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1. Introduction

In the present paper we shall discuss the extinction problem for certain
branching processes. Our main purpose is to study those branching processes
which can serve as models of epidemics; that is, spreads of an infectious disease.
The phenomenon of epidemics is fairly complex, and all models necessarily have
to be based on a certain compromise. This compromise consists of taking into
account some of the (presumably important) factors governiing the spread of the
disease at the cost of neglecting others. Our main idealization will consist of
assuming such mechanisms of infection which yield a brailching process. Using
informal language, it means that all infectives present in the population at a
given time infect the susceptibles independently of each other. More precisely,
if there are 7c infectives in the nth generation of the epidemics, then the distri-
bution of the next (n + 1)st generation can be represented as the distribution
of a sum of k independent, identically distributed random variables, with a
specified distribution. These random variables represent the "progeny" of k
infectives of nth generation.

It is debatable whether the above assumption is justifiedlin the sense that
models based on it provide an adequate description of reality. The main ob-
jection is that when the population gets "saturated" with infectives, the assump-
tion of independence becomes violated. We shall not attempt to defend our
models; we only want to show that it is possible to fit within the framework of
branching processes some of the factors governing the spread of the disease; such
as, effects of vaccination and other preventive methods, variable lengths of the
period of incubation and infectiousness, effects due to random movements of
infectives within the habitat, and also, to some extent, the effects due to the
exhaustion of susceptibles. We do obtain meaningful results withiin our models;
whether or not these results bear any relation to reality lies beyond our present
interest.

In section 2 we consider a simple case of a Galton-Watson process, and we
show that even in this relatively simple case one can take into consideration the
variable length of the period of incubation and infectiousness. In section 3 we
generalize the model of section 2 to include the random movements of indi-
viduals.

Finally, in section 4 we deal with generalized branching processes, in an
2.59
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attempt to approximate the epidemics on finite populations. The definition of a
branching process as presented there differs considerably from the standard one:
we include the possibility that the distribution of the number of descendants may
vary in a random manner.

2. A model of epidemics based on a Galton-Watson process

Since the present section is mathematically trivial, we may dispose for a while
with formalities and use the intuitive terminology. We make the following
assumptions about the mechanisms of infection and the duration of the disease.
ASSUMPTION 1. Every individual who becomes infected passes first through an

incubation period of the length X followed by the period of infectiousness of the
length Y. During the period of incubation he is harmless to others, whereas during
the period of infectiousness he may infect those with whom he comes in contact. We
shall measure time in appropriate discrete units (calling them days, for simplicity),
and we assume that X and Y are random variables with the joint probability distri-
bution pm,n = Pr {X = m, Y = n}.

Let F(s, t) = Zm,np,n,snmtn be the probability generating function of the pair
(X, Y).
ASSUMPTION 2. At each day during the period of incubation every individual

has a probability 1 - a, (O < a _ 1) of being discovered and isolated. During the
period of infectiousness the probability of being discovered and isolated equals
1 - #, (O < ._ 1) at each day. These probabilities do not depend on the number of
days during which the individual in question remains undiscovered.
AsSUMPTION 3. Every infected individual who has not been previously discovered

makes a certain number of contacts with noninfected members of the population
during each day of his period of infectiousness. The number of contacts made on
different days are assumed to be independent and identically distributed with the
distribution {rk}, k = 0, 1, 2, - - - . Let R(t) = ,krktk be the probability generating
function of the number of daily contacts.

ASSUMPTION 4. We assume that each contact with an infectious individual yields
an infection with probability -y, (O < -y < 1) independently of the results of other
contacts.
AssUMPTION 5. The events occurring to an individual on a given day are inde-

pendent of the events that occurred to him or other members of the population on
previous days, and they are independent of the events that occur to other members of
the population on the same day.
AssuMPTION 6. The expected number of daily contacts is finite.
Comment. Obviously, the assumptions 1-4 are partly superfluous: one could

incorporate 2 into 1 by considering at once the number of days of "effective
infectiousness." One could also incorporate 4 into 3 by considering only "success-
ful" contacts. We hope, however, that by separating the assumptions we may
be able to trace the influences of various factors which could, perhaps, have
biological significance. Thus, for instance, y may represent the degree of "con-
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tagiousness" of the disease, or the resistance of the population due to vaccination,
climate, and so on. Similarly, a may represent the efficiency of health service in
its attempts to trace the individuals who may have had contact with the disease
in order to isolate them, while a may measure the efficiency of periodic checkups
and health control.
We shall study conditions under which a single individual who becomes in-

fected has a positive probability of originating epidemics. The word "epidemics"
will be somewhat arbitrarily understood to mean that all generations of a
Galton-Watson process originated by this individual are nonempty, and conse-
quently, their sizes tend to infinity with probability one (see, for instance,
Harris [1]).

It is well known that all information about the behavior of a Galton-Watson
branching process is contained in the probability generating function of the
number of "direct descendants" of a single element. To compute this generating
function in our case, let us suppose that we have a single individual who became
infected at a certain moment, and let wn be the probability that he will be
"effectively infectious" (infectious and not isolated) during exactly n days
(n _ 1). He must, therefore, remain undiscovered during all his period of incu-
bation and during the first n days of his infectiousness period. If X = m, Y = n,
this probability is am-,,; in case X = m, Y = k (k > n), this probability equals
,amBn(1 - p). Denoting for simplicity
(1) qm,n = Pm,n+l + Pm,n+2 + * = Pr {X = m, Y > n},

we get
(2) wn = (3" pm,nam + (1 i)(3"E q,n,n"'-.

m m

The last formula holds for all n> 1; for n = 0 we must add a term which
accounts for the possibility of being discovered during the period of incubation.
Adding all wn for n _ 1 one could easily obtain ,n Wn = F(a, 1).
Now let vk be the probability of exactly k contacts leading to the disease

during one day of the period of infectiousness. We find easily

(3) Vk = j (k) yk(1 - "y)i krj.

For the generating function of the sequence fVk}, we obtain

(4) , Vktk = F (k) yk(l - y) ii\rit'
k kI i >k \k/y(- )krk

E (yt)E ij(j 1) ... (j k + 1)(I - y)i-kr
k k j>kc

-
E ( Rtk) -k)(-y) = R(yt + 1- y);ck !

the inner series in the antepenultimate expression is the kth derivative of the
function R at the point 1- y, and the penultimate expression is the expansion



262 FIFTH BERKELEY SYMPOSIUTM: BARTOSZYNSKI

of R(-yt + 1- y) into the Taylor series in the neighborhood of the point 1 - -y.
By assumption of independence, the generating function of the joint number

of infected during n days-of effective infectiousness is R(yt + 1 - y)n. Thus, for
the generating function of the number of direct descendants of an infected
individual we get
(5) G(t) = 1- F(a, 1) + _uw[R(-yt + 1- )]n

n

= 1 -F(a, 1) + E O3nampm,n[R(-yt + 1 - y)]n
n,m

+ (1 -3) E O3namq.,[R(yt + 1 - )]n
n,m

= 1- F(a, 1) + F(a, 3R(yt + 1 -y))
+ (1- )Q(a, 3R(yt + 1 -y)),

where Q(s, t) = Em,n qm,nsmtn.
By simple generalization of the well-known formula that gives the relation

between the generating functions of a sequence and the sequence of its "tails,"
we get
(6) Q(s, t) = F(s, 1) - F(s, t)

1 - t

In fact, let pm. = Fn Pm,n. Then _m pm.sm = F(s, 1) and
(7) Q(s, t) = X qm,nsmtn = EZ _ pm,smtn

m n m n j>n

mEs tn (pm. -E pm j)
m n j=O

n
= E tn E Pm.8m - F PmjSmtn

n m m n j=O

= (1-t)-'F(s, 1) - sm _ Pm,,j t
m j n>j

= (1-t)-tF(s, 1)- (1 -t)-' E pm,js't'
m j

= 1t) [F(s, 1)-F(s t)]
Combining (6) with (5), we finally obtain

(8) G(t) = 1-F(a, 1)

+ (1-,3)F(a, 1) + i(1 -R(yt + 1 - y))F(a, iR(Qyt + 1- y))
1-,IR(Qyt + 1 -y)

Differentiating, we obtain

(9) G'(1) yTR'(1)[F(a, 1) - F(a, p3)],

provided that 3 $ 1. For f 1 we find

(10) G'(1) = 7lR'(1) atF(s, t)J|_=a t=.at
The last value may be infinite.
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We shall now discuss the condition under which G'(1) > 1. We shall use the
theorem which asserts that for a Galton-Watson process with the generating
function f (t), the probability of extinction is smaller than one if and only if
f'(1) > 1 and equals to the smallest positive root of the equation x = f (x).
Denoting for simplicity R'(1) = r (r being the average number of contacts per
day), we see easily that G'(1) > 1 if and only if

(11) F(a, (3) < F(a, 1) --r ,B-

Consider now, for a fixed a, two functions h1(f3) = F(a, #) and h2(i) =
F(a, 1) -(1 - fl)-yr/. We see that h1(l) = h2(1); both h'I and h2 are positive,
while h1' and h2' are of different signs. Thus h1 and h2 are increasing; one of them
is convex and the other concave. Two possible modes of behavior of h1 and h2 are
presented in figures 1 and 2.

F(a,1).-__ ________-

2 I

FIGURE 1

Possible behavior of h1 and h2.

The inequality G'(1) > 1 or, equivalently, inequality (11), holds if and only if
the situation is such as presented in figure 1, and only for values g3o < ,B < 1,
where #o is the (unique) smaller-than-one root of the equation hi(#) = h2(g).
Now, in figure 1 we have h'(1) > h2(1), whereas in figure 2 we have h'(1) _ h'(1).
Further, h1(1) = aF(s, t)/a1ts=.a,t.i = D(a), where D(a) is the average length of
the period of infectiousness of individuals who remained undiscovered during
their incubation period, while h2(1) = 1/-yr. We are now in the position to state
our criterion.
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A single individual has a positive probability of originating epidemics if and only
if D(a) > 1,/yr and /3o < /3 < 1, where /o is the smallest root of the equation

(12) 'yrxF(a, x) - yrxF(a, 1) + 1- x = 0.
If the above conditions are satisfied, then the probability of epidemics equals 1 -z,

where z is the smallest positive root of the equation x G(x) with G(x) given by (8).

F (Qa,l) --_ -_ _____ _

hi
h2

/ I
FIGURE 2

Other possible behavior of hi and h2.
In addition, notice that we obtain a reasonable estimate of /3o by considering

the point /3* where h2 intersects the /3-axis. We easily obtain

(13) /,o > /3* = (1 + 'yrF(a, 1))-1.
We may reformulate our result, stressing its possible applications to reality as

follows: there are five factors (F(s, t), r, a, ,B, and y) involved in our model. The
first two (characteristic F(s, t) of the disease and the average number of contacts
per day r) are more or less beyond our control, and they could possibly be de-
termined in practical situations. The remaining three constants measure the
efficiency of preventive methods: a in discovering the infectives during their
incubation period, /3 in discovering the infectious individuals, and ry in increasing
the individual resistance to the disease. The question arises: given F and r, which
values of a, /3, and y yield a "safe" domain (that is, such a domain of values, for
which the epidemics do not occur with probability one)? One can see that in
order to prevent epidemics one must attempt to have either -yD(a) _ 1/r for
arbitrary /, or, if for some reason the above inequality is unattainable, one should
attempt to have /3 _ (1 + 'yrF(a, 1))-1 (</3).
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The case in which the incubation period is of the constant length M gives
D(a) = DaM, and F(a, 1) = aM, D being the average length of the period of
infectiousness. Then the "safe" domain would be at least either yaM _ 1/rD, d
arbitrary, or A _ (1 + yraM)-1

Finally, let us remark that even if the average length of the period of infectious-
ness D is infinite, we may still prevent the epidemics by a suitable selection of 1B.
This problem may not only be of academic interest: in some diseases (for ex-
ample, venereal) the average length may be of the order of the average length of
the human life; that is, it may be considered "practically infinite" as compared
with the average length of the infectiousness period. By lowering 13 (by increasing
the efficiency of periodic checkups), we may be able to prevent the epidemics for
such diseases.

3. Epidemics with random movements of individuals

The model of the preceding section can be generalized easily so as to include
the possibility of random movements of individuals. Thus, we imagine that the
whole habitat is partitioned into N subhabitats (which we shall call "zones"),
and we assume that all individuals, independently of one another, may move
from one zone to another.
We assume that the disease is characterized by the joint distribution of the

vector (X, Y) as in the preceding section. The corresponding probabilities of
getting discovered and isolated during the periods of infectiousness and incu-
bation will be 1 - ai and 1 - 13, respectively, for individuals in the ith zone.
The distribution of the number of daily contacts for the ith zone will have the
generating function Ri(t), and the corresponding probability of the contact being
"successful" will be yi. We allow one transition from one zone to another per day,
and we assume that all individuals travel and infect independently of each other,
and independently of their past histories. The transition probability matrix will
be [qi,j] for the transitions during the period of incubation and [pi,j] during the
period of infectiousness.

Let Gk(tl, - * -, tN) be the probability generating function of the vector
.. N,X5k'), where X'k) is the total number of individuals infected in the

ith zone by an individual who himself became infected in the kth zone. Let
G(t4, * * *, tN) be the vector whose kth component is Gk(tl, * * *, tN). Continuing
in the same way as in the preceding section we easily arrive at the formula

(14) G(t1, * *, tN) = *I'(F(U, V) + Q(U, V)W + C),
where

(15) U = [qi,jaj], W = [pij(l - 13)], V = [pij,1,RQy,tj+ 1 -y)],
C is a constant matrix accounting for the possibility of leaving no descendants
due to the discovery prior to the end of the incubation period (the exact form of
C is of minor interest, since we deal mostly with derivatives of vector G), and,
finally, ' is a function which assigns to a matrix the vector whose components
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ale c(qual to the sums of correspondinig rows of the matriix. Sin1ce all powers of
matrices U and V have entries bounded by one, no question of the existence of
the geneiating function with matrix-valued variables arises.

eAcanniiio 11Ce the generalization of the extinction theorem for branching
processes which asserts that the branching process with generating functions
Gk(t,, * *, U) (A = 1, * * *, N) is bound to expire with probability one if and
only if no eharacteiistic roots of the matrix

(16) [aGk(tl, , tN) ]

lie outside the unit circle.

4. Generalized branching processes

We shall now proceed in a more formal way and give the definitioin of general-
ized branching processes. The idea which we have in mind is to define such
branching processes that can serve as approximations of epidemics on finite
populations.

Let S be a finite or countable set, and suppose that to every s E S there corre-
sponds a probability distribultioin 7r8 on the set of all nonnegative integers. Thus,
every 7r, is a sequence of nonnegative numbers {'r(nis)}, (n = 0, 1, 2, * *) such
that T_, 7r(nls) = ]. Often, instead of speakiing about the distributions 1r,, we
shall speak about theii probability generatinig funcetionsf (xls) defined asf (xjs) =
E,n xn7r(nis), lxl _ 1.
Let 2 be the class of all finite sequences (k(O; si, k1; . .. ; Sn, kn), where

sj e S (j = 1, 2, * * *, n), hj(i = 0, 1, - * *, n) are nonnegative integers, and
n = 0, 1, 2, * L-. Let D(S) be the class of all probability distributioil over the
set S.

DEFINITION. A sequence ZO, ZI, Z2, o* of notnngative integer-valued randoml
variables will be called a (generalized) br-anching process, if there exists a function
sp: £ -* D(S) such that the distribution of every finite subsequence (zu, z1, . **, Zn)
coincides with the rnar-inal distritution of (z4,, z4, n,4) of the process z4(, (,, z4,
62, Z2, - * - defined as follows:

(i) zo has the same distribution as z0;
(ii) for any n _ I the conditional distritLution oJfS;n+ (,iven that z4 = Ao0 41 = s1,

z4 = k1, * - ,Xi = -,, z*n = An,, is eqnial to p(h; si, h1; ; s,,, A,,) e D(S) (thus
,n+i S, n= I21,2,*-);

(iii) for any n _ 1, the conditional distriution oJ z*+,, given that z4=ko=
= Si, z4 = k1, z,Z = kn, ,n+i = Sn+1 coincides uwith the distrilution of the sum

of kn independent random variables, each having the distribution 7rnl,; tha.t is, it has
the probability generating function equal to [f (xIsS+,)]kn.
The idea of this definition is to comprise the processes, which, roughly speak-

ing, are constructed in such a way, that given the history of the process up to the
nth generation, the (n + l)st generation is a sum of independently created
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"offsprings" of the members of the previous generation, while the "fertility"
distribution changes in a random fashion, depending on the past history of the
process.
We shall identify processes {zn} with the "marginal" processes {z*} which

generate them. If necessary, we shall refer to the auxiliary process {n} corre-
sponding to the process {zn}.

Let us note that branching processes {z,n} as defined here are, in general,
non-Markovian. To find conditions under which {zn} is a Markov process, let
us note first that one can interpret the function so, which appears in the definition
of the process as a function which maps the class of all cylinders with finite
bases corresponding to the process zo, 41, z1, t2, * * * into D(S). More precisely, let
Q be the class of all sequences w = (ko, si, ki, 82, ** ) with 8j E S and ki being
nonnegative integers (j = 1, 2, * , i = 0, 1, 2, ** ). Let CB be the class of
cylinders with finite bases in Q, and let ff be the smallest a-field containing all
sets in 63. Further, let P be the measure on (Q, a) generated by conditions (i)-(iii).
The function so maps the class 6* C (B of all cylinders with bases of the form
(ko, si, .* ..* Xnj kn), n = 0, 1, 2, - - * into D(S).
We can now formulate the following theorem.
THEOREM 1. The branching process {Zn} is a Markov process if and only if the

function so has the property

(17) sp(ko,ysj kly ...* s, kn) = b(n, kn)
on all cylinders in 63* with positive P measure.

In fact, if (17) is not satisfied, then there exist for some n two different
"histories," H = (ko, si, ki, * * *, k,n) and H' = (ko, s1, kl, * - *, k'), which may
occur with positive probability and such that kn = k', while (p(H) z- V(H'). In
this case the conditional probability distribution of zn+, given H is different from
the conditional distribution of Zn+1 given H', which shows that {zn} is not a
Markov process. Suppose now that (17) holds, and let H = (ko, si, ki, * *, kn)
represent a history of the process up to nth generation. Given that n+i = s, the
distribution of Zn+l has the generating function [fU(xs)]k-. If we denote the distri-
bution appearing on the right-hand side of (17) by an,k.(s), we can write the
generating function of Zn+1 given H as

(18) a, an,k.(8)[(X|8)]k_.

Since the last expression depends only on kn, we conclude that {zn} is a Markov
process.
THEOREM 2. If the branching process {zn} has the property that q =

infeS 7r(OIs) > 0, then

(19) Pr {lim zn= 0 or limnZn=} = 1-
n- n

PROOF. Let us note that if ZN = 0 for some N, then zn = 0 for all n > N. For
a fixed k > 0 denote



268 FIFTH BERKELEY SYMPOSIUM: BARTOSZYNSKI

M
(20) CN(k) U {zn = k}, CN (k) = U {z, = k4

n_N n=N

To prove the assertion, it suffices to show that for every k > 0 we have
Pr {mN CN(k)} = 0. Since CN(k) D CN+l(k), N = 1, 2, * * ,it is enough to prove
that limn,- Pr {Cv(k)} = 0. We may write

M-1
(21) CN(k) = {ZM= k} U U {Zn = k, Zn+lF k,* , Z,f i£ k}.

n=N

The events on the right-hand side of the last formula are disjoint, hence

(22) Pr {CN (k)}

-Pr {z.AM= k}+ Prfzn= k, z,,+l$/k,...zM

M-1
= Pr {ZM = k} + (1Pr {zm = k,zCz) k)z,,- kl Pr *,khn=N

M-1

=Pr {zm = kl + ( 1 - Pr {Cm+ l(k)Jlzn = k}) Pr {Zn = }

If ,n Pr {zn = k} < o for k = 1, 2, 3, ,then we may pass to the limit
with M -- oo obtaining

(23) lim Pr {CNm(k)} = Pr {CN(k)} _ _ Pr {zn = k},
M->en=N

which shows that limN O Pr {CN(k)' = 0. Now, if we should have

(24) _ Pr{zn = k}= ,
n=1

then passing to the limit with M -*> o we would obtain from (22)
(25) lim sup Pr {Cn+1(k)lzn = k} = 1.

n-

But T77n+(k) D {Zn+l = 0}; therefore,
(26) Pr {7n+1(k)1zn = k} _ Pr {Zn+l = 0Izn = 1} _ qk

which gives the contradiction.
Using almost the same argument, one can prove a slightly more general result.

For q > 0, let Sq = {s: 7r(OIs) _ q}, and let Cn be the subclass of £ consisting of
all sequences (ko, si, * * kn) of length 2n + 1. Denote

(27) dn q = Pr {8sn+ E S,|ko, sy ...* kn}
and
(28) d*na = inf dn,q.

Then the following holds.
If for some qo > 0 we have

(29) lim sup d*",Q0> 0,
n*0
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then

(30) Pr { lim Zn = 0 or lim zn=ct. } = 1.

We shall now prove a theorem which gives the sufficient conditions for the
extinction.

Let 3Cr be the class of histories (ko, si, ki, * , kn) of arbitrary length n such
that kn = r. Let p4t) denote the expected number of descendants of the elements
of the last generation given that H E 3CT (thus, if H E 3Cr is a history of the
length n, then E(zn+iIH) = r,H)). We shall prove (the idea of this proof is due
to K. Urbanik) the following theorem.
THEOREM 3. If inf8e.s 7r(OIs) > 0, and if for all sufficiently large r we have

(31) Sup ,u" < 1

then
(32) Pr {lim zn =} = 1.

n--*

PROOF. From the preceding theorem it follows that with probability one we
have either lim.,r4 zn = 0 or limn-O zn = 00. To exclude the last possibility,
it suffices to show that lim supn- E(zn+i) <00. From the proof of the preceding
theorem it follows that for every k > 0 we have En Pr {zn = k} < °o. Now,

(33) E(Zn+l) = , k Pr {Zn+l = k}
k

= E E k Pr {zn+l = kIZn = r} Pr {zn = r}
k r

- E [_ k Pr {Zn+l = k|Zn = r}] Pr {zn = r}
r k

_ , r( sup H42) Pr {Zn = r}
r H EXC

< r Pr{z, = r} + F_ r( sup ,(r)-1) Pr {Zn= r},
r r GR* H EC,

where R* is the set of indices r for which supH(ec, A(r) > 1. Since R* is finite, we
get E(zn+i) _ E(zn) + an, where the series En an converge, and consequently,
lim supn-* E(Zn) < °° which completes the proof.

REFERENCE

Ill T. E. HARRIS, The Theory of Branching Processes, Berlin, Springer-Verlag, 1963.


