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1. Introduction

Problems concerning the rate of production of recombinants between linked
loci in finite populations are important in applications to natural and artificial
populations (for a review see [1]). We shall be mainly concerned with applica-
tions to the theory of breeding experiments with laboratory populations. Closely
related (but not identical) problems arise in the study of the speed of evolution
in wild populations.

We consider two linked loci in a diploid population with alleles 4, @ and B, b
at the first and second locus, respectively. The normal or “wild type’” gamete is
ab but the mutant chromosomes Ab and aB are also assumed to be present in the
population. The gametic output of a double heterozygote aB/Ab contains the
four types, Ab, aB, AB, ab in the proportions (1 — r)/2, (1 — r)/2, v/2, r/2,
where r is the recombination fraction, 0 < r < 1/2.

Recombination is one of the main constituent processes of evolution. To
analyze the relative importance of recombination one asks questions of the fol-
lowing kind. Suppose the normal gamete ab occurs with a high frequency in a
population while the mutant gametes Ab, aB are maintained at low frequencies
by mutation selection balance. Then, in the long time scale of evolution, the
eventual formation of an AB recombinant is certain. How long is the time
between successive appearances of an AB recombinant? If the population is
large, a satisfactory answer for this problem can be found from simple determin-
istic models. Our main interest lies with the similar problems which arise in
finite captive populations.

The concrete problem we investigate takes the following form. Consider a two
locus diallelic population consisting initially of N diploid individuals including
only the genotypes Ab/Ab, Ab/aB, aB/aB. Each generation is produced by
random sampling from the gametic output of the preceding generation, main-
taining a fixed population size of N. An individual with a recombinant gamete
may eventually appear, but this outcome is not certain. If no recombination ever
occurs (for example, when r = 0), then there is effectively only a single locus

Research supported in part by Contract NIH USPHS 10452 at Stanford University.
403



404 FIFTH BERKELEY SYMPOSIUM: KARLIN, MCGREGOR, AND BODMER

and if there are no mutation or migration pressures, it is clear that ultimate
fixation is achieved for one of the two homozygotes Ab/Ab or aB/aB. Due to the
limitation of finite population size, even when recombination is possible, fixation
may occur prior to the formation of a recombinant type. Our aim is to determine
the probability R that a recombinant appears before fixation, and also to study
the distribution of the time involved until it appears.

The model proposed to describe the fluctuations of the gamete types aB and
Ab is given the canonical formulation [3], [7]. Specifically, suppose the current
generation is composed of N diploid individuals with gametic numbers shown
in Table I.

TABLE I

GaMETIC NUMBERS OF N
DirLoip INDIVIDUALS

Total Population 2N

4b z
aB 2N — 1

We determine the next generation by random sampling from the gametic out-
put of the present generation. If N is not too small, the genotype frequencies of
the next generation can be obtained with sufficient accuracy from the gene fre-
quencies of the present generation by assuming a Hardy-Weinberg distribution.
If the makeup of the present population is as indicated in table I, then the
genotypes Ab/Ab, aB/Ab, aB/aB occur in the present generation with the
Hardy-Weinberg frequencies

% 7 7 7 \?
(1.1) (2—]\7) 2-2—1\—,(1 _W>’ (1 _W>‘
A gamete, selected at random from the output of the present generation, is
therefore of type Ab with probability

(1.2) pi = [N(%V)22+N22L]'V(l —ﬁ,) a —r)]/QN

_t ( 1 — L)
T 2N 2N 2N )’
of type aB with probability

(13) q,-—l—-—é-ﬁ—rm<l—§ﬁ),

and is of recombinant type (ab or AB) with probability 1 — p; — ¢;. When 2N
gametes are chosen, by repeated sampling, to form the ¥ individuals of the next
generation, the probability that j gametes of type Ab and 2N — j of type aB
are obtained is
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(1.4) Py = <2JV) Pl j=0,1,---,2N.
The probability that no recombinant gametes are obtained is therefore
2N i\
(15) ZPi= @it a = [1-255 (1-55)
and the probability that one or more recombinants appear is
i\
(1.6) [1 —2r g5 ( —2—]—\,)] :

The Markov chain with transition probability matrix (1.4) ends either with
the appearance of a recombinant type or with fixation. It is clear that one of
these two events ultimately prevails with probability one. Our objective is to
determine the probability R of recombination before fixation as a function of
the initial gametic frequencies, the recombination fraction r, the population
size N, selective values and the mating system. This problem can be solved
formally as follows. Let w = (ug, %y, - -+ , uaw) be the unique vector with compo-
nents satisfying the linear system of equation

2N
(1.7) Ui = Zopijui) t=0,1,2,---,2N,
j=

coupled with the end conditions up = usy = 1. A little reflection convinces one
that u; is the probability that the population fixes and therefore,

(1.8) R = 1 —_— 'u,"

where 7 is the initial number of the Ab gamete. To invert the matrix of (1.7) is
an impossible task analytically, although numerically feasible but prohibitive
for N large. To uncover qualitative insights we will pass from the Markov chain
induced by the transition probability matrix (1.4) to an approximating diffusion
process and solve the problem in this context. The general validity of diffusion
approximations in studying finite population stochastic genetic models is dis-
cussed in Ewens [2] (see also Kimura [5], and Karlin and McGregor [4]).

The diffusion process in the present circumstance has the novel feature of
containing a killing term. More precisely, we will establish later that u(z), the
probability of fixation, where z denotes the initial frequency of the Ab gamete
satisfies the differential equation

(1.9) —V() -I-M()——K(:c)u——O 0<z<l,

dz?
where V and M represent the usual infinitesimal variance and mean displace-
ment. The term K(z) corresponds to the rate of killing at z due to the contin-
gency of recombination. In solving (1.9) it is essential to impose the boundary
conditions #(0) = u(1) = 1 corresponding to the event of certain fixation.
Numerical computation indicates that for N large (even N = 10) the solution
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obtained from (1.9) fits remarkably well the exact solution determined from
the equations (1.7).
Let R(x) = 1 — u(z), with0 < 2 < 1, denote the probability of a recombin-
ant appearing prior to fixation when the initial frequency of the Ab gamete is
= ¢/2N. From analysis of the relevant diffusion equations we obtain the
explicit formula

_ 1 _ sinh 4z¢'/? 4 sinh 4(1 — x)g!/2
(1.10) R@) =1 e ;
where o is defined by the relation
(1.11) = ](%

The derivation of (1.10) is given in section 2.

We see immediately that when o is large, that is, r 3> 1/N?, then R is approxi-
mately 1 and recombination is virtually certain. On the other hand, if ¢ is small
then R(z) ~ 0 and fixation almost certainly occurs before recombination.

If we are interested in the creation of the AB recombinant gamete, while ab
gametes are discarded when formed, then the formula (1.10) has to be modified
to

_ sinh & (80)'2 + sinh (1 — )(80)"/2

(L12) . R@ =1 b G

In particular, we have the especially simple relation

N _ v 1 gp-Neom

(L.13) R(Q) =1 cosh(2¢)172 1 cosh N (2r)1/2 1 —2

if N(2r)'2 is not too small. For any initial x, where 0 < z < 1, it is easy to
calculate the size of the population required to guarantee with a given prob-
ability that a recombinant type will be created. For example, for £ = 1/2 the
relation (1.13) is easily solved for N to yield

(1.14) N cosh™!

1

1—R®)
and interpreted as the population size N required to obtain a recombinant with a
specified confidence R(1/2) when the initial frequency is @ = 1/2. Thus, to
achieve R(1/2) = 0.99 we need a population size of the order N = [1/(2r)]log 200
= 5.3/(2r)1/2 and for R(1/2) = 0.75, we require N = 2.2/(2r)'/2

The preceding model can also be analyzed taking account of selection effects.
The details are set forth in section 3. We shall now sct up a sclection model and
indicate some of the main results.

Assume the frequencies of the three genotypes Ab/Ab, aB/Ab, aB/aB, arc 22,
2z(1 — z), (1 — x)?, where x = 7/2N, and that the respective selective coeffi-

1
- (2,,)1/2
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cients are 1 + a, 1, 1 4 b. Then the gametic output contains the four types of
gametes in relative proportions as follows:
Ab:2x2(1 4+ @) + 22(1 — 2)(1 — 7);
aB:2(1 — 2)?2(1 +b) + 22(1 — z)(1 — r);
ab:2z(1 — x)r;
AB:2z(1 — z)r.

Hence, (1.2) and (1.3) must be replaced by

2214+a)+ 20 —2)1 —1)

P T Y et b1 — 22
(1.15)
_ Q=21 +b)+z1—2)(1 —1)
%= 1+ az? + b(1 — z)? '
and we have
(1.16) pitqi=1-— 2rz(l — x)

1+ ax? + b1 — 2)*

The probability B = R(z, a, b, r, mating system) of producing the recombin-
ant type AB generally depends on the parameters in a complicated manner.
However, for the special case a = —b = ¢ > 0, in which the Ab chromosome
confers an additive selective advantage relative to aB, the function R(x) satisfies
a differential equation which is amenable to a complete solution. We obtain the

formula
(1.17)
B ¢21-2) ginh « (80 4+ 44?2 4 e~%% sinh(1 — z)(8¢ 4 4v?)'?
Bl =1- sinh (8¢ + 4v9)172 ’

where ¢ = rN? and ¥ = Ne¢. In this case fixation tends to occur at = = 1.
Equivalently, inspection of the function R(x) reveals that its graph is skewed
toward z = 0. An approximation to (1.17) valid for Nr!/2 and N¢ not too small
for the special initial gamete frequency = = 1/2 is

(1.18) R(3) ~1—2exp {—N[(@r + )2 — c]}.
Tt follows that to achieve R(1/2) = 0.99 we need a minimum population size
(1.19) N 53 53

= @r+ ) —¢ (2,,)1/2'

Another important special situation is the case of heterotic selection, that is,
where the selection coefficients are related asa = b = —¢, —© < ¢ < 1. The
heterozygote is at an advantage if ¢ > 0 and at a disadvantage if ¢ < 0 com-
pared to either homozygote. In this case we cannot obtain an explicit formula
for R(z). Recourse to the asymptotic theory of differential equations leads to
the asymptotic expression (for N large but r and ¢ fixed)

(1.20) 1= R(@) ~ ¢=2¥=0-9 [¢' @] wils(@)],



408 FIFTH BERKELEY SYMPOSIUM: KARLIN, MCGREGOR, AND BODMER
where
a@——i—[[m+au—xy—ﬁyﬂﬁ

- (2p)"2 0 N Sy
(1.21) ]

12 = 21 —ope _ |7
2p) ]0 [+ o0 —200 - 5]

and wy(?) is the solution of the equation
(1.22) wo (1) — 8N2pue(t) = 0,  wo(0) = wo(l) = [¢'(0)]V2

It can be verified that R(z) increases if either ¢ or r increases. Furthermore,
R(z) is symmetric about x = 1/2.
For the special initial frequency 2 = 1/2, we obtain

¢ 1/4
2r + ¢ — =
(123) 1- R(%) - — X o exp {—N[(Zp)”2 + g]}

21*—]%

We call the selection relatively weak if ¢* < 2r. In this case, if ¢ > 0, further
examination of (1.23) yields the good approximation :

(1.24) N~ 1 — log 2 ~
(o) + 2 ¢ 1-—R<§)
where
1 c? 1/2
(1.25) P = (27)”2/ [1 +5- (01— 25)2] dg,
0 2r
and if ¢2/2r < 1 is close to zero (1.24) can be replaced by
(1.26) N~—1 - log 2 :
(27’)1/2 + 5 1-— R(i)

Further discussion and indications of the derivation of the above facts are
given in the body of the paper. We also review briefly procedures for calculating
the moments of the distribution function of the time until a recombinant is
formed. This distribution is representable by an integral formula involving
exponential functions. We omit the formal elaboration of these results.

The methods of this paper reveal a novel form of diffusion approximations,
natural and appropriate for the study of certain genetic problems. These same
techniques can be applied to analyze the effects of artificial selection schemes
versus random elimination operating on finite population genetic models. We
could also handle the model of this paper with random mating replaced by
certain inbreeding systems, especially selfing or a mixture of selfing and random
mating. These considerations and other applications are deferred to a future
publication.
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2. Random mating without selection

Consider in each generation, a population of N diploids consisting of only the
genotypes Ab/Ab, Ab/aB, aB/aB.

The finite state Markov chain whose state variable denotes the number of
Ab gametes governed by the transition probability matrix (1.4) is the standard
model used to study the fluctuations of the gamete frequencies accountable to
random sampling and recombination effects. The process ends if either fixation
ocecurs or a new recombinant type appears. We proceed to the analysis of the
given Markov chain.

The gamete frequency in the nth generation, provided no recombinant has
yet appeared, is a random variable X (n) with one of the values /2N, 7 = 0,
1, ---,2N.If X(n) = ¢/2N = x, then it may happen that in the next generation
no recombinant appears. In this case for the difference AX = X(n + 1) — X(n)
we have the expected values

E(AX) = [pi — z(p: + ¢)1(pi + ¢* 7, |
E[(ax)7] = {[m — 2(pi + ¢)* + %}(n + )PV,

Alternatively, a recombinant may appear in the (n 4+ 1)st generation, and the
probability of this is given by (1.6). In this case we say the gamete frequency
process ends by recombination in the (n -4 1)st generation, and X (k) is not
defined for k = n 4 1.

We introduce a new recombination parameter ¢ defined by

(2.2) r = g/N2.

If o is regarded as constant the above expected values are of the form

2.1)

@3)  B@X)=o0a/Ny, Eex =222 4 oa/,

and the probability that the process ends by recombination in the (n + 1)st
generation is
2.4) 4oz(1 — )

N

We choose the time scale so that unit time is taken for the passage of N genera-
tions. Then the time elapsing between successive generations is At = 1/N
which — 0 when N — «. Hence,
- 1m £(4X) -
M) = Jim E( ar) =0

At—0

4+ O(1/N?).

2.5)

T (AX)“‘-] _z(l —x)
Vo) = lim B| =0~ |= =5
At—0
and the limiting rate of appearance of recombinants is

(2.6) K(x) = 40x(1 — ).
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The diffusion process which has the same limiting mean change M (z), variance
V (x), and recombination rate K (z) is that governed by the (backward) diffusion
equation

Ju 1 %u du
_x(l—x)azu_ L
== e 4ox(1 — 2)u.

Diffusion equations like (2.7), which contain the term —K(x)u, called a
killing term, are known in diffusion theory but apparently have not previously
been used in genetics. For the diffusion process governed by (2.7), the states
z = 0 and = 1 are absorbing barriers corresponding to fixation of the popula-
tion. If at some time ¢ the process is in state 2, 0 < £ < 1, then in the subse-
quent small time interval (¢, £ + dt) the process ends or is killed, corresponding
to the appearance of a recombinant, with probability K(x) dt. With probability
one the process either ends in this way by recombination at some finite time,
or else one of the two states of fixation is reached in finite time.

Let Z(x) be the probability that the process eventually ends by recombination
when it starts in state z, 0 < z < 1. By standard methods of diffusion theory
we deduce from (2.7) that Z(z) satisfies

2.8) %V(x) %Zz + M(@) % —K@Z = —K@),  Z(0) = 0, Z(1) = 0.

In the special case at hand this simplifies to

(2.9) izu — 467 = —4o, 20) = 2(1) = 0,
and therefore,
(2.10) Z(@) = 1 — b dzett + sinh 4(1 — 2)o'”

sinh 4¢1/2

This is the expression (1.10) of the introduction.

A related probability is of even greater interest. When a recombinant appears
it may be either of type ab or AB. We assume that individuals with the ab gamete
can be recognized and discarded from the population, and that the population is
maintained at size N until either fixation oceurs or an AB recombinant appears.
By means of a simple renewal argument we find that the probability R(x) of
eventually obtaining an AB recombinant satisfies

@.11) % Vi) ’f;TIf + M@) % — K@R@E) = —K(@) [% + %R(x):l,

R(0) =0, R(1)=0.
For the special case at hand this leads to

_ . sinha(85)!2 + sinh (1 — )(8o)""2
(2.12) R@) =1 NI
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Some interpretations and uses of formula (2.12) are discussed in the introductory
section of this paper.
If R(z, ¢) is the probability that an AB recombinant appears before time ¢

when the process starts in state « at time ¢ = 0, we find that the Laplace trans-
form

(2.13) ®(z, \) =ﬁ e aR(x’ D g, x>0,

satisfies
e1) JV@EE L M@ - Kwe e = —K@ [} +32])

®0,)) =0, ®(1,» =0.
Consider the moments

. L amd =f . OR(, t)
(2.15) &,.(x) = (—1) v . ¢ o di;
it follows from the above that
(2.16) V( ) d .+ M )-— - ~K(x)<1> = nd,_y,

n(O) = 0; 'i’n(l) =

Since ®,(z) = R(x) is known, the successive moments can be found by elemen-
tary methods.

3. Effects of selection

In this section we analyze the Markov chain model with transition probability

matrix (1.4) whose parameters p; and ¢; (see (1.15)) involve the selection
coefficients.

To find a diffusion approximation for the Markov chain at hand, we let

. o B8 o

(31) G=N’ b=ﬁ’ T=]V2
and assume that «, 8, ¢ remain fixed and N — «. Proceeding as in section 2, we
obtain

V@ = 29,

M) = z(1 — z)[ax — B(1 — 2)], K(z) = 4oz(1 — 2).
Thus, the diffusion equation is

(33) WL DP L0 — par — 60 - 2] —to2(1 — 2

(3.2)

The probability R(z) of obtaining an AB recombinant before fixation is the
solution of
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(3.4) iR” 4 [az — B(1 — 2)]R' — 20R = —20, R(0) = R(1) = 0.

Equation (3.4) is not an elementary differential equation (exceptif « + 8 = 0,
when it has constant coefficients). Nevertheless, since its coefficients are linear
functions of z, it is manageable by classical methods. Its solution can be repre-
sented by Laplace integrals, and the asymptotic behavior of R(z) when «, 8
and ¢ are large, can be determined.

Since R(z) depends on the four parameters e, 8, o, ¢ in a complicated way,
it seems advisable to consider special cases, and we describe the results for two
examples. In example 1, which is particularly simple, the complete solution is
obtained. In the second example we find an asymptotic approximation of the
solution, from which one can estimate the population size N required to achieve
a specified certainty of getting a recombinant before fixation. The technique of
the second example can be applied to other cases.

Example 1. Let « = —B = . In this case the Ab chromosome has an addi-
tive advantage over aB. The differential equation simplifies to

9 L4 ok — 20k = 20,
and we find
(3.6)

R@) =1-— e2(1=2) gsinh 2(8¢ + 4v2)1"2 + e~ 2= sinh (1 — 2)(80 + 4v2)172

sinh (8¢ + 4v2)1/2
(see the discussion of (1.17)).

Example 2. Let a = 8 = —v. This is the case of heterotic selection. The
heterozygote is at an advantage if v > 0, a disadvantage if ¥ < 0, compared to
either homozygote. When ¢ is fixed it is clear that R(x) should be an increasing
function of +.

If we let F(z) = 1 — R(x) be the probability of ultimate fixation then F(x)
is the solution of

3.7) }lF” Fy(l — 20)F —26F =0,  F(0) = F(1) = 1.

Our aim is to find the approximate value of F(z) when ¢ = N?r, v = Nc¢ with
—w < ¢ < 1, where ¢ and 7 are fixed and N is large. We make the preliminary
substitution

(3.8) F(z) = e72Ne=0=2) y(z),

which will have the effect of eliminating the first derivative term from the

differential equation. Then y(z) is the solution of

3.9) y'' — [8Nr + 4N2%2(1 — 22)? — 4Nc]y = 0, y(0) = y(1) = 1.
The final substitution is now chosen so that the coefficient in the resulting

differential equation is nearly constant. We assume, if ¢ > 0, that 2r — ¢/N is
positive, that is, N > ¢/2r. Let
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(2p)12 = / [21‘ + (1 — 2x)? — 3]1/2 dx
0 N !

(3.10) t = o) = (—2#5 ﬁ |:2r + el — 200 — ]%]”2 dt,

y(@) = [¢' @) ]2 w(®).
Then w(?) is the solution of

@.11) ‘%’ — [8N% + H()]w = 0,
2r ¢t — ]% "
w(0) = w(t) = PO = \—p—T | -
where .
om n-[8E -5 wer

When N — «, the quantity (2p)!/2 approaches a positive limit, and ¢(z) and its
derivatives converge uniformly, and ¢’(x) remains bounded away from zero.
Hence, H(t) is uniformly bounded on 0 < ¢t = 1. We can show that the solution
w(t) of (3.11) is nearly the same, for large N, as the solution of

(3.13) ‘%}’ — 8Nuwo = 0, wo(0) = wo(1) = [¢/(0)]"2
More precisely,

(3.14) w(t) = wo(®)[1 + O(1/N)].

Using this we have as the approximate solution of (3.7)

(3.15) F(x) =1 — R(x)

~ o MNex1=2 g (2)]12 wo9(2)],
and, since ¢(1/2) = 1/2,
c 1/4
2r + ¢ — ﬁ
(3.16) 1-R1/2) ~| ——— 2¢—N[@e)11+c/2],

2r—%

4. Discussion

A striking example of repeated accelerated responses to selection for increased
bristle number in Drosophila melanogaster was reported by Thoday and Boam [6].
One explanation they suggested for the responses was based on the production
of a particularly favorable AB recombinant gamete from a repulsion hetero-
zygote Ab/aB. Thus, suppose that the gamete Ab is initially rare, but has a
positive effect on bristle number relative to aB. Then heterozygotes will initially
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be rare, and so the probability of producing AB recombinants is low, but this
probability will increase as the frequency of the gamete Ab increases by selection.
The mean time to the onset of the accelerated response will be the mean time to
the production of an A B rccombinant. The models considered in this paper are
applicable to such an explanation for an accelerated response to selection. The
expression for R(z) given in equation (1.17) shows the dependence of the prob-
ability of producing a recombinant before fixation, on the population size, re-
combination fraction, and selective values. It is clear that population sizes must
be quite small, the recombination fraction must be very small, and the initial
frequency of one gamete very small for the risk of fixation to be significant.
However, laboratory populations are often small enough for these considerations
to be important and linkage values may be small enough in natural populations
to retard significantly the rate of production of appropriate recombinant gametes.
TFurther work is clearly needed to correlate the theoretical results more precisely
with experimental findings.

5. Summary

Some results are given for the probability that in a finite population containing
initially only gametes Ab and aB (alleles A, @ and B, b at two linked loci), the
recombinant gametes AB or ab are produced before the population fixes on
either of the initial gametes Ab or aB.
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