, * * } be a countable partition of T, and let

sl denote the a-algebra generated by this partition. IfB e 4, B = U1Ai, where
I is countable. Define a set function q on -4 as follows:

(3.22) q(Aj) = V(U Ai)-( U Ai)S j = 0, +1,
i=j i=j+l

More generally, ifB e d, B = UIA1, define q(B) by

(3.23) q(B) = q(Ai).
I

LEMMA 3.1. If liMn_- V(U AI= = 0, then for every B E d, u(B) . q(B) _
v(B), and q is a probability measure on s.

PROOF. To verify that q is a probability on sl, note first that q is countably
additive by definition. Since v is monotone, q(Aj) > 0 for all j and hence
q(B) _ 0 for Be.a? Also
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oo . ~~~~~~n

(3.24) q(T) = y q(A ) = lrn Y q(Ai)
i=-oo m,n-oo i=-m

= lim v( U Ai) - v( U Ai) = 1,
m,n- x' i=-m i=n+ 1

by Proposition 3.2 and the hypothesis of the lemma.
From Proposition 3.3, applied to (3.22),

(3.25) q(Aj) . v(Aj), j = 0, +1, +2,

Let C = UjAj, with J a finite set of natural numbers, and suppose that
q(C) . v(C). If k is a natural number smaller than any element of J.

(3.26) q(Ak U C) = q(Ak) + q(C)

v(U Ai) - v( U Ai) + v(C)
i=k i=k+l

. v(Ak u C),
the last inequality coming from (f) of Proposition 3.2. Starting with (3.25) and
applying (3.26) a finite number of times shows that for any finite J.

(3.27) q(U Aj) < v(U Aj)
J J

Taking limits establishes the inequality q(B) . v(B) for any B e &V. Finally. if
B e sY, then 'WB e s and q(6B) _ v('B), hence by Proposition 3.2, u(B) _ q(B).
A function f e- W is elementary if it can be represented in the form

(3.28) f(t) = Y aIAj(t),
j = - x0

where {An: An e 5, n = 0, ± 1, ± 2, - -} is a partition of T when repetitions are
excluded, ao = 0, and aj+1 - aj > 6 > 0 for each j and some 6. If all but a
finite number of the {A,} equal 0, then f is a simple function.
LEMMA 3.2. If f c W is elementary, with representation (3.28). and if

18(f)I < x, then
(a) lim, . a, v(U nA ) = 0, lim,, a. u(U-o A1) = 0,
(b) s(f) = X_ agq(A j).
PROOF. Under the hypotheses of the lemma,

(3.29) f+(t) = , ajIAj(t), f (t) = - ajIAj(t),
j=1 j=-1

and s(f+) < xo, r(f) < xo. From Definition 3.1.

(3.30) s(f+) = (aj - aj-) v U Ai
j=1 i=j

=lim ajq(Ai) + anv( U Ai)
n-ox j= 1 i=n+ 1
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Therefore, since s(f+) < x,

(3.31) lim (an-a,__) v(U Ai) = 0,
n-oo \i=n/

and since anV(U' +1 Ai) >0,
n

(3.32) lim E ajq(Aj) < s(f+) < oo.
n-ca: j= 1

Moreover, because of (3.31), limn- V(U' nAi) = 0 and

(3.33) anV u Ai = an E q(Aj) < E ajq(Aj).
i=n j=n j=n

From these relations follow the first part of (a) and

(3.34) ,s(f+) = E ajq(Aj).
j=1

A similar argument on r(f-) establishes the other part of (a) and

F/ -co"C--(3.35) r(f) = aj[uu Ai)- (u A) - ajq(Aj),
j=-l i=j i=j-l j=-l

the second equality coming from Proposition 3.2. Finally, (b) is a consequence
of (3.34) and (3.35).

REMARK 3.7. From Lemma 3.1, the set function q appearing in Lemma 3.2
is a probability. Thus, (b) represents s(f) as an expectation.

PROPOSITION 3.12. Letf, g E W be such thatf + g is defined.
(a) If either s(f+) + s(g+) < oo or s(f-) + r(g-) < xc. then r(f) + s(g)

_s(f + g) _ s(f) + s(g).
(b) If either s(f-) + s(g-) < oc or r(f+) + s(g+) < xc. then r(f) + r(g)

< r(f + g) < r(f) + s(g).

PROOF. (i) Let f, g E W be elementary functions to which the hypotheses of
(a) apply. Then s(f), s(g) and r(f) exist. Assume that Is(f + g)| < xe. The sum
f + g may be represented in the form (3.28). If e( ) denotes expectation with
respect to q., then by Remark 3.7 and the preceding lemmas,

(3.36) s(f + g) = e(f + g) = e(f) + e(g) . s(f) + s(g).
(ii) If f, g E @, each may be approximated from below by a monotone in-

creasing sequence of elementary functions. Under the hypotheses of (a) and if
Is(f + g)I < oC, the result of (i) applies to approximating elementary functions.
Taking monotone limits establishes

(3.37) s(f + g) _ s(f) + s(g)



MINIMAX PROCEDURES 13

Special cases. If s(f + g) = - o and the hypotheses of (a) hold, then (3.37) is
trivial. If s(f + g) = oo, then s(f+ + g+) _ s[(f + g)+] = oco. Since f+,
g+ Ec W+, each may be approximated from below by a monotone increasing
sequence of simple functions, each of which is in W+ and is bounded. The result
in (i) for elementary functions applies; taking monotone limits shows that
s(f+) + s(g+) _ s(f+ + g+) = oo. Thus, one of s(f), s(g) is oo and (3.37) is
valid.

In summary, therefore, if s(f + g) exists and the hypotheses of (a) hold, then
(3.37) is valid. Under the same assumptions,
(3.38) s(g) = s(f + g - f) _ s(f + g) + s(-f),

which, by Proposition 3.9, is equivalent to the left inequality in (a).
(iii) Suppose f, g E IV and the hypotheses of (b) hold, ensuring that r(f),

r(g), s(g) exist. Assume also that r(f + g) exists. Since r(f + g) = -(-f -g),
the inequalities of (b) follow from (ii).

(iv) To complete the proof, it is necessary to show that s(f + g), r(f + g)
exist under the hypotheses of (a) and (b), respectively. Since s(f+ + g+),
r(f- + g-) exist, it follows from (ii) and (iii) that

s[(f + g)+] . s(f+ + g+) < s(f+) + s(g+),
(3.39) r[(f + g) ] < r(f- + g-) < s(f-) + r(g ).
Thus s(f + g) exists under the hypotheses of (a). A dual argument shows that
r(f + g) exists in (b).

COROLLARY 3.1. LetfE ''.

(a) If s(f ) exists, Is(f ) _ s(|f |).
(b) If r(f ) exists, Ir(f )I < s(If 1).
Define sets K, K+ R' as follows:

(3.40) K ={xe Rn: xl _ 0, x2 > 0, * * Xn_> }.
( ) ~~K+ = x E- Rn: xl > O, X2 > °, ..

I* xn > °}-

PROPOSITION 3.13. Let h: K -. R be continuous and concave in K and such
that h(x) > 0 and h(Ax) = Ah(x) for every x E K+ and iA _0. Let fl, f2, *
f, E W+ be such that s(fi) < oo for 1 _ i _ n. Then

(3.41) s[h(f1 (t), - * * ,ff(t))] _ h[s(fl), - * * , s(fn)].

PROOF. By Propositions 3.9 and 3.12, s( ) is an increasing gauge on +.The
theorem follows from a general result due to Bourbaki (see Berge [2], p. 212).
IffefW, define IIfIIp by

(3.42) lfII = [s(IfIP)]IP, 1 . p < oo,
( )f K1(" = sup{z: v(If(t)I > z) > 0}.
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PROPOSITION 3.14. Let f, g e W. Then

(a) 0 IlfIlp < lf11qif1 p _ q _ ,

(b) v(jf(t)I O0) =0 if and only iflIfII = for I _ p _ oo,

(C) IIafIIp = alIf IIP if a E R+ and 1 < p < x,
(d) lIfgllI <_ IlfIpllgIIlq if 1 _ p, q, r _ X and r-1 = p-1 + q-1,
(e) l|f+gll,- lif1P + l|g|p ifI _p_ oo-

PROOF. Assertions (b) and (c) are immediate. Apart from special cases,
(d) and (e) follow from Proposition 3.13, or may be proved from the Holder
and Minkowski inequalities along the lines of Proposition 3.12. Assertion (a)
is a consequence of (d).

4. Minimax decisions

Conditions for the existence of minimax decisions, as defined in Section 2, are
provided by the theorem below. Examples of minimax procedures for a distri-
bution free estimation problem follow.

PROPOSITION 4.1. Let T, D be compact metric spaces and let e: T x D -+ R
be continuous. Then

(a) s(t', d) and r(e, d) are uniformly continuous on D,
(b) the suprema and infima over D of r(e, d) are attained.

PROOF. Let m(- , -) denote the metric on D. Since T x D is compact metric,
6(t, d) is uniformly continuous on T x D. Therefore, to every E > 0 there
corresponds an q > 0 such that

(4.1) m(d, d') < I = I(t, d - t(t, d')I < c

for every t E T. Applying Proposition 3.9, parts (b), (c), (d), (e), to the right side
of (4.1) establishes

(4.2) Is(e, d) - s(e, d')I < s, r(, d) - r(t, d') < s,

hence (a) and (b).

EXAMPLE. An example of the statistical model described in Section 2 is the
nonparametric version of the two sample location shift model. If (x1, * - *, x.)
are the observations of the first sample and (Yl, . .. , yn) are the observations of
the second sample, the model can be written in the form

xi = F-(u), <1. i. m,
(4.3) yj = + -+ F-(u+ j), 1 .j _ n,

where (u1, Um* *, +) are realizations of independent, identically distributed
random variables, each uniformly distributed on [0, 1], F E JF, the class of all
continuous distribution functions on the real line, p E Ql = (-oo, oo), and
(A, F) is the unknown parameter. Equations (4.3) are of the general form (2.1).
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Let {di,j = yj -xi, I < i _ m, I _ j _ n} and let a, < a2 < ... < am-,,
where M = mn + 1, denote the ordered {di, j}. Under the original model, the
strict ordering will be possible with probability one. Let Q1 = (-o, a,), let
Qi= (a,-1, ai) for 2 . i . M -1, and let QM = (aM l, xe). For arbitrary
A c Q, define

(4.4) 6,~b(i, A ) I ifA rn Qi 760
0 otherwise,

and

(4.5) 6u(i,A) = otherwise.

Then, as shown in [1], for arbitrary A c ,

M
v(A x .F) = - Z ~(i, A),M1=

(4.6) I M

u(A x Y) -- 6.(, )( ) ~M i=l (

This collection of upper and lower probabilities determines the upper and
lower risks if the loss function does not depend upon F. For example, suppose
that it is desired to estimate , that h: R + R+ is strictly monotone increasing,
and that the loss function of interest is

(4.7) el(y, d) =h(but - dl) if lu - dI . c
= h()(c) if u- dI > c,

wherec > am - a1. LetB1 = [aM1- c, (a1 + a2)], letBi = [4(ai-1 + ai),
2(ai + ai+1)]for2 < i < M- 2,andletBM-l = [i(aM-2 + aM-l),al + c].
Then for e defined by (4.7),

(4.8) s({, d) =-M[ h(Iaj-dI) + 2h(c)]
j*i

ifdeBiforl<1 i M - 1,and
s(1, d) > s(t, aM-I c) ifd < aMI - c,

(4.9) s(e, d) > s({, a, + c) if d > a, + c.

Similar expressions may be found for r(e, d).
In particular, suppose that h(x) = x. Then, if M is even, s(1, d) is minimized

by any d e [1(a(M/2)-1 + aM,2), i(aMI2 + a(M/2)+ )], while if M is odd, the

minimizing value is d = i(a(M 1)/2 + a[(M-1)/21+). This class of minimax
estimates for y includes the Hodges-Lehmann estimate median {al, * , am-1

If h(x) = X2, the minimax estimate for i can be described as follows. Let
mi = M-1 ji aj. If there exists a k, 1 k _ M- 1, such that mkeBk,
s({, d) is minimized by d = mik. Otherwise, there will exist a k, 1 _ k _ M - 1
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such that mk > 1 (ak + ak+1) > mk+1; in this event s({. d) is minimized by
d = -(ak + ak+ )' Viewed as functions of (xl, , Xm, Yi' *, Yn), these mini-
max decisions are minimax procedures in the sense of Definition 2.2.
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