
SPORADIC RANDOM FUNCTIONS AND
CONDITIONAL SPECTRAL ANALYSIS:
SELF-SIMILAR EXAMPLES AND LIMITS

BENOIT MANDELBROT
IBM RESEARCH CENTER

1. Introduction

The definition of sporadic random functions has arisen out of a pessimistic
evaluation of the suitability of ordinary random functions as models of certain
"turbulencelike" chance phenomena. Now that one has evaluated a number
of spectra of turbulence, one must indeed admit that their sampling behavior
is often not at all as predicted by the developments of the Wiener-Khinchin
second order theory. True, given two frequency intervals (Xi, X2) and (X3, X4), the
ratio between the energies in these intervals rapidly tends to a limit, as was
expected. But the energies within each of the intervals (XI, X2) or (X3, X4) con-
tinue to fluctuate wildly, however large the sample may be. Another puzzling
fact: some turbulencelike phenomena appear to have an infinite energy in low
frequencies, a syndrome often colorfully referred to as an "infrared catastrophe."
The reason the concept of stationary random function must be generalized

may be further explained as follows. Many physical time series X are "intermit-
tent," that is, alternate between periods of activity, and quiescent "intermis-
sions" during which X is constant and may even vanish. Moreover, and this is
the crucial point, some series are quiescent most of the time. Using the intuitive
physical meaning of the phrase, "almost sure event," such a series would appear
to satisfy the following properties, which will entitle it to be called "sporadic":
X is almost surely constant in any prescribed finite span (t', t"), but X "almost
surely" varies sometime. It would be very convenient if each of the above
occurrences of the term "almost sure" could also be interpreted in the usual
mathematical terms. Unfortunately, one has so rigged the theory of random
functions, that the above two requirements are incompatible ([8], pp. 51 and 70).
There is, however, a simple way of generalizing the concept of a stationary

random function, so as to accommodate the sporadically varying series X(t).
It suffices to amend in two ways the classical Kolmogorov's probability space
triplet (Q, a, j): (a) the measure u is assumed unbounded though sigma-finite;
and (b) a family 63 of conditioning events B is added, where 0 < ,(B) < -o. It
is further agreed that, henceforth, the only well-posed questions will be those
relative to conditional probabilities Pr {A B} where B c (B.
The first part of the present paper is devoted to the preliminary task of
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defining mathematically the concept of "sporadic behavior." Sporadic renewal
sets will be stressed.
The second part of this paper is devoted to its main purpose, which is to

investigate the strange correlation and spectral properties of sporadic processes.
Three types of results can be distinguished here. The first relates to the defini-
tion of conditional correlations, given a fixed conditioning event. The second
relates to the limit behavior of conditional correlations, as the conditioning event
is steadily weakened; a central role will be played here by functions of "regular
variation." The third type of result relates to the limit behavior of sample values
of correlation. A central role will be played here by the little known "Mittag-
Leffler" distribution, and by some self-similar renewal sets and processes.

It should be noted that the "generalized random functions" due to Gelfand
and It6 [13] can be characterized as using Schwartz distributions to solve prob-
lems associated with an excessive amount of high frequency energy. The present
generalization is on the contrary directed towards low frequency problems. (It
has, however, suggested a natural solution to a long standing problem of hard
analysis concerning high frequencies; see [15].)
The very convenient notation for g.r.f., (Q, , 63, ,A), comes from Renyi's

general axiomatic of conditional probability [24]. But measure theory as such
is not essential to the present enterprise, whose spirit is very different from
R6nyi's: we shall not strive for generality for its own sake, nor for irreducible
axiomatics. Our sole object is to select new mathematical objects adapted to the
needs of physics, and to prove a few basic results justifying our choice. Examples
of applications can be found in [20], [21], [22], each of which includes a more
detailed discussion of the motivating empirical findings. For the intermittency
of turbulence in fluids, see also [25] and the latter portions of [23]. The author
will not be surprised if some details of his work turn out to require refinement
and correction.

2. Sample spaces, events, and generalized random functions based upon
sigma-finite unbounded measures

It is useful to begin by restating the general definition of a random function
(r.f.) X(t, w). It begins with the following measurable space (Q, (a), where Q is
the sample space of elementary events c, each of which is a sample function x(t)
of t E R (that is, -Xo < t < oo). Simple events are Q, 0, and the finite unions,
finite intersections, or complements of w sets of the form {co: xf < X(ti, w) < xi"J,
where the xt, ti, and xf' are rational. The smallest Borel field containing those
simple events will be (t.
The next step is to form a measure space (Q, (a, ,), where the measure is a

nonnegative completely additive set function defined for A G al.
The final step in the definition is to assume that ,u(Q) < oo ; then a probability

Pr {A} can be defined for all A E a by Pr {A} = u(A)/u((Q). This is the point
where the usual definition has proven inadequate.
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When u.(A) is unbounded, the triplet (Q, a, A) specifies X(t, w) through meas-
ures that cannot be interpreted as nontrivial absolute probabilities. Therefore,
in order to specify X(t, c.) through some kind of probability, one must complete
the triplet (Q, at, Iu) by also specifying an appropriate collection 63 of admissible
conditioning events B, such that B E a and 0 < u(B) < o. A generalized ran-
dom function (g.r.f.) will be defined as a quadruplet (Q, a, 63, ,I) and well-set
probabilistic results will be defined as those relative to the conditional probabil-
ities of the form Pr {AjB} = A(A n B)/I(B).
An alternative approach to some g.r.f. In important cases, the measure IL is

"sigma-finite," meaning that there exists a denumerable family of events Qi with
Q = Us= 1 Qi and 0 < A(Qi) < Xo. Moreover, every B satisfies B C Ut? 1 Di, with
I(B) < oo. Under these two conditions, the g.r.f. (Q, a, 63, A) is equivalent to the
indexed family of ordinary r.f. (Ut. i1 a, jA,) where I ranges from 1 to Co,
the elements of ar are the sets of the form A n (U= Qi), and j.s is a probability
conditioned by U = i Qi. These r.f. are related to each other by hosts of conditions
of compatibility; limx-o (Ut=1 Qi,,;Il) is not an ordinary r.f.

Concrete problems cannot involve infinite values of I; therefore, one can
always avoid g.r.f.'s by choosing some large but finite "external scale" J, and
working with the r.f. (Ui=1 Qi, aj, As). This J will be nonintrinsic, however, and
the solution of concrete problems will require the study of "transient small
sample behavior" rather than the simpler study of limit theorems. Thus, even
from the viewpoint of concrete problems, it is usually simpler to work with the
g.r.f. (, a, 63, IA) directly.

3. Definition of sporadically varying generalized random functions and related
concepts

3.1. Sporadically varying g.r.f. We must first define some sets of R. Let

(3.1) A* = {X: X(t, w) is constant over -Xo < t < Xo}
= -Xo < t <Co, g.l.b. X(t, ,) = l.u.b. X(t, w)}

and, for every open interval (t', t") such that -Xo < t' < t" < oo, let

(3.2) B(t', t") = [w: X(t, w) is not constant over t E (t', t")]
= {X: t' < t < t" g.l.b. X(t, c) < l.u.b. X(t, W)}

It will be necessary that A* E a and B(t', t") e a. For that, it is sufficient
that time be restricted to some denumerable subset of R. When time is con-
tinuous, problems of "separability" may arise. But a discussion of separability
is not needed for the examples to be examined in this paper, and will therefore
be postponed.
The family of all the events B(t', t") will be designated by M*.
DEFINITION 3.1. A sporadically varying g.r.f. is a quadruplet (Q, a, 3, i),

where (Q, a) is a measurable space, and where the following conditions are imposed
upon the measure ,u and upon the subfamily (6 of at:
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The measure , is assumed to satisfy two conditions

(3.3) M() = X,} (0) = 0;
(A*) = 0.

Two measures gu and 1.2 will not be distinguished if ,l(A)/M2(A) is a constant
independent ofA e at. The family 63 of conditioning events B is assumed to satisfy
two conditions

(3.4) O< A(B)<o, if Be63;
1* C 63.

PROPOSITION 3.1. Conditions (3.3) and (3.4) imply that A is sigma-finite.
PROOF. Write Q = A* U [Ut'=- B(i, i + 1 + e)], where e> 0.
As intended, a sporadically varying X(t, w) almost surely does not vary in

any prescribed bounded interval (t', t"), but almost surely varies somewhere along
R. These characteristics would be mutually incompatible if X(t, w) were an
ordinary random function.

3.2. Intermissions and set of variation. Given a left-continuous g.r.f. X(t, w)
and x, the interior of the set {t: X(t, w) = x} either is empty or is the denumerable
union of open intervals. The latter needs a distinguishing name.

DEFINITION 3.2. An intermission of the g.r.f. X(t, w) is a maximal open interval
contained in the interior of a set of the form {t: X(t, w) = x}.
For each c, the intermissions of X(t, w) are denumerable, and can be des-

ignated as (th(w), t'h(w)), where 1 . h <0; the X will usually be omitted.
DEFINITION 3.3. The set of variation of the g.r.f. X(t, w) will be the closed set

S(w) = R - Uh-1 (th, th')-
If X(t, co) is sporadically varying, so that u(Q) = oo, there is a vanishing

absolute probability that S(w) and (t', t") intersect. The set S(w) will be said to
be "sporadically distributed" or "sporadic."

(Some sporadic random sets can be treated directly, by generalizing to infinite
,u(Q) the definition of random compact set quoted in [3], p. 309. In this way, one
may define functions that satisfy sporadically a property other than the property
of being nonconstant.)
An extreme example of sporadic g.r.f. is a function with a single randomly

located step: a = R, where X is distributed with Lebesgue measure; for t > W,
X(t, c) = X' with IX'I <0; for t < w, X(t, w) = X" F4 X' with IX"I < 00.
Thus, S(w) = co, and there are two intermissions, both of infinite duration. Well-
set probabilistic problems relate to step functions with a step randomly located
over (t', t") with the corresponding (finite) Lebesgue measure.

4. Measure preservation and conditional stationarity

4.1. Shift invariant indecomposable measures and conditions. The shift trans-
formation (p is defined as usual. If w represents the function X(t), then P,W rep-
resents X(t + T), and one assumes (o7w E U. Similarly, for every A E d, one
defines VPTA, and one assumes poTA e a.
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If A is a measure on (Q, a), possibly unbounded, the shift invariance of A
(that is, the measure preserving character of p,) is defined by the usual condition:

(a) for every A e a, and for every T, one has Mu((pA) = u(A).
The conditioning events B(t', t"), members of *, have the following prop-

erty: for every B E W* and for every T, q,oB e O*. Therefore, 3* will be said to
be shift invariant. More generally, 63 will be said to be shift invariant, if it fulfills
the following condition:

(b) for every B e 63, and for every T, one has sp,B E &.
(If 63 -3* is nonvoid, this is no longer a necessary consequence of (a).)
A, a set E a, will be said shift invariant if it fulfills the usual condition:
(c) for every T .[SOTA U A -s A nl A] = 0.
Such A form a Borel field, designated as 3. The least interesting case occurs

when every A E 5 is the union of sets in S having a finite u measure. The
most interesting case is when every set A in 5 satisfies either ju(A) = 0 or
u(Q-A) = 0; as usual, such a p, will be called indecomposable.

4.2. Conditional restricted stationarity. The usual concept of stationarity,
being relative to absolute probabilities, is degenerate in the case of g.r.f.'s such
that u(Q) = oo. Partial conditional equivalents are available, however.
DEFINITION 4.1. The g.r.f. (Q, a, 63, A) will be said to be conditionally sta-

tionary if, for every B E (6, there exists a nonvanishing open interval (t', t")B with
the following property. Let ti be I time instants, I < co, and r a time span such
that [U {ti}] U [U {ti + T}] C (t', t"), and let ARt) be I Borel sets of R. Then

(4.1) Pr {Vi, X(ti, ) C ARW)jB} = Pr {Vi, X(t, + Tr w) E AR('lB}.
The expression
(4.2) Pr {X(t, w) E ARIB} = t&{w: [X(t, w) E AR] n [C) EB]}/e(B),
which is independent of t as long as t E (t', t")B, is a conditional marginal dis-
tribution for X(t, w), given B.

Returning to the shift invariance of Iu and (3, note that it has the following
obvious consequences
(4.3) Pr {JVAIjoB} = Pr {AIB};
(4.4) if A U iprA C B, then Pr {foAIB} = Pr {AIB}.
This (4.4) follows from

(4.5) Pr {fp,AIB} = i(pAnA B)/M(B) = u(,pA)/M(B) = (A)/,(B)
= M(A n B)ht(B) = Pr {AIB}.

EXAMPLE. Let 63 = (3* and let X(t, w) be a sporadically varying g.r.f. For
the relation 1pVA U A C B(t', t") to hold, it is sufficient that A be of the form
{w: X(t1, co) E A(1), X(t2, .) E AR'}, where AR'), AR) are nonintersecting Borel
sets on R(ARW n AR) = 0), and where ti, t2, tl + Tr t2 + r all e (t', t"). The
relation (prA U A C B(t', t") also holds for events A involving a larger number
of instants ti, as long as [U {ti}] C [U {ti + T}] C (t', t") and A C B(t', t").

First example of conditional stationarity. Now, make the stronger assump-
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tions that 63 = 63* anid that X(t, co) vaniishes durinig its initermissionis. Conisider
the event A = {: X(t, co) e A,R. If 0 t A I anid t E (t', t"), oIIe has A C B(t', t"),
so that u(A) < x. In particular, bL[w: X(t, co) # 0] < x, so that X may he
integrable without vanishinig idenitically. For example, if a> = 63* anid X(t, co)
is bounded and vanishes during the initer:nissionis, it is integrable.
Now consider two inistanits t anid t + r, both belonging to (t', t"). If 0 (.t,4,

then A U 5p,A C B(t', t"), so that Pr {p,A IB(t', t")I = Ir ' I B(t', t")} by
(4.4). If 0 e AR, theoi 0 q R - AR alld

Pr {T( -. A)IB(t', t")} = Pr {(Q - A)IB(t', t"j))
Since Pr {A B(t', t")} = 1- Pr -((Q- A)B(t', t")', the relation

l'r fp,A]B(t', t")j = Pr {'. JB(t', t")}

is valid for every A of the form fw: X(t, w) e A ,'-. In fact:
PROPOSITION 4.1. If (6 = 63*, if A, is shift invariant, and if X(t, w) vanishes

during its intermissions, then [X(t, w) IB(t', t")] is conditionally stationary over soeic
interval (t', t")B satisfying (t', t")B D (t', t").

PROPOSITION 4.2. (Converse of 4.1.) If (P = 63*, X vanishes during its inter-
missions, and if, for every (t', t"), [X(t, w)IB(t', t")] is conditionally stationary
over (t', t"), then 4 is shift invariant.

Second example of conditional stationarity. A second importalnt class of
g.r.f.'s is one for which the conditional stationarity is not a consequenice of the
shift invariance of ,u, and must be postulated separately. This class is defined
as having the following property.
For almost all t (that is, except if t belongs to a set of R of vaniishing Lebesgue

measure), the conditioned marginal distribution Pr {X(t, C) e AR IB} is the same
for all conditions B such that t c (t', t")B. Oine cain, therefore, speak in this case
of a nonconditional "pseudomarginal" distribution for X(t, cx). The ordinary r.v.,
whose distribution is Pr {X(t, c) < xIB}, will be called the "pseudomargin" of X.

Unless X vanishes identically, it is not initegrable, but its pseudomarginal
variable can be integrable.

4.3. The structure of ,[B(u*)] when A is shift invzriant. If ,u is shift invariant,
it will often be unnecessary to specify the value of t' in B(t', t' + u*), because
t' is indifferent or obvious from the conitext. We shall write theni B(t', t' + u*)
as B(u*).
PROPOSITION 4.3. If A, is shift invariant, then the function A[B(u)], (deined

for u > 0, is concave, continuous and right and left dcfferentiatle.
PROOF. This will follow classically after it is proved that for every ut* > 0

and h > 0, one has

(4.6) IA[B(t*, t* + ?* + 2h)] + I[BQI*, t* + ut)]
- 2,u[B(t*, t* + ut* + h)] _ 0.

Note that B(t*, t* + u* + 2h) D B(t*, t* + u* + h) D B(t*, t* + t*). There-
fore, (4.6) holds if
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(4.7) ,[B(t*, t* + u* + 2h) - B(t*, t* + u* + h)]
< ,u[B(t*, t* + u* + h) -B(t*, t* + u*)].

By stationarity, this holds if

(4.8) ,[B(t* - h, t* + u* + h) - B(t* - h, t* + u*)]
< A[B(t*, t* + u* + h) -B(t*, t* + u*)]

which in turn holds if
(4.9) B(t*-h, t* + u* + h) -B(t*-h, t* + u*)

C B(t*, t* + u* + h) -B(t*, t* + u*).

This last statement is true because the event on the left of C differs from that
on the right by the set of w such that X varies for t e [t* + u*, t* + u* + h)
and t e (t* - h, t*] but not for t E (t*, t* + u*).
PROPOSITION 4.4. One can write ,u as

(4.10) ,u[B(u*)] = Q + f0 P(s) ds,

where Q _ 0 and P(u) is positive nonincreasing, and such that f P(s) ds <00
for alle > 0. P(0) is defined as lim.,o P(s), and may be infinite.

COROLLARY 4.1. Let To(c) = g.l.b. {t:t* + t ES(w)LS(w) n (t*, t* + u*) # 0}.
It follows from the above proposition that, given the interval (t*, t* + u*),

(4.11) Pr {0 < To . to10 < To <u*}u* | P(s) ds[Q + fO P(s) ds]1,

which has a probability density proportional to P(to). Moreover,

(4.12) Pr {To = 010 _ To < u*} = Q FQ+ | P(s) ds],

which is positive if Q > 0 and vanishes if Q = 0.
COROLLARY 4.2. If Q = 0, and S(w) n (t', t") $ 0, S(w) n (t', t") has zero

Lebesgue measure, except for a set of w of zero ji measure.
PROOF. Given S(w), choose T* with Lebesgue measure over some bounded

(t', t") such that S(w) n (t', t") $ 0. Then Pr {T* e S(w) n (t', t") $ 0} = 0
is a consequence of Q = 0, and it implies that S(w) n (t', t") has zero Lebesgue
measure with a conditional probability equal to 1.

If Q > 0 and S(cw) n (t', t") $ 0, ,.[w: S(cw) n (t', t") has positive Lebesgue
measure] > 0. But ,u[w: S(w) n (t', t") has zero Lebesgue measure] may be
either positive or zero; examples of both kinds will be given in the sequel.

4.4. Degrees of intermittency. The behavior of P(u) allows an important
classification of certain ordinary and generalized random processes.
The nonintermittent case will be defined by P =- 0. One must have Q > 0 in

order that ,u[B(u)] > 0. Then Au[B(u)] u(2) and Pr {To > 010 _ To < u*}- 0.
Such functions X(t, w) have almost surely no open interval of constancy.
The intermittent cases will be defined by P 0 0. The constant Q may be > 0.

Then Pr {TO > 010 _ To < u*} > 0 and X(t, w) almost surely possesses open
intervals of constancy.
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A finer classification of intermittent r.f. will now be considered.

Finitely intermittent r.f. will be those corresponding to f| P(s) ds < -. They
are ordinary random functions that "flip" between a "quiescent" state where X
is constant and an "active" state where X may vary.

Infinitely intermittent r.f. will be those corresponding to Jf P(s) ds =

They are identical to the sporadically varying generalized random functions. Note
that for these functions, it is not excluded that P(co) > 0.

5. Examples of sporadically varying g.r.f.'s and sporadic sets constructed
through generalized renewal processes

The simplest sporadic g.r.f. are those whose structure is wholly determined
by the function A[B(u*)] implied in the definition of "sporadic." If Q = 0,
P(O) <0, and P(oo) = 0, the function P(u) fully determines a classical re-
newal process, as we shall now demonstrate.

5.1. Synchronized classical renewals. This is a sequence SO = {Tk} with k
integer, -0 < k <0, such that Too = 0 e SO, and such that the intermissions
Uk = Tk+I - 77k are independent and identically distributed nonnegative ran-
dom variables with Pr {U _ u} = P(u)/P(O). The Q space of the SO is that of
all sequences containing the origin and such that So n (t', t") is finite or denu-
merable. By well-known rules, a measure is attached to the events of this sample
space, and S5o (t', t") is almost surely finite (surely finite if P(E) = P(O) for
some E> 0) [6].

5.2. Stationary classical renewals and generalization to E(U) = fPF(s) ds = 00.
Starting from the set S of section 5.1, we shall construct a generalized random
set S as follows. The first step is to replace To7 = 0 by a To distributed over
R+(t > 0), with the measure of density P(uo); this measure may be unbounded.
The second step is to translate the set {T°, k > 0} to the right by the amount
T°; thus, the measure of Tk is the convolution of the measures of To and T77.
The third step is to choose T-1 on R- (t < 0) with the conditional probability
measure Pr {T1 < -ulT" = t°} = P(u + t0)/P(to); it is easy to see that the
unconditioned distribution of T-1 has a measure of density P(-u). The final
step is to translate the set {Tk, k < - 1} to the left by the amount Ti - 1;
thus, the measure of Tk is the convolution of the measures of 772 and Ti - T77 1.
PROPOSITION 5.1. The measure of the generalized random set S is shift in-

variant and indecomposable.
For example, w[w: S(w) n (t', t") #d 0] is shift invariant. This result is well-

known if E(U) < oo; then, S is an ordinary random set (intermittent) and one

can normalize P(s) into the probability density P(u) [Jj- P(s) ds]' [7]. Most
of the classical proofs of stationarity can also be extended to the case E(U) = oo,
in which case S is sporadic.
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PROPOSITION 5.2. Let E(U) = X. Over the time span (0, u*), the following
processes are identical in law: (1) the stationary sporadic process S constructed
above; (2) the nonstationary ordinary process obtainedfrom S by making To random
over (0, u*) with the density P(to) /[f0 P(s) ds]; (3) the stationary ordinary

random process constructed, as in section 5.2, using the truncated P*(u, u*) defined
by P*(u, u*) = P(u) if u < u*, P*(u, u*) = 0 if u > u*.

This last proposition shows how to replace the generalized random set S(co)
by an indexed family of ordinary random sets (see end of section 2).

5.3. Sporadically varying g.r.f.'s having S as set of variation. The function
V(t, co), defined by V(t, w) = 1, if t E S(w) and V(t, co) = 0, if t ¢ S(W), is a
conditionally stationary g.r.f. with the required property, and belonging to the
second class of section 4.2. The integral K(t, w) of V(t, ') is a nonstationary
g.r.f. with the required property.

5.4. The infinitely divisible process technique and the function NO. It is
convenient to consider the synchronized renewal set SO as the set of values of
an auxiliary r.f. TO(n) of a variable n, not necessarily integer [26]. One will have
TO(no) = to; T° will be left-continuous, it will have independent infinitely divis-
ible increments. That is, given n' and n", -co < n' < n" < oo, TO(n') - TO(n")
will be an infinitely divisible positive r.v. whose Levy's jump function is 1 -
P(u); its characteristic function [10], [14], [18], [19] is

(5.1) so(v) = exp {-(n" - n') fo (eire - 1)[-dP(s)]}.
The number of jumps of TO, located in the n-span (n', n") and having a size in
the range (s, s + ds), is a Poisson random variable of mean (n" - n') dP(s) 1.
The intervals, between successive values of n on which TO varies, are exponential
random variables of unit expectation.
The function NO(t) will conversely be defined as being the largest n such that

T°(n) < t.
5.5. The fundamental sporadically varying function N(t). Suppose now that

To e R+ has the density P(to) (see section 5.2 concerning T-1). Thus, by shifting
randomly the origin of NO(t), we construct a function N(t, w). If E(U) = oo, this
g.r.f. (dependent on no) constitutes a basic example of sporadically varying
g.r.f. Its set of variation is S(cw), independent of no.

5.6. Several generalizations of renewal processes. The possibilities excluded so
far, Q > 0, P(0) = o, and P(oo) > 0, are readily introduced by generalizing the
renewal processes.
The inequality P(oo) > 0 implies that the process is not recurrent with prob-

ability one. In the infinitely divisible technique, T(n) is not defined for all values
of n, but only over a span whose duration is an exponential random variable of
mean 1/P(oo ). S is then almost surely a finite set.

Suppose in particular that P(u) _ P(co) so that ML[B(u)] = uP(oo). In that
case, S is almost surely reduced to a single point as in section 3.2.
The most natural way of snaking Q > 0 is to consider the closure of the set
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of values of the function TQ(n) = T(n) + Qn. Renewals are no longer instanta-
neous, but their duration is an exponential random variable of expectation Q.
The set SO is a union of closed intervals, whose total number is almost surely
denumerable if P(oo) = 0, and infinite and finite if P(oo) > 0. If s(w) n
(t', t") '! 0, this set has a positive Lebesgue measure, except for a set of w
that has vanishing ,u measure. Another way of making Q > 0 is to have an
"act" of duration Q[P(s') - P(s")]-' follow every intermission of duration
u c (s', s") [where P(s') > P(s")]. Then, the co sets, over which S(w) n (t', t")
has zero or positive Lebesgue measure, are both of positive ,u measure.
The infinitely divisible technique is well known to generalize with no difficulty

to the case P(O) = X with J P(s) ds < oo. The expected number of jumps of T(n)
such that n' < n < n" is almost surely infinite. Moreover, if S nl (t, t") 0,
the number of points of S n (t', t") is almost surely infinite, the Lebesgue
measure of S n (t', t") is almost surely zero; the function N(t) is almost surely
a singular continuous function (it is the counterpart of the classical Lebesgue
function of Cantor's triadic set).
To combine P(O) = X with Q > 0, consider again the closure of the values

of the r.f. TQ(n) = T(n) + Qn. It is then almost sure that S has a nonvanishing
Lebesgue measure but contains no closed interval.
The most interesting examples of sporadic sets (those introduced through

limit theorems) will be characterized by Q = 0 and P(oo) = 0, but P(O) = Xo

with f| P(s) ds < o. They present both the low frequency problems associated
with sporadic processes, and the high frequency problems of which an example
appears in [15].

5.7. A generalization that is not a renewal process. Consider finally a process
To(n, w), whose increments are stationary but are not independent, and whose

jumps have a marginal distribution P(u) such that f0c P(s) ds < o and

J0 P(s) ds = . Let To have the measure of density P(s) (see section 5.2 con-

cerning T71). The closure of the set of values of T(n, w) is then a sporadically
distributed generalized random sequence, but is not a renewal sequence.

6. The concepts of conditioned deltavariance and covariance, of weak station-
arity and of core function

If the stationary ordinary random function X(t, w) is such that E{[X(t)]2} <00,
one defines its covariance C(T) as equal to E[X(t)X(t + r)]. It will be convenient
to deduce C(r) from the function

(6.1) D(T) = C(O) - C(T) = 2E{[X(t) - X(t + r)]2}.
This D(r) is meaningful for all X for which C(r) is defined, and also for many
others (such as the Brownian notion of Bachelier-Wiener-Levy). Lacking a gen-
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erally agreed upon term for this important concept, we propose to call it delta-
variance. If X is a sporadically varying g.r.f., D 0.

6.1. The conditioned deltavariance and deltavariance stationarity. Given a
conditioning event B E 63, consider the function

(6.2) D[r, B, t] = 1 JB [X(t, w) - X(t + r, w)]2,(dw)1,u[B].
Whenever this expression is finite, it may be used to define the conditioned delta-
variance of X, given B.

DEFINITION 6.1. (Q, a, 63, IA) will be said to be conditionally deltavariance
stationary, if, for every B c 63, there exists a time span (t', t")B of positive duration
such that D(r, B, t) is independent of t as long as (t, t + r) C (t', t")B. One will
write D as D(T, B).
PROPOSITION 6.1. Let 63 = 63* and let ,u be shift invariant. Then, D[T, B(t', t"), t]

is conditionally deltavariance stationary for some (t', t")B D (t', t").
PROOF. The w such that X(t, w) - X(t + T, w) = 0 contribute nothing to D.

If AR is a Borel set of R such that 0 q AR, the w set

{w: [X(t, w) - X(t + r, w)] C AR}

belongs to B(t', t") and its IA measure is independent of t. If T < u*, the nu-
merator of D[r, B(u*), t] is an integral carried out over B(u*). However, if
w E B(u*) - B(T) C B(u*), then co contributes nothing to the integral. That
is, one can write
(6.3) D[r, B(u*)] = D*(r)ls[B(u*)],
where

(6.4) D*(T) = fB, [X(O, w) - X(,r, w)]2'(dw).
This D*(T) will be referred to as the unweighted deltavariance of X; it is defined
only up to multiplication by an arbitrary finite positive number (as is also the
case for P(s) and u). The function D*(T) is nonnegative definite.

If X is an ordinary process of covariance C(r), then ,u can be so chosen that
,u(Q) = 1, and D boils down to

(6.5) D[T, B(u*)] = D(T)/,u[B(u*)] = [C(O) - C(T)]/1[B(u*)].
Fixing T and varying u*, we see that D[r, B(u*)] is a decreasing function of

u*, defined for u*> T.
Varying r, we see that one can eliminate u* by forming the relative delta-

variance, defined as equal to

(6.6) D[T, B(u*)] = D*(TrI) O < I"', < U*.
D[T", B(u*)] =D*(W'f)'0< r, r"<u.

(By considering this ratio, one circumvents the difficulties mentioned in the
introduction that were encountered in the empirical estimation of the covariance.
See section 8, also.)
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6.2. The conditional covariance and covariance stationarity. Agaiin, given
B e O3, consider the function

(6.7) C(T, B, t) = fB X(t, cw)X(t + r, w)A(dw)IA(B)
Whenever this expression is finite, it will define the conditioned covariance of X,
given B.
DEFINITION 6.2. X will be said to be conditionally covariance stationary if,

for every B E (3, there exists a time span (t', t")B of positive duration, such that
C(r, B, t) is independent of t as long as (t, t + r) C (t', t")B. Then, C(T, B, t) will
be designated by C(r, B).
PROPOSITION 6.2. Let (B = 0*, let ,u be shift invariant, and, for every B X 03*

and t e (t', t"), let C(O, B, t) = C(O, B) < co; Then C[Tr, B(t', t"), t] is conditionally
covariance stationary for some interval (t', t"l)B D (t', t"), and one has IC(r, B)
C(O, B).
Examine two examples that slightly generalize those singled out in section 4.2.
In the first special class: 03 = 0*, ,A is shift invariant, and X is such that,

if t E (t', t") and 0 ¢ AR, one has {w: X(t, w) E AR} C B(t', t"). This is, for
example, the case if X is a g.r.f. that vanishes during its intermissions. Then the
numerator of C becomes independent of B, as long as (t, t + T) C (t', t"). The
existence of C is, thus, reduced to the usual conditions that X must be square
integrable, and C can be factored out in the form

(6.8) C[T, B(u*)] = C*(T)/1A[B(u*)],
which serves to define the unweighted covariance C*(r).

In the second special class: 0 = 0*, u is shift invariant, and X has a pseudo-
marginal distribution (independent of B). Here, C[0, B(u*)] is independent of
u*; it is finite if and only if the pseudomarginal r.v. of X(t, w) is square integrable.
In that case, one will designate C[0, B(u*)] by the same notation C(O) as an
ordinary variance, and C[r, B(u*)] takes the form

(6.9) C[T, B(u*)] = C(O) - D*(T)/,u[B(u*)].
6.3. The concept of the core function of a set of zero Lebesgue measure. The

r.f. with independent values is the simplest of all r.f., and the only one to be
defined fully by its marginal distribution. It is, however, not measurable if the
allowed values of t are all the points of R.
No such problem arises if time is restricted to a discrete set S of R such as

the integers k, so that X is a sequence of independent r.v. One can then extend
X to a left-continuous r.f. of continuous time, W(t, co), constant over the intervals
of the form k < t _ k + 1; if the marginal distribution of W is continuous, its
set of variation is almost surely S.
Now consider a general set S, having a vanishing Lebesgue measure and

expressible in the form S = R -Uh= (th, th), where the (th, th") are nonover-
lapping. Consider also a r.v. WM (where M stands for marginal), continuously
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distributed, of mean zero and of unit variance, and let Wh be a discrete sequence
of independent r.v. having the distribution of WM.
DEFINITION 6.3. The independent core function of S, with margin Wm, is

defined as follows. If th < t _ th, then W(t, w) = W(th', () = Wh. If {tk} are K
points (K < mo) of S, the W(tk, W) will be independent r.v. with the distribution
of WM.

6.4. Covariance properties of a core function. If X ¢ B(t, t + T), then
E{[W(t) - W(t + T)]2}/2 = 0. Ifwc B(t, t + T), then E{[W(t) - W(t + T)]2}/2
is one half of the variance of the difference Wh - Wh", where WA' and WAh are
independent r.v.'s of variance one. Therefore,
(6.10) D[r, B(t', t"), t] = Pr {w E B(t, t + r)Iw E B(t', t")}.

If, moreover, g is shift invariant, (t', t") = (t*, t* + u*) and (t, t + r) C
(t*, t* + u*), one has
(6.11) D[r, B(u*)] = Pr {w E B(t, t + T)jc e B(t*, t* + u*)}

,p[B(T)] _Q + fI? P(s) ds

,[B(u*)] Q + |u P(s) ds
The relative deltavariance and the unweighted deltavariance, respectively, take
the forms

,[B(T')]/[B(r")] = [Q + |[ P(s) ds] / [Q + fI P(s) ds]

y[B(r)] = Q + f0I P(s) ds.

REMARK. The conditioned deltavariance properties derived above apply
irrespectively of whether p(Q) = X or u(Q) < o. But they are not very useful
in the classical case /L(12) < Xo where W is not sporadic.

6.5. Generalization; the orthogonal core function. From the viewpoint of the
present study of second order properties, the independence of the r.v. Wh is an
unnecessarily strong assumption. If WM is non-Gaussian, the same covariance
is obtained if the WA are only orthogonal. It is not obvious how the function W
should be defined for t E S - Uh'- , th'; but this set has vanishing Lebesgue
measure, so that the corresponding values of W do not matter.

7. Conditional self-similarity and asymptotic self-similarity
7.1. Self-similarity in time, in the sense of conditional deltavariance.
DEFINITION 7.1. The process X(t, w) is said to be self-similar in time, in the

sense of conditional deltavariance, if one has D[hu*, B(u*)] = DL(h), where DL(h),
with 0 _ h . 1, is finite and is not identically zero.
The following theorem expresses the intimate relation between self-similarity

and core functions.
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THEOREM 7.1. The definition of self-similarity requires that X(t, W)K-112,
where K > 0, be an orthogonal core g.r.f. such that ,u[B(u)] = u'6-, with 0 < 0 _ 1.

PROOF. The proof proceeds in several steps.
(a) Since

(7.1) DL(1) = K = D*(u*)/u[B(u*)] = D*(T)/u[B(T)],
D[T, (B(u*)] can be written as KM[B(r)]/,[B(u*)], where the function ,[B(u)]
remains to be specified.

(b) The statement that D*(T) = Klu[B(T)] can be rewritten
(7.2) E{[X(t)K-112 - X(t + r)K-1"']'[w E B(t, t + r)}/2 = 4[B(T)],
which, indeed, means that, when X c B(t, t + r), the r.v. X(t)K-1"2 and
X(t + T)K-112 have unit variance and are orthogonal.

(c) Choose any couple (h', h") such that 0 < h' _ 1 and 0 < h" _ 1. Self-
similarity requires

(7.3) A[B(hIh'hu*)1/A[B(h"u*)1 = A[B(h'u*)1/,.[B(u*)]
(A[B(h'h"u*)]IA[B(u*)] = A{[B(h"u*)]/A[B(u*)]} {M[B(hlu*)]/.u[B(u*)]}

or, finally,

(7.4) DL(1) DL(h' h") = DL(h')DL(h").
This equation has for solution DL(h) = Kh'-O, where 0 is a constant. /A[B(u)] is
only defined up to a positive multiplier. One can, therefore, choose

(7.5) A[B(u)] = u1.
The requirement that 0 < 0 < 1 follows from the convexity of ,4[B(u)],

combined with f P(s) ds < m.
The degenerate case a = 0. If 6 = 0, ,u[B(u)] = u, the set S is a.s. a single

point chosen at random on R, as in section 3.3.
The classical case 6 = 1, S -= R. If 6 = 1, then ,u[B(u)] = con1st., and one

obtains the troublesome process of orthogonal values on R.
The sporadic cases 0 <6 < 1. In the interesting cases 0 < 0 < 1, the Lebesgue

measure of S n (t', t") almost surely vanishes. Moreover, f1 P(s) ds = oo, and

therefore, the g.r.f. X(t, w) is sporadic. P(u) being defined up to a positive
multiplier, one can assume P(u) = u-6.
COROLLARY 7.1. If X is a g.r.f. that is conditionally deltavariance self-similar

in time, it cannot be finitely intermittent.
Conditional Taylor's scale. G. I. Taylor has proposed that the integral

Jo C(s) ds be used as measure of the temporal scale of a random phenomenon
whose covariance is C(s) [12]. If X(t, w) is sporadic, the best that one can do is
replace C(s) by a conditional covariance. If X(t, w) is, moreover, self-similar in
time, this "conditional Taylor's scale" turns out to be u*(1 - 6)/(2 - 6).

7.2. Uniformly self-similar renewal sets. In the present section, the assump-
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tion that u[B(u)] - ul-8 is combined with the assumption that S is a generalized
renewal set, as defined in section 5.6. In the renewal case, S(w) is fully deter-
mined by the requirements of nondegenerate deltavariance self-sinilarity,
namely, Q = 0, P(oo) = 0, and P(u) = u-8 for 0 < u < oo, 0 < 0 < 1. Insert
P = u-8 in L6vy's formula of section 5.3. We obtain SO as closure of the set of
values of the function TO(n), such that T°(O) = to and TO(n") - TO(n') has as
characteristic function

(7.6) so(r) = exp [-(n" - n') f0o 0s-(+1) (eir8 - 1) ds]
= exp {- (n" - n')IDlr(1 - 0) cos (07r/2) [1 -iID - tan (07r/2)]}.

Such TO are called "stable" and TO is a Levy process of "independent stable
increments" [8], [14], [18]. The process TO(u) varies only by jumps; the posi-
tions of the jumps are mutually independent; the number of jumps, whose size
is between u and u + du and whose position is between n and n + dn, is a
Poisson r.v. of expectation equal to ou-(8+l) dn du; the degree of "thinness" of
S can be described by the fact that its Hausdorff dimension is 6([2], p. 267)
almost surely. Finally, S is almost surely a "set of multiplicity" [15].

PROPOSITION 7.1. After T° has been made random, with the unbounded meas-
ure of density (to)-8, one obtains a set S that is uniformly self-similar under change
of scale, in the following sense. Given that S n (t', t") $D 0, let H(t', t") be the
set of values of h(O _ h _ 1) such that t' + h(t" - t') E S n (t', t"). If H(t', t")
is independent in distribution from t' and t", then S(w) is called uniformly self-
similar.

7.3. Asymptotic self-similarity in time.
DEFINITION 7.2. Let the stationary g.r.f. X(t, w) be such that, for 0 _ h < 1,

lim D[hu*, B(u*)] = DL(h)
u*-*oo

is defined, finite and not identically zero. Then, X(t, w) will be said to be asymptot-
ically self-similar in time, in the sense of conditional deltavariance.
THEOREM 7.2. In order that lim.*,. D[hu*, B(u*)] = DL(h) be defined, finite

and not identically zero, it is necessary and sufficient that u and D* satisfy

(a) lim Au[B(hu)/14[B(u)] = h1-8, 0 < h < 1, 0 < 0 < 1,

which means that , "varies regularly" at infinity, in the sense of Karamata, and
expresses a kind of asymptotic self-similarity of S;

(b) lim D*(u)/A[B(u)] = K > 0,

which expresses that the correlation between X(t', w) and X(t", co), conditioned by
w E B(t', t"), tends to zero with (t" -t')-.
PROOF. Letting h = 1, we see that it is necessary that

(7.7) lim D*(u)/A[B(u)]

exist. It will define K = DL(1).
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Now let 0 < h < 1, and write D*(hu*)/,u[B(u*)] as

(7.8) {D*(hu*)/I[B(hu*)]} /{,[B(hu*)/,[B(u*)]}.
Thus, it is necessary that

(7.9) lim A[B(hu*)]/4[B(u*)]
exists.
Well-known arguments ([10], [11]) then show there must exist a constant 0

such that

(7.10) lim A[B(hu*)]1t,[B(u*)] = hl-l = (T/u*)l4.

Finally, the condition 0 . 0 _ 1 is a consequence of the convexity of u[B(u)].
Sufficiency is obvious.
PROPOSITION 7.2. In order that fr P(s) ds be monotone nondecreasing, convex

and of regular variation with exponent 0 _ - 0 < 1, it is necessary and sufficient
that P(u) be monotone nonincreasing and of regular variation with exponent 0.

PROOF. For sufficiency, see [11]; for necessity, one can adapt the proof of
theorem 2 of [17].

If the limit falls within the degenerate case 0 = 1, then DL(h) is the same as
for the process of orthogonal values on R. The intermissions ofX are then "few"
and/or "short," and they are made effectively negligible by rescaling.

Finally, the interesting limits 0 < 0 < 1 imply that P(oo) = 0, and that
A[B(u)] is not identically constant. The limit function DL is then unaffected by
the value of Q, that is, by the Lebesgue measure of R sets of the form S n (t', t").

7.4. Asymptotically self-similar renewal sets. They are characterized by a
function P(u) such that limu, P(hu)/P(u) = h-6. This is equivalent to saying
that the r.v. T°(n") - T(n') belongs to the "domain of attraction" of the
stable r.v. of exponent 0.

8. Limit theorems relative to the sample deltavariance in the renewal case
Uniform self-similarity

8.1. The "ergodic" problem of the relation between population and sample means
of X(t, w); the conditional ergodic problem. Let (Q, t, , A) be such that the
shift transformation S°r is indecomposable. Birkhoff's individual ergodic theorem
applies when X is integrable. We know that such is not the case for interesting
g.r.f., for example, when X has a pseudomarginal distribution. Even when
Birkhoff's theorem applies, it only states that the sample mean tends to zero
(or that it is identically zero). Under such circumstances, one becomes interested
in the rate at which this limit is achieved, a question that Birkhoff's theorem
does not attempt to answer.
The best then is to start anew, and to attack the problem of the behavior of

conditioned sample moments. We shall see that as u* -+ xo, ratios such as
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f ds{[X(s, )- X(s +
T, w)]21w E B(u*)}/2

(8.1) (u* - r)E{[X(t, co) - X(t + r, w)]2jCw e B(u*)}/2

may tend in distribution to limit r.v. other than unity. This property is weaker
than ergodicity.

8.2. Commentary upon the relations between successive classes of limit theorem
concerning , X(t) and L X(t)X(t + r). As is the case with so many generaliza-
tions first suggested by hard facts, the theorems to be described might easily
have been first introduced solely to fill in a gap between already existing math-
ematical theories.

The Wiener-Khinchin theory and the "laws of large numbers." The "second
order stationary random processes" of Wiener and of Khinchin can be defined
through the requirement that the limit in distribution

(8.2) lim u*-' L X(t)X(t + T)
U* eoo t=t*

be equal to E[X(t)X(t + r)] and be a nonrandom function C(r) of T. This
theory is thus parallel in scope to the "laws of large numbers," relative to the
case where the first order expression u*1 t X(t) tends to the nonrandom
limit E(X) as u* m o.

Central limit theorems for normed sums and their counterpart in spectral
theory. The next stage of the theory of E X(t) was constituted by the
central limit theorems relative to the possible behavior of the normed sums
a(u*) _*+tu X(t) - I3(u*). Bochner ([4], p. 295) introduced normed sums of
the form a(u*) f X(t)X(t + T) dt in his generalization of Wiener's generalized
harmonic analysis of nonrandom functions X(t). There exist stochastic analogs
of these theorems, but we have no room to study them here.
Limit theorem of a form analogous to that of Poisson. For sums of r.v.'s, a

third stage of the theory was the study of expressions like a(u*) E (u*) X(t, u*) -
,(u*), where the distribution of the X(t, u*) is allowed to change as u* increases.
The theorems of the rest of section 8 and those of section 10 can be cast in

this "Poisson" mold, with the restriction that K(u*) is usually u* itself, and
with the following changes. First, X(t, u*) is usually to be replaced by
X(t, u*)X(t + T, u*) or [X(t, u*) - X(t + x, u*)]2. Second, the dependence of
these expressions on u* is assumed to be of a very explicit kind: it is induced
by the time lag u* characteristic of the conditioning event B(u*). Third, the
summands are dependent.

8.3. The behavior of the function N(t), when T(n) is a process of independent
stable increments. The Mittag-Leffler distribution. It is clear that

(8.3) Pr {N(t) > n|T(0) = 0} = Pr {T(n) _ tjT(0) = 0}
= Ae(tn-"16) = Ae[(nt1)-1/],

where Ae(y) = Pr {T(n + 1) - T(n) _ y} is the distribution function of P,
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Levy's stable r.v. W. Feller [9] who introduced the r.v. whose distribution
function is Ao(u-110), called it a Mittag-Leffler r.v.

Let to be the first point of variation of N(t), on the right of t = 0. If T(O) = to
does not vanish but is known to be less than u*, then [N(u*) - N(O)]/(u* -to)
is a Mittag-Leffler r.v. Let now to be made random with the fundamental density
(1 - 0)t65G/u*--
(8.4) [N(u*) - N(0)IB(u*)]/E[N(u*) - N(O)IB(u*)]
is a weighted mixture of Mittag-Leffler r.v. of exponent 0. It will be designated
by Me and called a "modified M.L." r.v. Since [9] showed that
(8.5) E[N(u*) - N(O)jT(O) = 0] = sin (7r6)(7r6)-1(u*)0,
we have
(8.6) E{[N(u*) - N(O)]IB(u*)} = (1 - O)u*'.

8.4. Sample deltavariance of W when S is a uniformly self-similar renewal set.
Consider the probability

fO ds{[W(s)- W(s + r)]2lB(u*)}
(8.7) Pr YD = (u* - T)E{[W(t) - W(t + T)]21B(U*)} < Y

It follows from self-similarity that this expression will be unchanged if u* is
replaced by qu*(q > 0, constant) while B(u*) is replaced by B(qu*) and r by qr.
Thus, to each h, 0 < h < 1, there corresponds a function FD(Y, h) such that
Pr {YD . y} = FD(Y, T/u* = h). The form of FD is readily derived when h = 1
and when h is very small.

If h = 1, then YD is half of the squared difference between the independent
r.v. W(O, w) and W(u*, ,).
Now let h < 1. Since W(t) - W(t + T) vanishes if (t, t + T) is a part of an

intermission of S, it suffices to carry the integral

(8.8) ff ds{[W(s) -W(s + T)]2jB(u*)}

over the set AO(u*, T) = (O, U - T) - UT [(th, th' - T) n (0, u* - T)], where
the union UT is carried out over the values of h such that tt'- th > r.
For small h, we shall presently prove the following results. For two different

h', h", the ratio between the sample values of D[h'u*, B(u*)] and D[h"u*, B(u*)]
tends to a nonrandom limit as h' -O 0 and h" -+0, while h'/h" remains constant.
As h -O 0, the ratio between the population and sample value of D[hu*, B(u*)]
tends to a r.v. Mo.
To avoid the awkward task of letting h -O0, we shall, instead, let u* -* X with

T fixed. This approach is also advantageous because it increases the generality of
the result. Instead of requiring that P = u-, it will be necessary and sufficient
that the limit in distribution of [N(u*) -N(O)IB(u*)]/E[N(u*) - N(O)|B(u*)]
be a nondegenerate r.v. different from ulnity. This is equivalent to saying that
P(u) is regularly varying at infinity, with an exponent a such that 0 < 0 < 1.
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8.5. Limit of the weighted deltavariance of the core function W of a renewal set,
when u* oo with fixed r. Define P' and P" by writing

f"U*[W(s) - W(S + T)]2 ds
(8.9) (u* - T)E{[W(s) - W(s + T)]2}

_ J8 (U*,T) [W(s) - W(s + r)]2 ds

2 IA|(u*, r)|
2 IAO(u*, T) P/P,

(u* - r)E{[W(s) - W(s + r)]2}
where co is understood to be conditioned by co c B(u*) and IAO(u*, r)l is the
Lebesgue measure of AO.
The denominator of P' tends almost surely to oo as u* m-+ . Moreover, P'

itself is nothing but the deltavariance of lag r of the core function of an auxiliary
ordinary renewal set, based upon the truncated law P* such that P*(u, r) = u-I
for u _ r, P*(u, T) = 0 for u > T. This process is r dependent in the sense that
X(t') and X(t") are independent when It' - t"I > T. Therefore, the expression
P' is the sample mean of an expression which satisfies the strong law of large
numbers. Thus, P' tends almost surely to its population mean, which is one.
Therefore, YD has the same limit in distribution as P".
Adapting the argument of [9] that led to the Mittag-Leffler distribution, one

obtains the following result:
THEOREM 8.1. Let W be the core function of a recurrent S, and let u* - . In

order that the ratio between the sample and expectation values of D[r, B(u*)] have
a proper limit in distribution, it is necessary and sufficient that P(u)ue be slowly
varying for some 0 E (0, 1). The limit is then a r.v. Me.
COROLLARY 8.1. W(t) being conditioned by B(u*), the limit in distribution

(8.10) lim | ds [W(t) - W(t + r')]2/jO ds [W(t) - W(t + 7r")]2

is a nonrandom function of T' and r".
Again, by considering this ratio, one circumvents the difficulties that were

encountered in the empirical estimation of the covariance.

9. Alternative spectra or Fourier transforms of alternative deltavariances and
the population forms of the infrared catastrophe
For a sporadically varying X(t, w), the concept of spectrum is only meaningful

in a conditional sense. Moreover, it is ambiguous even when the condition B is
fixed, as we shall now see by examples.

9.1. The expectation of the Schuster periodogram. Schuster's periodogram will
be defined in section 10. Its expectation is the most intrinsic form of spectrum
and suggests the following expression for the energy to be found in frequencies
above X,
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2 *(9.1) Gs(X, u*) = -f (1 - s/u*)C[s, B(u*)] sini (27rXs)s-' ds.

If X were an ordinary r.f., one would have limu*- C[s, B(u*)] = C(s), and

limu*,D Gs(X, u*) would be the usual spectrum. In the sporadic case, however,
both terms of the integrand, C[s, B(u*)] and (1 - s/u*), depend on u*, and
neither of them tends to a nondegenerate limit as u* '-* oo.

Suppose, in particular, that the deltavariance is asymptotically self-similar,
and C(0, B) = 1, so that
(9.2) lim C[hu*, B(u*)] = 1- hl- = 1 - (T/U*)10-.

Then,

2 (1
(9.3) Gs(X, u*) - J (1 - s)(1- s1-) sin [22r(Xu*)s]s- ds = GS*(Xu*).

7r J

This GS is a bounded function such that G*(X) - XI-' for X -- oo.

In particular, given that 0 < ', X" <C,

(9.4) IGs(X', u*) - G5(X", u*)I/XI -)'"I
is the average spectral density in the frequency span (X', X") that is, an average
of the spectral density defined by

(9.5) 2 (1 - s/u*)C[s, B(u*)] cos (27rXs) ds.

This average tends to zero with 1/u*.
On the other hand, the spectral density at X = 0 is given by

(9.6) 2 fU (1 - s/u*)C[s, B(u*)] ds = 2u* f|O (1 - s)(1 -S1-) ds,

which tends to infinity proportionately to u*.
If one examines the spectrum as a whole, the energy will seem to flow to

ever lower frequencies as u* -+ Ce.
9.2. The population infrared catastrophe. Given the deltavariance

D[r, B(u*)] = D*(T)/,[B(U*)],
define the function G*(X) by

2 fx(9.7) G*(X) = - J sin (2irXs)s-lD*(s) ds.
7r J

When X(t, w) is an ordinary r.f. normalized so that u(Q) = Au[B(oo)] = 1, D* is
a Wiener-Khinchin deltavariance, and IG*(X') - G*(X"))l is its energy in the
spectral interval (X', X") (we use the convention that the energy of a spectral
line at Xo is split equally between the intervals (X', X0) and (Xo, X"), where
X' < 1o < X"). Moreover, G*(0) <Ce.
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For sporadically varying g.r.f., on the contrary, ,u[B(u)] is unbounded and
G*(O) = oo. In the asymptotically self-similar case, for example, we have

(9.8) G*(X) - XlI, as X-O.

In interpreting empirical spectral measurements, one may be tempted to
handle G* as if it were a Wiener-Khinchin spectrum. But G*(O) = Xo would
then be interpreted as meaning that there is an infinite energy in low frequencies,
which is impossible physically and therefore "catastrophic" for the identification
of G* to a Wiener-Khinchin spectrum. To distinguish this difficulty from high
frequency divergences, it is called an "infrared catastrophe." As introduced in
the theory of sporadically varying g.r.f., G* is not a spectrum and its divergence
is not impossible physically and hence not catastrophic for the theory.
More reasonable definitions of the spectrum will be proposed presently. They

will show that, in order for IG*(X") - G*(XI')I/,[B(u*)] to be a rough estimate
of the energy in the frequency band (', X"), one must assume that 1/u* <
X' < X" _ oo. In particular, the energy in the band (1/u*, oo) is roughly
G*(1/u*)/,U[B(u*)]. If G*(O) = oo, then both numerator and denominator in-
crease as u* -* o, but their ratio may well tend to a finite limit. The energy
will seem to flow into ever lower frequencies, but the total expected energy will
remain fixed.

9.3. A case, when one can construct a stationary ordinary r.f., coinciding over
(0, u*) with the sporadic X(t, w). Let us now suppose that the conditioned
covariance C[r, B(u*)] satisfies C[u*, B(u*)] = 0, and consider the function
CL(T, U*) such that CL(T, u*) = C[T, B(u*)] if |T| < U*, CL(Q, U*) = 0 other-
wise. This function is continuous and is easily seen to be positive definite.
Therefore, there exists a stationary ordinary r.f. XL(t, w, u*), of which CL is the
Wiener-Khinchin covariance. In frequencies above X, it has an energy equal to

(9.9) GL(X, U*) =
2 D[s, B(u*)] sin (27rXs)s'- ds

+ 2 D[u*, B(u*)] sin (27rXs)s-1 ds.
7r

This function GL(X, U*) is bounded, as it should be and varies little for X < 1/u*.
Its behavior for large X is, however, mostly determined by the behavior of
D[T, B(u*)] for small T: one has GL(X, U*) - G*(X)/p,[B(u*)]. Therefore, an
infrared catastrophe would be brought about if this approximation, which is
only valid for X -+ oo, were applied without justification for X -O0.

9.4. A periodic function which, over (0, u*), is identical to the conditioned
sporadic process X(t, w). The function

(9.10) Cp(T, u*) = (1 - T/u*)C[T, B(u*)] + (r/u*)C[u* - T, B(u*)]
is the covariance of a periodic function Xp(t, w, u*). As u* increases, so does
the number of spectral lines whose frequency is between 0 and some fixed Xo.
Energy seems to flow to low frequencies.
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10. Limit theorems relative to the sample periodogram and other sample
estimators in the renewal case

10.1. The periodogram of Schuster. This is the r.v.

(10.1) IY(X ,u*)(, = (1/u*)lf X(s, W)e-2TisXds.
It is the squared modulus of the "Fourier transform"

(10.2) Y(X, W, u*) = u*-112 X(s, w)e-2Ti^8 ds.

Let X(t, w) be an ordinary r.f. of zero mean, satisfying appropriate additional
conditions; it is then known that, as u*m,' o, the ratio IYj2/E(I Yl2) tends in
limit to an exponential r.v., whose expectation is (naturally) unity. In the
present section, the distribution of JYJ2/E(I Yj2) will be examined under the
assumption that X is the core function of a sporadic renewal set S.

If S is self-similar, the ratio between the sample and expected values of
the periodogram is obviously some r.v. having Xu* as only parameter. However,
it will only be assumed that X is the core function of any asymptotically self-
similar renewal sequence. Very low and very high values of the parameter Xu*
will be seen to lead to very different limit distributions for JY12/E[I yj2].

10.2. Sample fluctuation of Y(O, w, u*) and the sample infrared catastrophe.

(10.3) IY(0, w, u*)12 - u* [u*_' f0 W(s) ds]

As u* -co, u*-f W(s) ds tends in distribution to a nondegenerate random
variable (this can be proved easily by continuing the argument of [5]). Thus,
IY(0) 12 tends to infinity with u*, in distribution and almost surely, "as if" the
function W(s) were an ordinary stationary r.f. whose population mean has not
been removed.

10.3. Samplefluctuation of Y(X, co, u*)/(EIYI2)112, at very high frequencies. As
in the study of D[hu*, B(u*)] for small x, the idea is to cut out from (0, u*)
some stretches that contribute nothing to Y(X, w, u*), while leaving a remainder
that can be treated by the usual Wiener-Khinchin methods. Note, therefore,
that any portion of an intermission of W, whose duration is an integral multiple
of 1/X, contributes nothing to Y(X, w, u*). One can, therefore, carry out the
integration of We-2TiXa over a subset A(u*, X) of (0, u*). That is, one can write Y
as the following product of two independent r.v.,

(10.4) Y = {IA(u*, X)I/u*}1/2 YA
where Y,& is

(10.5) (jA(u*, X)D>102 JEAW(*X) W(s)e2ziX8 ds.

This is the sample Fourier vector of a portion of length A(u*, X), cut off from
an ordinary r.f. so defined that X(t') and X(t") are independent r.v. when
It' -t"I > 1/X. We know, therefore, that, as AI , Ya tends towards an
isotropic Gaussian vector of zero mean.
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For A(u*, X)/u*, division by some weight function of u* and X again yields
a r.v. whose limit in distribution, as u* -* , is a r.v. Me.
Combining the two terms of Y, we see that we have proved that the high

frequency fluctuations are unaffected by the marginal distribution of W(t, co),
and one has the following theorem.
THEOREM 10.1. If u* -* oo, while X is constant, the limit in distribution

(10.6) lim {Y(X, co, u*)[EIY(X, co, u*)l2/1112}
u*-*oo

is a compound random variable; an isotropic Gaussian vector whose mean square
modulus is a Me r.v.
COROLLARY 10.1. If X is fixed, the limit in distribution

(10.7) Uim {lY(X, C, U*)12[EIY(X, w, U*)12]-l}
is the product of two independent r.v. EMe, where E is an exponential r.v.

10.4. Joint fluctuations of Y(X', c, u*) and Y(X", w, u*). The method used
for Y(X, w, u*) remains applicable if there exist two positive integers q' and q"
such that X'q' = X"q" = Xo. For brevity, denote A(u*, 1/Xo) by A, and consider
the four-dimensional vector of coordinates

A-1/2 Real part of JA W(s)e-2TiX's ds,

A-1/2 Imaginary part of lE W(s)e-2iX'8 ds,

A-1/2 Real part of f. W(s)e2TiX"8,

A-1/2 Imaginary part of fA W(s)e-2TiX"'8 ds.

As JAI -- of, this vector tends to an isotropic four-dimensional Gaussian r.v.;
therefore, the limits in distribution

(10.9) lim IY(', , u*) 2, lim IY(X", w, u*)12
u*.De A(u, Xo) u* A(u*, X0)

are two independent exponential r.v.
Further, one has the following theorem.
THEOREM 10.2. If X' and X" are constant and such that X'/X" is rational, the

two limits in distribution

U*-.o E[IY(,',,W, U*)12] u* E[_Y(x__,_w, u*)12]

are, respectively, of the form MeE' and MeE", where M6, E', and E" are mutually
independent and E' and E" are exponential with unit expectation.

10.5. Weighted spectral estimators. For functions to which the Wiener-
Khinchin spectral analysis applies, reliable estimation of the spectral density is
obtained through weighted averages of Schuster's periodograms EAM.. Given a
fixed frequency hand (X', X") with X' > 0, the factors Ex are asymptotically
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eliminated and the ratio, between the sample and population values of the
weighted spectral density, tends in distribution to Me as u* -+ oo. Given the
variable frequency band (0, 1/u*), the energy that it contains tends in distri-
bution to another limit, not degenerate to zero; this is a sampling form of
"infrared catastrophe."

In the possibly unfinished task of "debugging" the details of this paper, I
was helped by D. Chazan, A. G. Konheim, H. P. McKean Jr., and J. W. Van
Ness.

REFERENCES

[1] J. M. BERGER and B. MANDELBROT, "A new model of error clustering on telephone cir-
cuits," IBM J. Res. Develop., Vol. 7 (1963), pp. 224-236.

[2] R. M. BLUMENTHAL and R. K. GETOOR, "Some theorems on stable processes," Trans.
Amer. Math. Soc., Vol. 95 (1960), pp. 263-273.

[3] , "The dimension of the set of zeros and the graph of a symmetric stable process,"
Ill. J. Math., Vol. 6 (1962), pp. 308-316.

[4] S. BOCHNER, Lectures on Fourier Integrals, with an Author's Supplement (translated by
M. Tenenbaum and H. Pollard), Princeton, Princeton University Press, 1959.

[5] L. BREIMAN, "On some limit theorems similar to the arc sin law," Teor. Verojatnost. i
Primen., Vol. 10 (1965), pp. 323-331.

[6] D. R. Cox, Renewal Theory, New York, Wiley, 1962.
[7] J. L. DooB, "Renewal theory from the viewpoint of the theory of probability," Trans.

Amer. Math. Soc., Vol. 63 (1948), pp. 422-438.
[8] , Stochastic Processes, New York, Wiley, 1953.
[9] W. FELLER, "Fluctuation theory of recurrent events," Trans. Amer. Math. Soc., Vol. 67

(1949), pp. 98-119.
[10] , An Introduction to the Theory of Probability and Its Applications, Vol. 2, New

York, Wiley, 1966.
[11] , "On regular variation and local limit theorem," Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, Uni-
versity of California Press, 1967, Vol. 2, Part II, pp. 373-388.

[12] S. K. FRIEDLANDER and L. TOPPER, Turbulence: Classic Papers on Statistical Theory,
New York, Interscience, 1961.

[13] I. M. GELFAND and N. YA. VILENKIN, Generalized Functions, Vol. 4, New York, Aca-
demic Press, 1964.

[14] B. V. GNEDENKO and A. N. KOLMOGOROFF, Limit Distributions for Sums of Independent
Random Variables (translated by K. L. Chung), Reading, Addison Wesley, 1954.

[15] J. P. KAHANE and B. MANDELBROT, "Ensembles de multiplicite aleatoires," C. R. Acad.
Sci. Paris, Vol. 261 (1965), pp. 3931-3933.

[16] J. LAMPERTI, "Some limit theorems for stochastic processes," J. Math. Mech., Vol. 7
(1958), pp. 433-448.

[17] , "An occupation time theorem for a class of stochastic processes," Trans. Amer.
Math. Soc., Vol. 88 (1958), pp. 380-387.

[18] P. LEvY, Theorie de l'Addition des Variables Aleatoires, Paris, Gauthier-Villars, 1937 and
1954.

[19] M. LoivE, Probability Theory (3d ed.), New York, Van Nostrand, 1963.
[20] B. MANDELBROT, "Self-similar error-clusters in communication systems and the con-

cept of conditional stationarity," IEEE Trans. Comm. Technology, Vol. COM-13 (1965),
pp. 71-90.



SPORADIC RANDOM FUNCTIONS 179

[21] ,"Noises with an 1/f spectrum, a bridge between direct current and white noise,"
to appear in IEEE Trans. Information Theory, Vol. IT-13 (1967), No. 2.

[22] , "Sporadic turbulence in fluids," to appear.
[23] A. S. MONIN and A. M. YAGLOM, "On the laws of small-scale turbulent flow in liquids

and gases," Russian Math. Surveys, Vol. 18 (1963), pp. 89-109.
[24] A. BINYI, "On a new axiomatic theory of probability," Acta Math. Hungar., Vol. 6

(1955), pp. 285-335.
[25] V. A. SANDBORN, "Measurements of intermittency of turbulent motion in a boundary

layer," J. Fluid Mech., Vol. 6 (1959), pp. 221-240.
[26] W. L. SMITH, "Infinitesimal renewal processes," Contributions to Probability and Statistics,

in honor of Harold Hotelling, Stanford, Stanford University Press, 1960, pp. 396-413.


