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1. Introduction

A clinical trial can become considerably more complicated than elementary
accounts would lead one to expect. Often, despite simple initial objectives, un-
foreseen complications develop and the questions that one started out to answer
become modified. We shall give an example to illustrate this in the next section,
but merely emphasize here that, because of the possibility of unforeseen com-
plications, one needs a good deal of flexibility to engage in and learn from a
clinical trial. Yet much of the theory that biostatisticians are accustomed to
use as guides in the planning and analysis of such trials makes for inflexibility.
One must specify an exact hypothesis, an exact alternative, a criterion or end
point for choosing between them, numerical values for type I and type II errors,
probability models, and stopping rules. If the trial is sequential and uses bino-
mial responses patients must be paired. If it is a fixed sample size trial, some
biostatisticians will not release preliminary results, even to the participating
clinicians, for fear of upsetting the significance level.

The conflicting pressures towards and away from flexibility create a problem
that each biostatistician actively involved in such trials tends to resolve in his
own way. A solution favored by clinicians is to consider each problem on its own
scientific merits and without reliance upon theoretical rules as guides. Alter-
natively, one can acecept the inflexibility that theory seems to impose, and resist
any compromise with experimental pressures for flexibility. As statisticians
interested in the probabilistic basis of methodology used in practice, we clearly
cannot be happy with the first solution. At the same time if biostatisticians are
to be of help to biomedical scientists, we feel that a relaxation of current restric-
tive attitudes is essential. In what follows we describe our own efforts to resolve
this conflict.

2. An example of unforeseen complications

To illustrate the effect of unforeseen complications we shall consider the
results of a recently published trial concerned with the effectiveness of an
estrogen, premarin, in the secondary prevention of coronary disease [1]. The
trial included 275 men, each with a diagnosis of definite clinical coronary disease.
All patients entering the study were assigned either to the treatment or the
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placebo groups at random, and treatment was subsequently administered on a
double blind basis. It consisted of the daily oral administration for the full five
years of the study of either the estrogen, or the placebo. The daily dosage of
estrogen administered was determined experimentally during the course of the
study with a view to achieving certain desired estrogenic effects—particularly
breast enlargement and depression of libido and potency. The daily dosage
finally decided upon was 10 mg. All patients admitted to the study after this
decision was reached were placed upon this dosage immediately, but patients
admitted earlier built up to it over a period of months.

It shortly became clear, however, that a 10 mg dose, given without buildup
within three months of the initial infarct had a deleterious effect. As shown
in table I the number of new cardiovascular-renal events, both fatal and non-
fatal, in the first two months of study was considerably higher for those receiving
10 mg of the estrogen within three months of a previous infarct.

TABLE I

PEr CENT NEW CARDIOVASCULAR-RENAL EVENTS

Estrogen Placebo
. . v . 13 2

10 mg without buildup within three months of infarct 50 = 229, 3= 49,
4 4

All other % = 4%, 5= 6%

Clearly, something more than a routine analysis of a single test of a pre-
specified null hypothesis was called for. What was in fact done was to analyze
the results separately for those with and without the buildup and both including
and excluding the first two months. The five year mortality rate on each of
those axes of classification is shown in table II.

TABLE 1II

DeaTtes PER 100 PARTICIPANTS, PLACEBO AND ESTROGEN TREATED PATIENTS

Including 1st Excluding 1st
Two Months Two Months

Placebo Estrogen Placebo Estrogen

All patients 34+5 24 +4 31+£5 17 + 4
All patients, exluding those receiving 10 mg
without buildup within 3 months of infarct | 34 + 6 15+ 4 3246 15 + 4

The overall mortality rate is lower for the estrogen treated group, but the
magnitude of the effect and indeed the certainty with which it is established is
dependent on which of the comparisons is regarded as most appropriate. The



SEQUENTIAL CLINICAL TRIALS 815

authors conclude that these results (and others not given here) “strongly indicate
that the hormone exerted a marked beneficial effect . . . [but that] the con-
clusion . . . must be tempered by a note of uncertainty and caution.”

Whether one shares this conclusion or not, it seems clear that the information
on the findings to be communicated to anyone who wishes to form his own
opinion on the effectiveness of estrogens in the secondary prevention of coronary
disease is far too complex to be usefully summarized in a single global test of
a hypothesis.

3. Data condensation, the likelihood principle and behaviorism

There are several morals to trials like that described in the previous section.
(a) The analysis contemplated at the beginning of the study may be crucially
altered as the study proceeds. (b) As a corollary, continuing analysis of the
results as they accumulate is desirable, whether or not the study is formally
regarded as sequential. (¢) The statistician’s most important function may also
reduce to his most elementary one—data condensation.

This attitude has some strong theoretical implications. When data of the type
shown in table II are presented as a summary of findings, the clear suggestion
is that any conclusions drawn or actions taken should depend only on them
and not on the stopping rules which led to them. Classical analysis, whether
sequential or fixed sample size, insists, however, that conclusions should also
depend on the data that were not observed but might have been—otherwise
the calculation of error probabilities becomes impossible. But it is precisely this
concern with the entire sample space, rather than with the single point observed,
that introduces undesired inflexibility.

If inferences drawn or decisions taken were dependent only on the sample
point observed and not on the remainder of the sample space, a more flexible
attitude towards data analysis would result. The irrelevance of the remainder
of the sample space to inference or decision is formalized by the likelihood prin-
ciple [2], which asserts that all observations leading to the same likelihood func-
tion should lead to the same conclusion. The irrelevance follows from the
principle because the likelihood function does not depend on the stopping rule
that led to the data [3]. The biostatistician seeking a theoretical basis for flex-
ibility in the analysis of data arising in a clinical trial is compelled therefore to
consider this inferential principle with care. Most discussions of its application
to sequential experimentation [4] have turned on the question of sampling to
a foregone conclusion, a question we consider in sections 4 and 5.

It seems useful to consider first, however, the relation between this principle
and the principle that inferential rules should be selected with due regard to
their consequences, or more graphically, that rules which minimize errors of
inference are to be preferred. If these two principles were in fundamental con-
flict, it would be difficult to accept the likelihood principle or to make it the
basis of any scientifically acceptable system of data analysis. It does not seem
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to us, however, that any such conflict exists. An apparent conflict arises from
the traditional textbook treatment of hypothesis testing, in which rejection
regions are selected so as to minimize 8, the probability of a type II error, for
a standard «, like 0.05 or 0.01. Clearly, if the sample space is poorly defined,
so are o and 8. But even when the sample space is well defined the use of a
single standard significance level for all sample sizes and problems lacks behav-
ioristic justification and leads to anomalies [5]. One must therefore balance
small « against large 8. If one chooses to balance them by seeking a rejection
region which minimizes Aa + B8, where N measures the undesirability of an error
of the first kind relative to that of the second kind, one is led directly to the
likelihood principle.

More specifically, consider a simple null hypothesis H,, a simple alternative
H,, and k possible experimental designs (that is, different sample sizes, different
stopping rules, different endpoints) by which data permitting a choice between
them might be obtained. For each design the sample space can be divided into
acceptance and rejection regions, with probabilities of type I and type II errors
for the 7th design of a; and B;. We then ask for a rejection region for the ¢th
design which minimizes \e; + 8; for ¢ = 1,2, --- | k where X is the same for
all designs. Consider any sample point ¢ and the ratio of the likelihood of H, to
H,, given t, and denote the ratio for the 7th design by R;(f). Then it is easy to
show that the rejection region for the design must consist of all points for which
R:(t) > \. Therefore, as long as A is the same for all designs the value of the
likelihood ratio is a constant yardstick, that is, it means the same thing in each
design. But the likelihood principle would also lead to this conclusion and can-
not therefore be considered in conflict with the principle of minimizing a linear
combination of type I and type II errors.

Why minimize a linear combination? Savage and Lindley give the following
justification [6], starting with a suggestion of Lehmann’s [7] that we consider
a set of indifference curves in the a — 8 plane, such that any two (e, 8) points
lying on the same curve are equally desirable. Suppose the points (a;, 81) and
(a3, B:) corresponding to rejection regions W, and W, are two such points. Then
it seems reasonable to postulate that selecting W, with probability p and W,
with probability 1 — p would lead to a third equally desirable point, for any p
between 0 and 1. If this postulate is accepted, all (a, 8) points such that o =
pay + (1 — p)az and B = pB. + (1 — p)B: lie on the same indifference curve,
defined by the straight line L such that 8 = 8 — M@ — as), where

B.1) A= (Be — B1)/ (a1 — )

and, because the two points are equally desirable, is positive. It is now easy
to see that all other indifference curves must also be linear and parallel. Thus,
consider two other points, which are also equally desirable, say (a, 8¥) and
(as, BY), where B < B; for 2 = 1, 2. Since the 8 are smaller and the « the same,
these points are to be preferred to the points (ai, 81) and (e, 8;) and hence to
any point on L. We may now, as before, construct another linear indifference
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curve L*. If (8% — B%)/(cn — a2) # \, the L* and L will intersect (and by making
Bf — B, sufficiently small the intersection can always be made to occur in the
positive quadrant) and some of the points on L* will be preferable to L while
others will not. This contradicts the assumption that each is an indifference
curve, and L and L* must therefore be parallel. In choosing among various pos-
sible rejection regions we will choose that with an «, 8 point lying on the south-
westernmost indifference line, and this will be the line with the smallest value
of Aa; + ﬁi.

Thus, a given sample point can be regarded as imbedded in many different
possible sample spaces, and in applications like those associated with clinical
trials it is not possible to specify realistically which sample space is most appro-
priate. What the likelihood principle offers is a balancing of the two types of
error which, for a given sample point, leads to the same answer for all possible
sample spaces, and in this sense combines behaviorism and realism in a way
that seems appropriate for clinical trials.

4. On sampling to a foregone conclusion

Much of the material in this and the next section is a summary of material
previously presented by one of us [8].

Concern that the likelihood principle may entail a disregard for the con-
sequences of the inferential procedure used is most forcibly expressed in the
problem of sampling to a foregone conclusion [9], [10]. We imagine an inves-
tigator (hypothetical, of course) with a strong prejudice against the hypothesis
H,, that the mean of a normal population 6 has value zero, and who wishes to
amass evidence that will support this prejudice. He decides to make sequential
observations on the normal random variable z, where Ex = 0 and Ez? = 1, and
to compute

) b= 2 @t gt ot ),
forn = 1,2, --- . He adopts the following stopping rule:
4.2) if [t.] < k/n'% he takes another observation;
but

(4.3) if [t.| = k/n''%, he stops,

where £ > 0.

After stopping, he interprets the inequality (4.3) as providing strong evidence
against Ho—the larger the value of k, the stronger the evidence. His argument
is that the likelihood of H, relative to the likelihood of the hypothesis 6 = ¢, is
low, in fact no greater than e—*/2) and that H, is therefore inconsistent with
the evidence. Alternatively, if a normal prior with variance well in excess of
unity is assigned to 6, then the posterior probability that 6 is zero or has a sign
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opposite to that of ¢, will be small for large k, and again the inequality (4.3)
might be considered as providing strong evidence against H,.

But as several authors have pointed out, the probability that the inequality
(4.3) will eventually be realized is, by the law of the iterated logarithm, essen-
tially unity, even when H, is true. Thus, if one accepts the likelihood principle
and the irrelevance of the stopping rule, one must also accept as evidence against
H, observations that one is virtually certain to obtain when H, is true. If this
is not an actual logical contradiction, it is uncomfortably close to one. Nor can
it be dismissed by reference to the asymptotic nature of the law of the iterated
logarithm, since, as Armitage has shown [11], the probability of realizing the
inequality (4.3) can be substantial even for finite n. In view of this result, one
must again ask whether the likelihood principle can be reconciled with concern
for probabilities of incorrect conclusions. If it cannot, the flexibility provided
by the likelihood principle will, in the opinion of most biostatisticians, have been
purchased at too high a price.

Up to this point the likelihood principle has been considered without reference
to prior probabilities. But if that principle and concern for error probabilities
are to be reconciled, such probabilities must now, in our opinion, be introduced.
If one is concerned about the high probability of rejecting H, if observation is
continued until (4.3) is satisfied, it must be because some possibility of the truth
of H, is being entertained. An appropriate formal expression of such concern is
provided by assignment of a nonzero prior probability to H,. But the use of
any smooth and bounded prior probability distribution function is equivalent
to the assignment of zero probability to H, and does not provide an expression
of this concern. In fact the apparent justification for sampling to a foregone
conclusion provided by the likelihood principle is entirely a consequence of
assignment of zero probability to H, and is eliminated by assignment of a non-
zero probability, no matter how small.

To show this we introduce a prior probability function for 6, namely,

P{® =0} =p,
(4.4) { } 1 P
P{ <0 <0+ds) =L ofo/s]do for 650,
where
(4.5) o(z) = (2r)~V2%e—=/2,

Then, by Bayes’ theorem the posterior probability that 8 = 0, given t,, which
we denote by P{0|t.}, is given by

4.6) POt} = [1 -

- P
p(ne? + 1)Y2
We see from (4.6) that differing from zero by k standard errors need no longer
imply strong evidence against H,. In fact, setting n'/%, = k in (4.6) we note
that for any p > 0, we have P{0|t.} approaches unity as n increases. Thus,
although there is unit probability that |n1/%,| will eventually exceed k, it no

—1
en’a’tn’/ 2(not 4 1)] .
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longer follows that there is also unit probability that P {0|t,.} will eventually be
less than any preassigned quantity. Another way of looking at this is to consider
as an alternative to the stopping rules (4.2) and (4.3) the rules

4.7) if @y < P{0|t.} < a take another observation,
but if P{0|t.} =<

(4.8) Olt} =

or P{0|t.} = a stop,

where 0 S oy < p <y = 1.
The inequality (4.7) is by (4.6) equlvalent to

<
y (4.
(4.9) 2(%0 + 1) I: P 2012 (ne® + 1)1/2]

2

< ni? < 2(nc;w-2|— D) log [1 f » X (no® + 1)1/2].
The limits on nt? are not independent of n, so that for p > 0 the rules (4.7),
(4.8) and (4.2) are not consistent. For large n the upper limit of (4.9) is of the
form A + log n, where A does not depend on #. Since [A + log n]'/? eventually
becomes and remains greater than [2 log log n]!/2 the probability that H, will
be rejected, when true, by repeated tests after a sufficient accumulation of
material is essentially zero.

An even stronger conclusion is possible. Suppose an effort is made to disprove
H, by setting a; in (4.7) equal to unity. If one stops at all, then it will be only
when P{0]t.} £ ax and H, hence is improbable. It is easy to show [8] that
the probability of ever stopping, when H, is true, is less than or equal to
[ar/(1 — a1)]/[p/(1 — p)]. Therefore, if one set out to disprove Hy by contin-
uing observation until the posterior odds in favor of H, are only 100« per cent
of the prior odds, the chance of succeeding is at most .

The suggestion that H, be assigned nonzero prior probability is not new. It
was originally proposed by Jeffreys [12], has been considered by Lindley [13],
and further studied by Edwards, Lindman, and Savage [14]. Our results sug-
gest to us that this form of hypothesis testing rather than the classical form is
most appropriate for situations in which flexibility is an important requirement.

b. Acceptability in practice

Intellectually satisfying though the argument of the preceding section may
be, it is dependent upon the prior parameters p and ¢. These are subjective,
only vaguely specifiable for any one individual, and likely to vary from one
individual to another. It is natural to ask whether a theoretical basis for clinical
trials can be built on such a soft foundation. In this section we shall consider
this question under three general headings (a) comparison with classical sequen-
tial trials (b) sensitivity of P{0J¢,} to the choice of p and ¢ and (c) some expe-
rience in applying these ideas to the planning of a trial.

5.1. Comparison with classical sequential trials. Our major point here is that
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all the arbitrary elements involved in the assignment of p and ¢ have their
formal counterpart in classical sequential trials and that in addition, classical
trials, as actually used, assume very special parameter spaces which need not,
and often do not, correspond to realistic alternatives to H,.

Consider first the following assignment of prior probabilitics for the 6 of the
preceding section

PO =0} =2,
(5.1) B
PO =08y =PlH= -2} =

and let the three possible values of the likelihood function, given ¢,, be given
by n'2p[nV2(t, — A)], n'2e[nV2,] and n'2p[nV2(t, + A)]. No confusion will
arise from referring to them as ¢_1, ¢y, and ¢;. Then

5.2 P{O|t,) = o .

( ) { ] } ¢o+%[¢1+¢—1]

If the stopping rule provided by (4.7) and (4.8) is followed, observation is
continued as long as

1'—0l2 l—al

(5.3) <ot ea o

ap 20 a;

and is discontinued when either inequality is infringed.

The scheme originally proposed by Wald [15] for testing H, against the
composite alternative ® = 4 A also involves the use of the statistic (¢1 + ¢-1)/2¢0
and lower and upper limits of 8/(1 — a) and (1 — B8)/a, where a and g are
approximate probabilities of type I and type II errors. The Bayes and the
classical scheme are thus identical when

1 —=a)/ay= (1 —8)/a
1 - ag)/a2 = 5/(1 - a).

But the three point parameter space assumed is quite restrictive and would
rarely be appropriate. Several anomalous features of the classical sequential test
are most easily understood as a consequence of this special parameter space.
Thus, if A is set equal to 0.25 and « and 8 both set equal to 0.05, the limit on
|n'/%t,| provided by (5.3) exceeds 14 for n = 1 and even for n = 10 exceeds 5.
But the reason for not regarding an observation which differs from the hypoth-
esized value by 14 sigma as evidence against it, is that it differs by 13.75 sigma
from the only alternative admitted. For the case of unknown ¢ the situation
becomes even more anomalous. The sequential ¢ test, as tabulated by the
National Bureau of Standards [16], will not permit the rejection of H, until
after 14 observations, for these values of A, @, and 8, no matter what the values
of the first 13 observations, even if they were all 1010, 101, ... 101", This
remarkable result is again understandable in the context of the special parameter
space assumed for 6.

(5.4)
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The sensitivity of the sequential boundaries to the choice of A is a result of
the nonexistence in sequential, as contrasted with fixed sample size, trials of a
uniformly most powerful one sided test of Hy ([17], p. 101). The practical con-
sequences of this are illustrated by a recent clinical trial on the objective efficacy
of prayer [18]. The first six pairs of patients tested gave results in favor of
prayer and the sequential path almost touched, but did not cross the upper
boundary at n = 6. Subsequent results were less favorable to the treatment,
and eventually the lower boundary, leading to a conclusion of no difference, was
reached. The authors comment: “It is worth pointing out that, had slightly
wider differences in the success rates of the two treatments been insisted on,
resulting in an even larger value of 6; [equivalent to our A] than that used, the
sixth result would have attained the upper boundary, and a statistically signif-
icant result claimed. This anomalous situation incidentally suggests a defect in
the sequential method that does not seem to have received much attention.”

Consider now modifying the assumption of a three point parameter space by
the assignment of the prior probabilities given by (4.4). It is easy to see that
this is equivalent to specifying as the alternative to Hy the hypothesis that ¢,
has the probability density function

(5.5) [=. /o plntin(t, — 0)] do/o.

To use this probability density function one must specify a value for the prior
parameter ¢. Such specification seems no more arbitrary than selecting a value
for A, and more realistic. If ¢ is determined by the condition

(5.6) ﬁ) ® 00(0/c) b / " o(6/0) do = 4,

a test approximately comparable to the classical test results, but without the
restriction to a three point parameter space. Using, as before, « = g8 = 0.05,
this test permits the rejection of H, for n = 1 when ¢, = 8.2 and for n = 10
when #;, = 3.8, these being somewhat more reasonable than the limits of 14
and 5+ yielded by the three point parameter space. More dramatically, how-
ever, for the case of unknown variance if the prior probabilities given by (4.4)
are assigned to 8, and a uniform prior is assigned to the logarithm of the unknown
variance the classical inability to reject H, before some minimum number of
observations have been made, no matter what the value of ¢,, disappears. For
every ai, a, and o there is a finite value of ¢, which infringes the inequality (4.7).

It thus appears to us that arbitrary elements are present in the problem no
matter how it is formulated, and that the specification of p and o, rather than
introducing them, permits one to control them in a way that is not grossly
inconsistent with what is actually known prior to the conduct of the trial.

5.2. Sensitivity to choice of p and ¢. In many applications the conditional
prior distribution of 8, given the falsity of Ho, will be quite diffuse, that is, ¢
may be quite large. But from equation (4.6) it is clear that

(5.7) lim P{O|t.} =1, forall p > 0and ¢,

g—>
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so that we cannot simply assign ¢ an arbitrarily large value. The ratio of the
prior probability assigned to H, to the prior probability density assigned to
near H, is po/(1 — p), and for large n the values of p and o assigned affect
P{0|t,} only through their effect on the quantity pe/(1 — p). As a preliminary
to investigating sensitivity to choice of p and o, it seems useful, therefore, to
permit o to become infinite, and p to go to zero, but in such a way that pe/(1 — p)
remains fixed and equal to a constant ¢—*. We then have from (4.6)

. c o
(5.8) P*0Olt} = lim PO = [ 1+ Gzenr |

In situations in which such an assignment is appropriate the number of prior
constants is then reduced from two to one. It is instructive to consider the inter-
pretation of the prior constant, ¢. The limits on #n#? implied by the stopping rule
(4.7) are, using (5.8),

l—az

lower: logn + 2 log

aisC

(5.9)

1 - al.
a1C

upper: logn + 2 log

But nf2 is nonnegative, so that the smallest n for which the lower limit could
possibly be reached is that value for which the lower limit has value zero. For
smaller values of n, the lower limit is negative and P*{0lt.} < as, even for
t, = 0. Denoting the value of n which makes the lower limit zero by ne, we find

(5.10) Ll PV

(2]
The constant n, is thus the smallest number of observations leading to zero mean
that will lead to the acceptance of H, at posterior probability level as. It thus
provides a convenient, and operationally interpretable, way of quantifying vague
prior beliefs about Hy, when the conditional prior distribution of 6, given the
falsity of H,, can be taken as diffuse.

For a clinical trial of some new form of therapy an appropriate value of ng
for ax = 0.95, say, would rarely fall below 10 or rarely exceed 1000, the lower
value being perhaps reserved for forms of therapy suggested by others, and the
upper for testing one’s own ideas. The maximum effect of vagueness in prior
beliefs on both upper and lower limits for n#2 is thus, from (5.9) log 1000 — log 10
or 4.6 for all &; and a,. By contrast, the effect on the upper limit of raising 1 — oy
from 0.95 to 0.99 is to raise it by 3.3 for all n. The arbitrariness introduced by
the vagueness of prior beliefs about H, can thus reasonably be argued to be of
the same magnitude as that involved in selecting a posterior probability level
and a good deal less than that involved in specifying alternatives. The effect of
no relative to the effect of selecting a posterior probability level on the lower
limit is larger. Nevertheless, the ambiguity introduced by vague prior prob-
abilities does not, it appears to us, introduce any more qualitatively serious
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vagueness than is introduced by various uncertainties about the statistical
model used or by various scientific uncertainties, such as choice of treatment
schedule, type of patient, or stage of the disease.

5.3. Experience in an application. The question of whether subjective el-
ements can play a role in the interpretation of scientific data is of at least as
much importance to scientists as it is to statisticians. The reaction of scientists,
particularly those who have absorbed the frequentist tradition in statistics, to
an unabashedly subjective interpretation is consequently crucial to the general
applicability of the results we have presented. This reaction can be found out
only by experience in a variety of situations over a considerable period of time.
We should like to report our experience in the planning of a trial designed to
test the efficacy of a new agent, which we refer to as U, in the treatment of
myocardial infarcts shortly after the attack. But before we turn to it, we call
attention to a short discussion of objectivity and subjectivity in science by
George Beadle ([19], pp. 4-5), which will be of interest to statisticians of all
philosophical persuasions.

One of us has been serving as a member of a group planning the trial of U.
The other four members are physicians, one with considerable experience in the
conduct of clinical trials, the others with a primary interest in the scientific basis
of the new therapy, but none with more than a casual acquaintance with statis-
tical methods and theory. We proposed a design and analysis based essentially
on the computation of P*{0|¢,} (equation 5.8). We quote from a relevant por-
tion of the planning document submitted to the committee.

“A desirable way to conduct a trial is to analyze the data periodically, say,
every month, and to stop only when it can be asserted with high probability
either that

(a) Some positive therapeutic effect exists or
(b) That the therapeutic effect is either non-existent or negative.

In the past it has been customary to specify the stopping rules in advance in
great detail and to abide by them. Armitage gives a comprehensive discussion
of such plans. Once one has specified the values of the probabilities, the mag-
nitude of the effects to be detected and the upper limit to the number of patients
to be studied, exact stopping rules can be computed.

“This is not an entirely realistic way of proceeding, however, since it is impos-
sible to foresee all contingencies. In Stamler’s study of estrogens in the long-
term therapy of myocardial infarction, for example, the dosage of estrogen given
was increased several times during the course of the study after balancing ob-
served therapeutic and side-effects. For the present trial if a marked therapeutic
effect appears early, the investigators might wish to continue with the hope of
comparing effects among subgroups, i.e., in severe versus mild cases or in first
attacks versus recurrences. If observation continues for some time, however,
with the data leading to no clear-cut choice between (a) and (b), the inves-
tigators might wish to substitute for (b) the less ambitious
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(b") The therapeutic effect, if any, is to reduce mortality by no more than
10 percent,

and to decide that they were not interested in continuing further if all that
could be accomplished was to decide between a 0 and 10 percent reduction.

“In the past it has been nccessary to use inflexible stopping rules because of
limitations in statistical theory. Essentially, no method of analysis was known
except for the case of a small number of pre-specified stopping rules. The situa-
tion has changed drastically and analyses which depend only on the results and
not at all on the stopping rules, are now possible. This does not mean that it
is undesirable to consider in advance what might be done if certain results are
obtained. This is still worth doing, if only to make sure that our resources and
objectives are in balance and that we have a reasonably good chance of choosing
between (a) and (b) with the amount of patient material likely to be at our
disposal. Several such stopping rules are given in Tables 1, 2, 3 and 4 but they
are to be considered as guidelines and not strait jackets.

“Before considering these plans and their implications, however, a brief dis-
cussion of the thinking that lies behind them may be helpful. The older and the
new theory differ in the questions they ask. Given a set of observations, the
older theory asks: if there is no real therapeutic effect what is the probability
of obtaining at least as favorable an apparent effect as that observed? The
answer to this question depends on the stopping rule used. Two different inves-
tigators who obtained identical results with different stopping rules would obtain
different answers to the question. Despite the identity of results one might con-
clude that the therapy was effective, while the other could draw no such conclu-
sion. Even worse, unless the stopping rules were of a special kind, it would be
mathematically difficult and often impossible to compute the required prob-
abilities.

“The question asked by the newer theory is: in the light of the observations
what is the probability that there is no therapeutic effect (or that it is x percent,
or greater than y percent, or less than z percent, where z, ¥ and z can be chosen
at will). The older theory asks about the probability of the observations, given
some true but unknown therapeutic effect, while the newer theory asks about
the probability of the true but unknown therapeutic effect, given the observa-
tions. This somewhat subtle difference in concept has important practical con-
sequences—the most immediate of which for present purposes is that the answer
to the question asked by the newer theory does not depend on the stopping rule.
Two investigators who obtain identical results must change in identical ways
their prior opinions on what the true but unknown therapeutic cffect is, no
matter how different their stopping rules. The irrelevance of the stopping rule
to the conclusion to be drawn appears to correspond more closely with the
attitude of most experimental scientists than does the older theory’s insistence
on its prime importance.

“Tables 1, 2 and 3 give stopping rules for three different circumstances: a
strong initial presumption that U is without therapeutic cffect (Table 2), a
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weak initial presumption (Table 3), and an intermediate presumption (Table 1).
It has not been customary for the older theory to talk about initial presump-
tions, although they were there. Thus, the naive procedure of performing re-
peated tests of significance as data accumulate until significance is obtained is
equivalent to assigning zero initial presumption to the hypothesis of no ther-
apeutic effect, while the Wald three decision sequential procedure is equivalent
to assigning a prior probability of one-half to this hypothesis. The major effect
of the initial presumption on the stopping rule is on the minimum number of
observations required before an observed therapeutic effect of zero would lead
one to stop and conclude that the agent is ineffective or harmful—the stronger
the initial presumption the sooner a zero effect would lead one to stop. The
tables correspond to a minimum number of 22 deaths (strong prior presumption),
225 deaths (intermediate) and 2250 (weak). This would seem to more than
blanket the range of reasonable opinion. The decision on when to give up in the
face of no therapeutic effect is clearly the investigator’s and any form of math-
ematics that presumes to make this decision for him is in principle wrong. Com-
parison of the three tables shows that the amount of evidence required to assert
the existence of a positive therapeutic effect is largely independent of the initial
presumption and comparison with Table 4 which gives the values for P = 0.99
shows that a change in significance level has only a slightly more pronounced
effect on the critical values than a change in prior presumption.”

Although there is obviously some special pleading in the document, we believe
that the subjective component to the proposal is honestly stated, and that no
wool was being pulled over anyone’s eyes. The committee found the proposal
interesting, welcomed the flexibility it provided, understood the subjective el-
ements involved, and accepted it as the basis for further planning.

6. Choice of stopping rule

At any given point in a sequential trial it is useful to have a decision rule,
which indicates under what circumstances one would stop and accept or reject
H, (or act as if one did)—even though further observations might introduce
unforeseen complications that led to a subsequent change in the decision rule,
and even though the terminal conclusions or decisions depend only on the ter-
minal observations and not on the decision rule or rules used along the way.
In considering possible decision rules we note first that the rules (4.7) and (4.8)
have a certain intuitive appeal, but appear to command no general support in
decision theory. More specifically, consider a choice between H, and H; and
define the continuation region after n observations by

(6.1) b, < R(ts) < au,

where E(t,) is the likelihood ratio of section 3. Kiefer and Weiss [20], [21] have
shown that for densities from the exponential family, and for max n = N, that
a minimum cost solution implies that the sequence of a, and b, will usaally
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satisfy b, < bn1 and a, > a,41. This is in contradiction to the constant prob-
ability limits given by (4.7) and (4.8).

In attempting to understand the reasons for this result we have found it help-
ful to consider a two stage sequential scheme, for which the Kiefer and Weiss
result can be exhibited in an elementary way. For the second or terminal stage
we consider the three decisions, accept Hy, accept H;, and suspend judgment
and stop. The cost of accepting Hy when H, is true is 1, of accepting H, when H,
is true is ¢, of suspending judgment when H, or H, is true is dy or d;. Then the
expected costs of the three decisions are respectively 1 — P*{0|t,.}, ¢P*{O|t,,},
and (do — di)P*{0|¢,,} + di. Hypothesis H,, will be accepted if the expected cost
of its acceptance is the smallest, that is, if

1 1-4d
6.2) P*{0l} > max [c s 1],

and rejected if the expected cost of accepting H; is the smallest, that is, if

« ) 1 , dr ]
6.3) P*{0|t,,} < min I:c+1 P a—

At stage 1 we consider the same three terminal decisions, with the same costs,
but consider a fourth decision—to suspend judgment and go on to stage 2.
The expected cost of this is nonnegative and denoted by k. Then at stage 1,
the result will be H, accepted if

1 1—-4d,
* bt b
(6.4) P*{0|t,} > max [c—l— T —— 1 k:l
and rejected if
. 1 dy k
* ’ y = I
(6.5) P*{0|t,} < min [c+ TRy — C:I
But clearly

1 1—d . 7. [ 1 1-d ]
(6.6) max[c+1’do—d1+1’l k:l=max Py

and

. 1 d; k . 1 dx ]
6.7) mln[0+1,c+d1—do’C]émln[c'i'llc"i—dl_do

and for sufficiently small k£ both inequalities will be strict. Constant probability
limits can therefore by no means be taken for granted. When k is expressed as
an explicit function of the elementary costs and the cost of additional observa-
tions, preliminary calculations based on an exponential density indicate that
the limits for the two stages can differ considerably.

The major problem in applying this kind of thinking is that the cost of addi-
tional observations tends to be incommensurable with the cost of the three
terminal decisions. An alternative formulation of stopping rules independently
proposed by Anscombe [22] and Colton [23] avoids the incommensurability
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problem by considering that the major cost of a trial depends upon both the
number of patients assigned to the inferior treatment and the treatment dif-
ference, while the major cost of stopping too soon is the cost of perhaps assigning
a finite number of future patients to be treated to what is in fact the inferior
treatment. They both propose to stop when the sum of these expected costs is
a minimum. Their solution is unfortunately quite sensitive to the value assumed
for the future number of patients to be treated. Several authors have remarked
that for an infinite number of future patients the Anscombe and Colton solution
requires indefinite continuation.

A generalization of their procedure may avoid this dependence, however.
Using Colton’s notation, he proposes that of N patients, n are assigned to each
of two treatments and N — 2n to the apparently superior one. The value of n
is determined by minimizing the expected loss, which is given as

(6.8) cs[n + (N — 2n)P{select inferior}],

where ¢ is a proportionality constant, and § is the true but unknown difference
in means between the treatments. Colton assumes a prior distribution for § with
zero mean, and finds the n which minimizes the average of (6.8) over this prior.
As a generalization, consider that at any point in the trial we assign n; patients
to the treatment which then appears superior and n, to that which appears
inferior. The expected cost is then

cd[ns + (N — n)P {select inferior} ], §>0
cd[ny + (N — n)P {select inferior} ], <0

where n = n; + n.. At this point in the trial a posterior distribution for 8, whose
mean in general will not be zero, is available. Let (6.9) be averaged over this
posterior and select n, and n; 50 as to minimize this average cost. Call the values
which minimize this average #; and f;. Then assign the next patient to the treat-
ment which appears superior with probability #:/(#; + fi.). Repeat this calcula-
tion and random assignment after each new result. The ethical advantages of
such a rule as well as its relative insensitivity to the value of N selected need
no elaboration.

Finally, we mention the famous two armed bandit problem [24], whose gen-
eral solution, would, in medical terminology, permit one to assign each new
patient in a trial in such a way as to maximize the number of patients assigned
to the superior treatment.

Clearly, much work remains to be done in the theoretical study of possible
decision rules and their consideration from the point of view of application. The
abstract ideas of statisticians have had important effects on clinical experimenta-
tion in the past, and there is every indication that they will continue to do so
in the future. But even short of the future advances that we may expect, there
is a simple application of existing ideas, not now used in clinical trials, which
can be of assistance in considering whether to stop. This application depends on
nothing more profound than the idea that in considering whether to stop it

(6.9)
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would be well to have some idea of what information is likely to be provided
by future observations. More specifically, if ¢, is the mean of m future observa-
tions, we need the posterior distribution of ¢,, given ¢,. Roberts [25] has recently
reviewed this problem, and termed this posterior distribution the predictive
distribution.

If p(6t.) denotes the posterior distribution of 6, given ¢,, then the predictive
distribution of ¢,, given t, is, using the notation of the two previous sections:

(6.10) pltalts) = [, mii2plmia(tn — 6)Ip(6ts) do.
But
(6.11) p(8|t.) = P*{0|t,} for9 =0
= [1 — P*{0[t.} In'2p[n'2(6 — t.)], 60,
so that

(612)  pltalt) = P*{Olfbmi g, ]
+ 1= Pkl () e [ () - )]

The predictive distribution of ¢, is therefore a mixture of two normal densities
with means zero and ¢,, variances m~! and m~—! + n~! and mixing coefficients
P*{0|t,} and 1 — P*{0|t.}. If one now wishes the predictive distribution of
P*{0|t., t.}, we have

c . -1
(6.13) wam=ﬁ+%¢ﬁwwmm]’
where
_ N, + min

(6.14) tin = T2
and

* - p(tmltn) ,
(6.15) PIP*{Oltm, ta} [ta] = OP*{0]tm, tn} /Otm

where (6.13) is used to express ¢, in (6.15) as a function of P*{0|t., {.}. If this
predictive distribution is calculated for various values of n, and m for the entire
body of experience, and subclassifications of it, then there is provided a summary
of what has been learned, and what future observations will add, which must
be taken into account in even the most informal assessment of whether to stop
or to continue.
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