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1. Long-range misorientation in the crystalline structure of metals

Sometime in 1955 or 1956 at the Atomic Energy Research Establishment at
Harwell, Professor A. H. Cottrell set me a problem on long-range misorientation
in the crystalline structure of metals. This made me think about multidi-
mensional martingales, which I propose to call harnesses. The whole subject
seems largely unexplored, and I have only some sketchy and tentative remarks
to make; but I resurrect this material in the hope that others will bring it to
fruition.
When we analyze the micro-structure of a large lump of metal, we find two

major features; first, the metal consists of an assemblage of imperfect metal
crystals, called grains; and second, the grains consist of small contiguous do-
mains (called subgrains) of irregular size and shape, in each of which the atoms
are packed on a perfect crystalline lattice. Each subgrain has a unit vector
specifying the spatial orientation of its lattice. The vectors of adjacent subgrains
subtend small irregular angles, one with the next, say random angles with
some specified distribution. It is these angles between subgrains that are the
manifestation of the imperfection of the crystal structure in the grains. Except
in special circumstances (which do not concern us here) the orientations of
neighboring grains are quite independent; but those of neighboring subgrains
are not independent because the change of orientation from one to the next is
small. A grain contains a large number of subgrains. One might suppose that
the small irregularities between neighboring subgrains would cumulate, so that
the long-range misorientation (namely the angle between the vectors of two
subgrains within the same grain but many subgrains apart) would increase
with increasing distance between the subgrains and so ultimately become quite
large. Yet observation shows this is not to be the case: the long-range mis-
orientation seems to be of the same order of magnitude as the short-range
misorientation between adjacent subgrains. Indeed, it is this smallness of the
long-range misorientation which is the manifestation of the (albeit imperfect)
overall crystalline coherency of the grain. The general orientation of the struc-
ture can only change by large amounts at the so-called "large-angle grain
boundaries" between one grain and the next. Much the same sort of effect
seems to occur if one tries to distort at random a sheet of paper by crumpling
it up. The normal to the surface of the paper has a more or less constant direc-
tion (or else varies quite smoothly and not at all randomly) except at the
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creases in the crumpled paper, where it undergoes a sudden drastic change.
The creases in the paper are analogous to the large-angle grain boundaries in
the metal.

(It may entertain mathematical statisticians to investigate the mathematics
of crumpled paper: at least this will afford them a theoretical study which of
itself generates its own abundant supply of experimental material.)
Both for paper and metal, and for a number of other physical situations,

the general question confronts us of whether d-dimensional Euclidian space can
suffer random distortion; and, if so, to what extent; and how does that extent
depend upon d. We shall see that the question is in some rather ill-understood
way bound up with the topological properties of d-dimensional space. Nearly
all stochastic processes deal with the case d = 1, and we know quite a lot
about that case; but we know virtually nothing about the cases d > 1. Since
the problem is difficult, I shall make several simplifications, some quite drastic.
However, it is worth making one remark at once about the function d(r) de-
fined in the next paragraph. This is a vector function d of a vector variable r;
and we shall (effectively) reduce it to a scalar function y of a vector variable r.
This reduction is largely a matter of convenience, and not a bypassing of the
intrinsic multidimensionality of the problem. The intrinsic multidimensionality
lies in the vectorial character of the parameter r; and it is this parameter r
which embodies the topological peculiarities of the situation. By contrast, the
vectorial character of d is trivial: it could have been reduced to a scalar func-
tion in many other ways than the one adopted here. For instance, we might
have taken a linear functional of d or we might have considered functionals on
the orthogonal group of rotations; and to have done so might have given an
illusion of mathematical elegance and paid a courtship to fashionable "modern"
mathematics. But in the presence of real mathematical difficulties it is as well
to argue as simply as possible.

Let r denote the position vector of a typical point in the metal, and let d(r) be
the unit vector associated with the subgrain containing r. We have to consider
fluctuations of d(r), which is a vector function of a vector variable. The first
simplification will reduce this to a problem on the fluctuations of a scalar function
of a vector variable. Let P and Q be two distant points in the metal, and take a
sequence of points P = PO, P1, * * *, Pn = Q such that the Pi are in the succes-
sive separate subgrains visited in travelling from P to Q along some reasonably
direct path. Let di = d(r1) = (xi, yi, zi) where ri is the position vector of Pi, and
suppose that the coordinate system has been chosen so that do = (1, 0, 0). If
An is the angle between the unit vector at P and Q, we have
(1.1) sin2Oa = 1 - COS2 O. = 1 - xn = y2 + z .
The symmetry of the problem makes us presume that
(1.2) Ey. = Ezn = 0; Eyn = EZn.
Hence,
(1.3) E(sin2 En) = 2 var yn.
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We can therefore get some information on the magnitude of the long-range
misorientation fin by studying the fluctuations of y, which is a scalar function
of the vector variable r,, - ro.

If An is reasonably small, even though n is large, the vectors do, di, * , d,, will
be approximately parallel, and the differences yi - yi-l will have a common
distribution. We shall later see that the assumption that the differences yi- yi-i
are identically (but not independently) distributed with a small variance a2,
does eventually lead to the conclusion that 6,, is also small, even for large n; so
this assumption is (a posteriori) a reasonable one, and we shall make it.

So far we have said nothing about the irregular (random) shapes and sizes of
the subgrain, apart from the tacit presumption, arising from some sort of homo-
geneity, that n will be roughly proportional to the distance between P and Q.
The subgrains fit together to form a continuous solid, so the problem of specifying
their joint shape-size distribution is a really formidable question in statistical
topology, a subject that merits study in its own right. But we are up against
enough difficulties without this one, and I propose to ignore it by assuming that
all the subgrains are cubes of equal size. Then we may represent each subgrain by
integer coordinates (r, s, t); and each subgrain will carry a scalar function Yr,,
whose fluctuations interest us. Hereafter, when we speak about a lattice or
lattice-points, we shall mean this lattice of integers (r, s, t) and later more
general lattices, but never the atomic crystalline lattices of the metallic sub-
grains. It is not easy to decide how drastic is this assumption of cubic subgrains;
but perhaps it is not too far out.
Sometimes we shall write the scalars in the form yrst when we wish to empha-

size the lattice points to which they belong. At other times we shall write them
in the form yi when we wish to regard them as values at the i-th point of some
path on the lattice (r, s, t).

Since yo = 0, we have

(1.4) var yn = var (yi -Yi-)];

and, if the differences y-Y i- were independent, we should have
n n

(1.5) var (yi - yi-) = var (yi -Yi-i) = na2,
i=l ~~~t=1

and the long-range misorientation 6,, would behave like a multiple of n"l2. But
we cannot reasonably assume independence for the differences yi- yi-1, for
these differences are associated with steps between neighboring lattice points,
and the summation E in (1.4) is a path-sum over successive steps of a path.
If we choose two different paths joining a pair of specified end-points, the two
path-sums must be equal. Indeed, a path-sum around any closed path must be
zero. Hence, the differences yi- yi- are dependent in a rather complicated
topological fashion, and it is this that vitiates the familiar relation var Fi =

var. Equally, we wish to discover what happens to this familiar relation when
E is path-summation in several dimensions.
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From the point of view of mathematical simplicity, it is very desirable to
express the physical situation in terms of a system of independent random vari-
ables. Quantities like yi - Yi-i are associated with the arcs of the lattice, that is
to say, line segments joining nearest-neighbor lattice-points; and we have seen
that it is unreasonable to assign independent random variables to these arcs of
the lattice. There are, as it were, too many arcs. In fact, there are three times
as many arcs as lattice-points, and it is this excess of arcs over lattice-points
which distinguishes the multidimensional case from the one-dimensional case.
Let us, therefore, try to associate independent random variables with the lattice-
points instead of the arcs.

2. Martingales and harnesses

Since the differences Yi - Yi-1 have zero expectations by hypothesis, we have
the conditional expectation
(2.1) E(YiJYiy1, Yi-2, ... E(YiJYi-1) = Yi-l-

This is a martingale in its simplest form. In terms of lattice coordinates, we
might write this in the form

(2.2) E(Yr,s,t!Yr-1,a,t) = Yr-lst
but, equally, we might write

(2.3) E(yr, tIyrs_it) = Yr,-i,t
This suggests the relation

(2.4) E(Yr,e,tIYr-1,s,t, Yr,s-i,t, Yr,s,t-l) = 1(Yr-1,s,t + Yr,s-lt + Yr,s,-i),
which in turn suggests

(2.5) Yr,s,t = f(Yr-1,8,t + Yr.a-l,t + Yr,s,t-1) + er,s,t,
where fr,s,t is a zero-mean random variable associated with the lattice-point
(r, s, t). Alternatively, we might consider a system given by
(2.6) Yr,at = (Yr-i,a,t + Yr,.s-l,t + Yr,s,t-1

+ yr+i,s,t + Yr,s+i,t + Yrs.,t+l) + r

where er*t is a zero-mean random variable associated with the lattice point
(r, s, t). I shall call systems, like (2.4), (2.5), (2.6), harnesses. I deliberatelyleave
this definition of harness in a vague form because I am very uncertain what form
of definition is most profitable.
The idea behind the terminology is the following. In gaming, a martingale

is a fair gambling system, and this is probably the immediate source of the
stochastic sense of "martingale." But in turn, the gaming term seems to have
its origin in the equestrian sense of the word "martingale." In that sense, a
martingale is a strap that prevents a horse from throwing up his head. If the
horse is proceeding in the positive sense of the parameter i, and his mouth and
breast are at heights yi and zi, respectively, above the ground at time i, then he
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will be moving in a steady horizontal fashion when his breast is now at the same
height as his mouth was at the previous moment; thus, yi = Zi = Yi-i in con-
formity with (2.1). Since the strap checks upward but not downward movements
of the head, it comes closer to what a mathematician would call a submartingale.
If there are constraints from several different directions, as in (2.4), we may
imagine them caused by several different straps, or by a harness.
The history of martingales goes back a long way, and there are elaborate

reliefs in the British Museum depicting martingales in the reigns of Tiglath-
Pileser III (745-727 B.C.), Sennacherib (705-681 B.C.), and Assurbanipal
(668-626 B.C.). Anderson [1] writes of the Assyrians: "They manage their horses
with bit and bridle, and later reliefs show a remarkable anticipation of the
modern martingale (not used as far as I know by any other ancient people). The
reins are attached to a large tassel hanging below the horse's neck, which con-
tinues to provide a certain check on the horse's mouth. The rider is thus enabled
to use both hands for his weapons, and can shoot the bow at full gallop." Miiseler
[8] and Hitchcock [4] give information about the various types of modern
martingale (the standing, running, and Irish martingales), and the latter author
has a colorful passage in which he says: "The standing martingale, which is used
as a check to prevent the horse from throwing up his head and hitting the rider
in the face, or carrying it too high, is a good remedy for stargazing, or for horses
which have ewe-necks. . . . This type of martingale is used universally on the
polo ground."

3. One-sided harnesses and their generating functions

We shall call (2.5) a one-sided harness, because the constraints on yr,s,t all come
from one side of the plane r + s + t = constant. Since (2.5) is a difference
equation, it needs some boundary conditions. For simplicity we suppose that
these are

(3.1) YO,s,t = Yr,o,t = Yr,s,o = 0.
With these boundary conditions, any system of e,, , (including, of course, the
identically distributed independent ones we propose to use) will uniquely de-
termine all yr,s,t for all nonnegative r, s, t. To see this, we note that the yT,,.t
(with r> 0, s > 0, t > 0) are defined on the planes r + s + t = u recursively
for u = 0, 1, 2, * * - by (2.5) and (3.1).
We wish to study the fluctuations of Yr,s,t, but at the same time we do not

want the boundary conditions (3.1) to influence the result unduly. We shall
therefore examine

(3.2) V(f, m, n) = lim E(yr+t,s+m,t+n - yr.8,t)2.
r,s,t-

Consider the v-dimensional version of (2.5), (3.1), and (3.2). We have

(3.3) Yr,,r ,-,-,r, = - {Yri-l,r2,r3,-,7 +*, --+ Yrl,r2,. -,I-I,r,l-1} + tri,rw .r.
V
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(3.4) Yo,r2,n:, ,r, = Y-=Ylr2i,r, o = 0,
(3.5) V(t1, ,, 4) = lim E(yr,+ti, ,rv+Cu - Yrlr2 .r.)2

To evaluate V, we introduce the generating functions

(3.6) Y(u1, U2, , u,) = Yrl,r2, ,ru'*'U2 * *
ri 2°. ,r, >0

(3.7) X(ub, u2, , u,) = Efrirm,. . .,r,UPU2 up.

Notice that the lower limits of summation are different in (3.6) and (3.7). On
multiplying (3.3) by ul'u2 *-- ur' and summing over r1i 1, * r, > 1 we
get, by virtue of (3.4),

(3.8) Y = -1(ul +U2 +*** + u,)Y+ X.

Next write

(3.9) Zrl,r2,.-.r, = Yri+4, .r,+4 - Yrim, -,r,
and

(3.10) Z(u1, U2, . . , u,) = Zrj,r2,.. ,rUrl'U2' Ur,".
ri>i, ,r,>l

Then

(3.11) Z = (u1-"u2 ..

* - 1)Y - (u + u + + u )/v X,

by (3.9) and (3.8). Hence, Ez .2 is the coefficient of (uiu2--- u,)Ov1v2
... v'1 in the expansion of

(3.12) E{Z(ulv1, * *, u,v,)Z(ul 1, u2-, * *

_(ulv) -4 ... (U,v,) -" - 1} {ul', *Uv - Ex

{11
1

Vilt {1- ul{i - *F uiv}{ -!.u}

where

(3.13) EX= E{X(uiv1, * *, u,v,)X(u- 1, u2 , * U*,

- E V11V12 ... V'O,2 = ( Vj 2

ri>1,. ***,r,>1 \j=11 Vj/

because, by hypothesis, the Eri,.r..,r are independently distributed, each with
zero mean and variance a2.

It is perhaps worth mentioning that questions of convergence do not arise in
any of the foregoing work. We are only concerned with picking out specified
coefficients in the power series and these series can all be truncated at a suitable
point if necessary. From (3.12) and (3.13) we have
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(3.14) vl'v2"... r
ri >1, * ,r, >1

= I2r(l v) f' dOi}
{(ei9vi) -tl ... (ei°6V,) - 1} {eittl ... eit- 1}

{ 1- E ei f - e-ie

Here we have used the ordinary properties of Fourier series to pick out the co-
efficient of (u,u2 *-- u,)0 in (3.12). If Ivjl < 1, the expressions on the right of
(3.14) can be expanded and the coefficients identified with those in the formal
expressions (3.12) and (3.13). Hence, (3.14) holds for all Ivjl < 1, and the series
on the left of (3.14) converges under these conditions.

Writing Alim for the Abelian limit, which by regularity is equal to the ordinary
limit whenever the latter exists, we get
(3.15) V(4, 42, * , 4) = Alim EzrI.r,...

rn-,*. . *,r, b x

= lim a~2(l - VI) ... (1 -v,) E lVrv2***v EZr2l...r

2ll{lfx,O}{e1 - , - 1}

{ | } _ E i} -

There is no difficulty in justify-ing the operation of taking limits under the
integral signs above. However, we have not verified that the limit in (3.2)
actually exists. This is a minor point, which I shall not pursue: if the limit
should fail to exist (which seems unlikely), then we can redefine V in (3.2) using
an Abelian limit.
Our next task is to study the behavior of V(t4, t2, * *X) for large values of

(3.16) n = 1t + . ,. ,2.
Since (3.15) is obviously symmetrical in 41, 42, * , 4, and remains unaltered if
we reverse the signs of all t4 simultaneously, we may suppose without loss of
generality that
(3.17) 1tll < 1[21 < .*. < I4-11 <4.
The next section consists entirely of computations. Those interested in results

should proceed to section 5.

4. Approximation of integrals

Define

(4.1) V= V(4,42,.
(4.2) A = ei('11+ .+t 1),l
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(4.3) B = v - YE ei6i,
j=1
v-1

(4.4) C = v - F- e-ioi,
j=1

(4.5) 4 = 4, o = 0'.
Then

(4.6) V/V2 = u2{tJv-i |~ d} wd|d(Ale-°- 1)(Ae'l - 1)(4.6)VP' o-,
27r J- J27r dO (B - et6) (C - e-ie)

-2~1 f dO,l f1 dO (2 -Aeee - A-le-9)
{2 j 2|rJ BC(1 B-leil)(l C-le-i°)

=(72 { J dOi} {2. coefficient of eill

-A*coefficient of ei -A-1' coefficient of eiC°}

in (1-B1e°)1(1-
BC

Now
(4 7) (1 - B-leiG)1(1 - C-le-i°)-l 1 R-rC-i(r-)e

BC -BC r.O.
The coefficient of ei°@ in (4.7) is

(4.8) (BC)-r = 1BCr>0 BC-i
The coefficient of e-i in (4.7) is

(4.9) 1 B- B-FC-(r+t = C-i

The coefficient of eit" in (4.7) is

(4.10) 1 8_ B t8+°c-8 = BCtBC8>0 BC -i
Hence (4.6) yields

(4.11) p2= a { T C} 1 Bt

We shall prove first that V is bounded if v > 4. From (4.2), (4.3), and (4.4),
we have IAI = 1, IBI > 1, ICl > 1. So

(4.12) Y < |2 rdOiB4- {J2irJBC- 1
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Moreover, BC - 1 is a continuous function of 01, 02, * , 0,1 which only vanishes
(within the region of integration) when B = C = 1, that is when 0A = 02=
**= , = 0. For small 0i, writing

v-1
(4.13) Sk=j6, (k =1,2, --),

j=1
we have
(4.14) BC-1 = (1 -iSl + 21S2-*) (1 + iSl + 12S2 +*-)1

= S2 + S2 + 0(4).
Hence,

(4.15) V 0 [{If dO}

- O [ft(S12)-4 d(S12)] = 0(1), (v > 4),

where the last line in (4.15) is the result of transforming to polar coordinates in
the 0-space.
The integral V is not bounded for smaller values of v, and a more delicate

analysis is required. We begin with the case v = 3. In the following we shall
write a for a real number lying in the closed interval [- 1, 1]. The value of aY
may vary from occurrence to occurrence: thus, we have relations like t2 =
t~, ta- = 2a. We also write
(4.16) X = (01+ 02)/2, ,u = (01-02)/2, p = 3X2 +M2.
By Taylor's expansion, we have
(4.17) cos X = 1_X2 + X4cos X = 1-2X2 + 1X4t.
We shall make extensive use of expressions and manipulations like (4.17) without
further explicit mention.
We have, from (4.4) with v = 3,

(4.18) Ce-20'-p = e-2i)-P(3 -e-il- e-i)
= e-2iX-p(3eiX# -(-)=etP(3 - -

= e-P(3e-2i - 2e-3i2 cos ;A)
= e-P(3 cos 2X - 2 cos 3X cos ;A)

-ie-lP(3 sin 2X - 2 sin 3X cos jA)
= e-P [3- 6X2 + 2X4? -2 (1- 9X2 + >V4t9) cos ;]

- ie-P [6X - 4X3 - 2 (3X - A3%) cos Iu]
= e-P [3 - 6X2 + 2X4 - 2 (1 - 1M2 +i

+ 9X2 (1 - I22) - X44]
-ie-P [6X - 4XV - 6X (1 - u2)+29X2t8]
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= eP [1 + 3iX2 + ;&2 + -VX46 + 9X2 26 + Ap4)]
- ile-P(13X26 + 31,26)

= e-P [1 + 3X2 + p2 + (V-X4 + '2X2p2 + A4) 6]
- Ae-p (13X26 + -26)

= e-P(1 + p) + p2ep6 - 3iXe-Pp6.

= e-p(l + p) + p26 - 13ip3/2i.
Now define

(4.19) f (p) = e-'(1 + p).
We have

(4.20) f'(0) = 0; f"(p) =-(1 - p)e-Pl.
It is easy to prove that

(4.21) -1 f"(p) < e-2 < 1, (P .0).
Hence,
(4.22) e-P(1 + p) = 1 + 4p26.
Since - r 0<1 < 02 < 7r, we have

(4.23) p = 3 (01 + 02)2 + 0_)2 < 4w2

Hence,

(4.24) Ce2s>-' = 1 + p3/2(3,p/2 - 13i 6)

1+ p3/2(37rw - 34 6)

= 1 + lOp3'26*'
when 6* is a complex number such that 16*1 < 1.
Next let tR denote the real part of a number, and consider

(4.25) IR1 {c e-O(eP+2i) <} I
-
e(p+2i

= e-PjI(Ce-2i-p)-1 -11 = e-Pti(l + 1Op3126*)-l 1.

If z is any complex number, we have

(4.26) e -1 =f0 eu du,

where the integral is taken along the straight line from 0 to z. Hence,

(4.27) lez - 1i < J0' leul Idul < lzle'z'.
Similarly, if Izi < 1, and we take the integral along a straight line, we have
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(4.28) Ilog (1+z)= f du1 Idul
+u 0 1+ u

< lZI < lZl lZl
inf 11 +Ttzl- inf (l-tlzl) 1-IZI
o<t<l O<t<1

Now choose an absolute constant po > 0 such that
(4.29) lopll2/(l - lOp3/2) < I (0 < p < Po).
If 0 < p < po, then IlOpII26*I < 1, and we have
(4.30) 1 (1 + lOp3I26*) - -1 1 = le -1 lg (1+1Opl/20*)-

. 1-t log (1 + lOp3/2t)*)lel-4og (1+1op/26*E

. tllog (1 + lopI/2)*)lellog (1+1OP08/*I

.1 lp10,3/2_ exp lp3/2I < 1 tP2
Inserting this result into (4.26), we obtain
(4.31) (R(A/C4) = e-Pe(R(Ae-2iX1) + 12tpe-1/2, (0 < p < pO).

Since B and C are complex conjugates, by (4.3) and (4.4), we have
(4.32) BC-1 = 1C12 - 1 = 13- 2e-i) cosuM2- 1

= (3 -2 cos X cos A)2 + 4 sin2 X cos2 j-1
= 8 - 12 cos X cos ,u + 4 cos2 ,u
= 4 [2 - 3 (1 -21X2) COs A + COS2 M] + JX4#
= 4(2 - cos )(1- cos I) + 6X2 cos , + IX4k
= 4(2 -cos U) (ay2 + ftA4,) + 6X2 + 3X21A2 + 1X4t0
= 2A2(2 - Cos H) + 6X2 + IX4t# + 3X2,26 + IM4,
= 212 (1 + 1j24) + 6X2 + 1X46 + 3X2,s2 + 1y48

= 2/2 + 6X2 + (9X4 + 6X21A2 + I4)6 = 2p + p2&.

As (4.12) shows, the integrand in the integral for V is bounded except in the
neighborhood of 01 = 02 = 0; so we have

(4.33) V = O(0) + 41-2 ff dO dO2BC i{2- A- A1B}

01 9a2 ff do do2f2 A 1

8r2 JJ p(B+ 'I ) B_
o <P <PO

_9a2 | dO dO2 1
8rr 2 p

0 <P-P,~ ~ ~ ~ ~ op.I
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on resolving l/p(l + (2)p6) into partial fractions and noting that the expression
in braces does not exceed 4 in magnitude. Since po < 1, the final integrand is
bounded, and we get

(4.34) V = 0(1) + 9_2 ff d61 d62 2{1 -(Affl)}gJJ p
o<P<Po

where we have used the fact that A/C' and 1/AB4 are complex conjugates.

We can satisfy (4.16) by writing

5) 01 + 02 (P)1/ sin
w

01-02 1/2
(4.35) 2 3 2 -J.= 1c0.

The Jacobian of this transformation is

(4.36) a9(dl, 02)

Hence,

(4.37) V = 0(1) + 42 L L d{ R-(Af)

According to (4.31), the error introduced by replacing 6q(A/C') by e-Pt(R(Ae-2ill)
in (4.37) will be

(4.38) 3\/3 a fL dp L21 dw 'ge-p'e- 3\L3.u)e2 = 0(l).

Hence,

(4.39) V = 0(1) + 3V3.j2f -Ld f d{l-e-PkR(Ae2'X')}

Now

(4.40) GR(Ae-2ixt) = 61 exp {i[e4(X + Au) + f2(X - A) - 2V4]}

= COS [(4l + f2 - 2t3)X + (41 - f2)A]

COS [1/2 {+ 3-2t3 sin O + ( -4) cosw}]

= cos [Npl12 cos (W + Co)],
where wo is a constant depending only on f4,4f2, 43, and

(4.41) N2 = ' (t + 2 - 2t3)2+ (e1, - 2)

= 4(e2 + 422 + f _ t243 - f3f4 - 4142).
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Therefore,

(4.42) V = 0(1) + 3V32 -P p dw {1 e-p cos [Np 12 cos (W + Wo)]},

= 0(1) + 3-V ,2 d|_ 2

dw {1 e-pe cos (NpI12 cos )},47r2 j0pJ

= 0(1) + -3fP|J{1- (Np

where Jo(x) is the Bessel function of the first kind and zero-th order.
Now write k = N/VKt and consider

(4.43) I = dp {1 - e-PtJo(Np 12)} = | dx I- e-xJo(kx'12)}

= f

x {1 -Jo(kx112)} + fPo
d pc-

Jo .eJo(kxl2)

+ 10dx (1 - ex)Jo(kxlI2)

= {1 - Jo(kxl/2)} + log (p04) + O(1)

since IJo(kx1/2)1 < 1 and (1 -e-z)/x < 1 for x > 0. If k = 0, the final integral
vanishes, since Jo(O) = 1. If k > 0, we have

(4.44) d
- Jo(kx1/2)} =

( -
{ Jo(vy)}.

Now {1 - Jo(v'y)}/y is a bounded function of y; and Jo(v/y) = 0(y-1/4) as
y oo. Hence,

(4f45)k- {1 - y)}
if k2 < 1

- ]1, d + 0(1) = logk2+ o(l), if k2> 1.

Collecting results from (4.43), (4.44), and (4.45), we get

-{logC+ 0(1) if k< 1
(4.46) I = {logk2 + log t+ O(1) = log N2 + O(1) if k2 1.

If k2 1, then N2 > C. On the other hand, N2 < 82 by (4.41). So log N2 =
log 4 + 0(1) when k2 > 1. Hence in every case we get

(4.47) 1 = log C + 0(1) = log n + 0(1)~,
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by (3.16), (3.17), and (4.5). Finally (4.42) and (4.47) give

(4.48) V(f4, 2,4) = 32- a'2logn + 0(1) as n = (t? + (2 + t)2xoo.

Next we consider the one-dimensional case of (3.15). The answer for this case
is, of course, known; but it is comforting to be able to check the result, and in any
case we shall need one of the integrals (4.49) in dealing with the two-dimensional
case in a moment. For v = 1, (3.16) gives t4 = n and (3.15) gives

(4-49) T
2

=
1 - cosnOdO= a2nY~f) T.. - coso0

since
1 -cosnO l -cos (n-l) ++nt'1

(4.50) 1-+1 + 2 cos H.
For two dimensions, we start from (4.11). We have

(4.51) BC - 1 = 4(1 - cos Oi);
and hence

(4.52) V =2 (1- do O7) 2R [1 - e(i2]
~7 1 -Cos

02"-!" j ~'4

a f- dO K61 [(1 2) - et(1 - -

= |-Tf... 1 -d~5OS /@ 2 E ( rT2) {(_1) _ ei4 (_et * )r}
1o(42r) 2d2

_ a2 1 do( 2) \2 fr 1 cos1r
i 2" rCo 2 J_ -cosra2 E (-2)(_ )r 1 cs- r )o

,Z~t- 4it-1
by (4.49). This, however, shows that V is twice the expected value of it,-rl
when r is distributed as a negative binomial variate with parameters -
and -t2. When n is large, 42 is large, and we can approximate by means of
the central limit theorem. In fact, V will approach twice the expected value of
t4- t2 - y(2t2)1t21, where y is normally distributed with zero mean and unit
variance. Thus,

(4.53) V V(27r) J t, - 4t2- y(2?2)"2 e-/2dy,

4 t2 /2e-a2/2 + 2721t -t2j4,(a)

where

(4.54) a = If, - 1(22)Q12, 4(a) = (27)-112 f e-'/2 dt.



HARNESSES 103

Here we have been assuming (3.17). For general 4l, f2, we obtain

(4.55) v [nI4e) V 2714f2[in2 ± 1V2 _ e0I11I4e-a2/2 + 2uf2IA -21(

where
(4.56) a = It1 - f2l[2n2 + 24 - {j]-1I4 -=2 +n2.

5. Summary of results for one-sided harnesses

We summarize the foregoing results in theorem 1.
THEOREM 1. Let V(t1, 42, *-- , 4V) denote the Abelian limit of

(5.1) E(Yri+ti,r2+t2,. ..,r,+4 - Yrl,r2,...,)2
as r1, r2, ** r, -- o, where Yr,,r,, . ,r is the one-sided harness defined by (3.3)
subject to the boundary conditions (3.4). Then

(5.2) V(f1) = a2f1;
and, when ,41, 42,***4 °,

(-) V(f1,42) 4 2

[(t21 + t2 + Jt2 - t221)]1/4 f-a2/2 + a|ez/ t(5.3) V(, ) 4 2
11

e2/ fet2/2d
where
(5.4) a = I, - 41[2(t1 + 1+ 4 -

(5.5) V(4,34,t3) =
3- 2 log (42 + f2 + 32) + 0(1);(5.5)

7r
or 1 +0(l)~~~~7

and

(5.6) V(,42, -,4) = 0(1) for v > 4.

This theorem shows how long-range fluctuations depend upon distance and
dimensionality, assuming, of course, that a one-sided harness is the right mathe-
matical model. These fluctuations will be proportional to the square root of V.
Thus, in one dimension, we get the familiar result that the fluctuations are
proportional to the square root of the distance n = (4 + * + 41)1/2* In two
dimensions there is a complicated situation. The magnitude of the fluctuations
depends upon the parameter a, which characterizes the direction of the distance
in question. If a is not large, then the fluctuations are proportional to n1/4; but, if
a is large, the fluctuations are proportional to n12, as in the one-dimensional case.
Large values of a correspond to the case when the distance is measured perpen-
dicular to the direction in which the one-sided harness is recursively constructed;
while small values of a represent distances parallel to this direction. For inter-
mediate directions, the fluctuations will be intermediately proportional to n14
and n'12. In three dimensions, the fluctuations are always proportional to
(log n) 1/2; and are therefore virtually constant, unless n is enormously larger than
anything one is likely to encounter in a physical situation. In four or more
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dimensions, the fluctuations are always bounded. Professor A. H. Cottrell has
picturesquely stated this result as follows.
THEOREM 2. In four or more dimensions, a harness is a strait jacket.
Presumably this theorem is well-known to four-dimensional horses.

6. Central harnesses

The sensitivity to direction, already noted in (5.3), is a most undesirable
feature of one-sided harnesses, which suggests that they do not provide a
satisfactory mathematical model of long-range misorientation in crystalline
structure. After all, the physical problem is isotropic and our treatment should
be independent of our choice of coordinate axes. We therefore turn to central
harnesses, that is to say, systems of the type (2.6). This definition shows much
more symmetry, but unfortunately it leads to a new type of difficulty, which
would appear to make it even less suitable than the one-sided harness as a
mathematical model.

This. difficulty already appears in the central one-dimensional harness; and
for simplicity we shall look merely at this case. We have

(6.1) Yr = 2Yr+1 + 2Yr+1 + Er,

where the E's are supposed to be independently distributed with zero mean and
common variance a2. The difference equation (6.1) has the general solution

r

(6.2) yr= A + Br + 2 E (r-s)e,E
8=0

where A and B are constants to be determined by boundary conditions. If we
choose the boundary conditions to be

(6.3) Yo= Yk= O

for some fixed k (and these seem to typify the most general boundary conditions
that would be physically acceptable), then

(6.4) Yr, 2 E (r-s)e, - ,(k -s)e,.

This leads to

(6.5) V(r) = var Yr =2a2r(k-r)[1 + 2r(k-r)]/3k, 0 < r < k,
v2a2r(r - k)[1 + 2k(r - k)]/3k, k > r.

There is no way of choosing k so that V(r) = 0(r) for all r, or even for only
those r which satisfy 0 < r < k.

It is disappointing that central harnesses will not therefore serve our purpose,
but perhaps hardly surprising. One-sided harnesses obey first-order difference
equations, whereas central harnesses obey second-order equations; and it is
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familiar that the injection of randomness into an undamped second-order system
can provoke unacceptably large fluctuations.

7. Serial harnesses

The following line of attack was suggested to me by Mr. D. G. Champernowne
[2] in a private communication (undated, but around about 1957). So far we have
only considered hypercubical lattices, but now we extend the treatment to a
more general class of lattices.
Let L denote a countable lattice which forms an Abelian group (with at least

one infinite cyclic subgroup) under vector addition: that is to say, if v and w are
vectors representing points of L, then v i w also belong to L. Let p(w) denote a
given discrete symmetric probability measure on L: that is to say,

(7.1) 0 < p(v) = p(- v); E p(V) = 1.
v CL

We also suppose that p(vo) > 0 for some vector vo which generates an infinite
cyclic subgroup of L. Inter alia, this prevents p(v) from being the trivial distri-
bution

(7.2) po(0) = 1, po(v) = 0, (v P$ 0).
We shall consider Markovian walks W on L, with one-step transition proba-
bilities

(7.3) P(v-w) = p(v- w).
The (n + 1)-step transition probabilities of W are then (in the usual fashion)

(7.4) p.+1(v) = E pn(W)p(v - w), (n > 0),
wEL

when po is defined in (7.2).
For each point of L, we suppose that there is a sequence of random variables

ei(v), (i = 0, 1, 2, * *.), where all the E's are mutually independent identically
distributed random variables with zero mean and common variance a2. We define
the serial harnesses Y,(v), (t = 0, 1, 2, - - *) by means of

(7.5) YO(v) = Eo(V); Yt+1(v) = e1+1(v) + E p(w)Yt(v- w).
weL

We shall be interested in the limiting behavior of the fluctuations of Yt(v) as
t -* oo. It is obvious that EYt(v) = 0; and we define

(7.6) V,(v, u) = O[Y,+u(v) -Y(var)] = E[Yt+u(v) -Yt()]2,
and consider

(7.7) V(v, u) = lim V,(v, u).
t-
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We have from (7.5) and (7.4),

(7.8) Y,(v)
= Et(V) + _ p(W){fEt(V - W) + F, p(X){E(-l(VW-X) +

wEL xeL

= EI Ejr,(V - W)Pr(W)
r=O wEL

E E pr(V -W)e,_r(W)
r=O weL

= 5I Pt-r(V -w)E,.(w).
r=O wEL

Hence,

(7.9) Y1+u(v) - Yj(O) = L [Pt+U_r(v - w) - pt-r(-W)]Er(W)
r=O wEL

t+u
+ E E P,+ -r(v-W)e,(w).

r=t+l wEL
Therefore,

(7.10) V,(v, u) = E [pt+u,(v- w) - p,,(-W)]1u
r=O wEL

t+u
+ E E [Pt+u_r(V-W)]22

r=t+l wEL

- a2 f wE [pr+u(W - V) - pr(W)]2r=0 wEL
U-I

+ E 5L [P1(w - V)]2
r=O wEL

a2 {rEO E [p7+U(W - V)pr+u(v - w) + pr(W)pr(-w)

- 2pr+(V- w)p,(w)] + E E Pr(W - V)P,(v - W)}
r=O wEL

a2 [P2r+2u(O) + p2r(O) - 2p2±+u(v)] + E p2r(°)

t t+u

= 22E [p2r(O) - p2r+u(V)] + a2 E p2r(O).
r=O r=t+l

Now, by Schwarz's inequality, we have

(7.11) [p2r(v)]2 = [ E pr(v - W)Pr(W)]2
weL

< [ I p2(V W)][ E p2(W)] = [ I p7(w)pr(-w)]2 = [P2r()]2.
wEL wEL wEL
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Hence,

(7.12) p2r+u(V) = p2,(W)p.(v - W) < P2r(°) pu(V - W) = p2r(O);
wEL wEL

and consequently,

(7.13) p2r(O) - p2,+.(V) > 0.
Thus each term in the first series of the last line of (7.10) is nonnegative; so,

when t -- o, this series either converges or diverges to +00. The second series in
the last line of (7.10) has a fixed number of terms, namely u; and each of these
terms tends to zero when t -* co, because p(vo) > 0 for some vo which generates
an infinite cyclic subgroup of L. The final result is theorem 3.
THEOREM 3. The limit V(v, u) is equal to

(7.14) V(v, u) = 20-2 E [P2r(O) - P2r+u(V)1,
r=O

where each term in this series is nonnegative (and so the series either converges or has
the formal value +0 ).

This theorem is a straightforward generalization of a result originally proved
by Champernowne.
The precise behavior of the function V(v, u) for large v, u depends to some

extent on the basic transition function p(.). Rather than get involved in too
detailed an exact discussion, it seems more profitable to proceed heuristically in
the hope 'of revealing the general overall features to be expected of V(v, u),
without worrying too much if these results should prove false in certain special
cases.

Let us suppose that the one-step transitions have a finite variance, that is to
say that the matrix

(7.15) E ww'p(w)=A
weL

is finite, where w is a column vector and, w' is its transpose. Then the walks W
will obey the central limit theorem, and if some Tauberian version of the central
limit theorem (such as [3]) applies, then we may expect that
(7.16) p.(v) - I!27r nAIl-112X-1 exp {-v'A-lv/2n}
where IhAIl is the determinant of A, and X is the average number of lattice points
per unit volume. In particular, we shall have

(7.17) pn(O) -cn-' 2/20-2
where c is some constant and k is the rank of A, that is, the effective dimension-
ality of the walks W on L.

Hence, in the first place,
(7.18) V(v, u) = 0(1) if k > 3.

When k = 1 or 2, we shall look at two separate situations, one when v = 0 and
u is large, the other when u = 0 and v is large.
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Consider then the case when k = 1, v = 0, and u is large. We have

c C
(7.19) V(0, u) = 0(1) + urn ~ ~

trO(2r)"12 -(2r + U) 12

- 0(1) + rim [X-112- (X + IU)-112] dx

= 0(1) + lrm CN/2 [t12 - (t + 1u)1/2 + (Iu)1/2]

= cvu' + O(1) as u X .

When k = 2, v = 0, and u is large,
re

(7.20) V(O, u) = 0(1) + lim 2cI [x-1 - (x + 'u)-1] dx

=0(1) +-clogu as u-oo.
On the other hand, if u = 0 and v is large, we have

(7.21) V(v, 0) ' c E [p2r(O) - P2r(V)].
r=O

Now the sum

(7.22) L [P2r(O) - P2r(V)]
r=0

represents, for a random walk W starting at 0, the expected excess of even-step
visits to the origin over even-step visits to v, during the first t steps of the walk.
Suppose t is very large, much larger than the number of steps needed to first visit
the hyperplane in which 0 and v are mirror images. When the walk first reaches
this hyperplane, then by symmetry, in the ensuing part of the walk the expected
excess of visits to 0 over visits to v will be zero. Hence

(7.23) L; [p2r(O) - P2r(V)]
r=0

is, for a random walk W starting from 0, the expected number of visits to 0 before
first reaching this hyperplane. Thus

xo N

(7.24) L [P2r(°) p2r(V)] = E P2r(O),
r=0 r=O

where N is the expected number of steps before W first crosses the hyperplane.
However, N will be nearly equal to some multiple of v2, the square of the length
of v. Thus V(v, 0) will be asymptotically proportional to the length of v when
k = 1, and asymptotically proportional to the logarithm of the length of v when
k = 2.
The foregoing argument is, of course, very rough and ready, and is, moreover,

wrong in certain special respects. For example, suppose L is the hypercubical
lattice in d dimensions, and let

(7.25) p(x) = 2-d
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whenever x is one of the 2d vectors with coordinates all + 1, p(x) being zero for all
other x. Then p2r+u(V) will be zero if u has opposite parity to the sum of the
coordinates of v; and accordingly, V(v, u) will be infinite when u and v are so
related and d = 1 or 2. In particular, V(v, 0) will be finite if and only if either
the sum of the coordinates of v is even or d > 2.

Nevertheless, the general picture yielded by the heuristic argument is probably
fair. For example, subject to the reservations on parity quoted above, it yields
the correct result when applied to the particular case (7.25), as Champernowne
showed by an exact evaluation of (7.14).

Let us now compare and contrast the general conclusions just reached with
those reached in theorem 1 for one-sided harnesses. We shall suppose that L lies
in d-dimensional Euclidean space, and that the walks W are also honestly d-
dimensional. We write L. for the (d + 1)-dimensional space (v, u). When L. is
at least 4-dimensional (d + 1 > 4), then V(v, u) is bounded, as in (5.6). When
Lu is 3-dimensional (d = 2), then V(v, u) increases logarithmically with v or u,
as in (5.5). When Lu is 2-dimensional, then V(v, u) behaves like V/u when v = 0
and like jvl when u = 0. This corresponds to the behavior of (5.3), since the
coordinate axis of u in Lu corresponds to the direction in which the serial harness
is recursively constructed. When Champernowne first produced his results, we
both felt that this similarity with one-sided harnesses showed that the formu-
lation (7.5) (or specifically, its formulation with respect to the special case (7.25),
that being the actual formulation then employed) did not lead to any improve-
ment upon the anisotropic shortcomings of one-sided harnesses. We had been
hoping to find in two or more dimensions that the fluctuations would be smaller
than in one dimension, and were disappointed to find that, when Lu was
2-dimensional, the fluctuations perpendicular to the line of recurrent advance
were still the same order of magnitude as for ordinary martingales. Strangely
enough, it is just this feature which now appears to me to save the situation.

I now believe that the right way of looking at the matter is to look at L and
not at Lu. When L is one-dimensional, we have in L itself, that is, taking u = 0,
the ordinary one-dimensional fluctuations. When L is two-dimensional, the
fluctuations increase logarithmically with distance; and when L is three-di-
mensional or more, the fluctuations are bounded.
We therefore take u = 0 in what follows, and look at V(v, 0), which we shall

simply write as V(v). We have as a restatement of theorem 3 for this special-
ization the following theorem. The expression (7.26) is very similar to, though
not identical with, the potential kernel [9].
THEOREM 4. The following equality holds:

(7.26) V(v) = 2o2 E [P2r() - P2r(v)]V
r=O

Next we shall prove
THEOREM 5. For all vi, v2 E L,

(7.27) V(v1 + v2) + V(vi - v2) < 2V(v1) + 2V(v2).
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Moreover, the set of all v at which V(v) is finite forms a subgroup L* of L.
Consider

(7.28) 2p2,(vI) - P2r(Vl + v2) - P2r(Vi - v2)
- F [Pr(W)Pr(V1 - w) + Pr(V2 + W)Pr(Vi - V2 - w)

- Pr(Vi - W)Pr(V2 + W) - Pr(W)pr(Vi - V2 - W)]

= Ej [pr(W) - Pr(V2 + W)] [Pr(Vi - W) - Pr(Vl - V2 - W)]
wEL

= E [Pr(W) - Pr(V2 + w)] [pr(w - V) - p,(V2 + W - Vi)]
wEL

< X [P,(W) - Pr(v2 + W)]2,
weL

since, by Schwarz's inequality, j aia* < _
a2 whenever the a* are a permu-

tation of the ai. Further,

(7.29) FI [Pr(W) - Pr(V2 + w)]2
wEL

= X [Pr(W) - Pr(V2 + W)][p,(-W) - Pr(-V2 - w)]
weL

= F [Pr(W)Pr(-W) + Pr(V2 + W)Pr(-V2 - w)
WEL

- Pr(W)pr(-V2 - w) - Pr(V2 + W)Pr(-W)]
= 2p2r(O) - P2r(-V2) - p2r(v2) = 2p2r(O) - 2p2,(V2).

On combining (7.28) and (7.29), we have

(7.30) 2[p2r(O) - p2,(vI)] + 2[p2,(O) - p2,(V2)]
> [P2r(O) - P2r(VI + V2)] + [P2r(O) - P2r(Vl - V2)];

and hence, by summing (7.30) over r, we get (7.27). Finally, if V(v1) and V(v2)
are both finite, then (7.27) shows that both the nonnegative quantities V(v1 + v2)
and V(v1 - v2) must be finite. This proves that L* is a subgroup of L.

It also follows from (7.27) that, when vi and v2 are given, then at least one of
the two inequalities V(v1 + v2) S V(v1) + V(v2) and V(v1 - v2) < V(v1) + V(v2)
must be true. It seems a reasonable conjecture that both are actually true. Since
V(v) = V(-v) by symmetry, this conjecture may be put in the following form.
CONJECTURE 1. For all vi, v2 E L,

(7.31) V(vl + v2) < V(vI) + V(v2) .

THEOREM 6. If v is a point of L such that p2(V) > 0, then v e L*.
Suppose v #! 0. Let so, si, * * * , Sk be a sequence of numbers, each equal to 1,

such that for a random walk W of t steps si = + 1 if the i-th even-step visit to
either 0 or v is to 0, and si = - 1 if the i-th even-step visit to either 0 or v is to

v. We take so = + 1 to correspond to the zero-th visit to 0, namely to the start
of W from 0. Then

t k

(7.32) FI [P2(0) -P2r(V)] = E _ si.
r=O i=O
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Let S denote the sum of the sequence so, s, S,k omitting any consecutive
terms at the end of the sequence which are all - 1. Then

k
(7.33) E E s, < ES.

i =o

Now S is the sum of a sequence which consists of consecutive blocks, such that all
si in a block are alike while the si in adjacent blocks are of opposite sign. The
first and last blocks have si all equal to + 1. By the symmetry of the situation,
that is to say the symmetry p(v) = p(-v), the expected number of terms in
each block (except perhaps the last, which may be truncated) is independent of
the block. Hence ES equals the expected number of symbols in the last block.
The probability that successive si are of opposite signs is at least p2(v). Hence,

(7.34) ES < E np2(V)[1 -p2(V)]n-' = 1 + [p2(V)]->-
n=1

Consequently, V:(v) is bounded (independently of t) and V(v) <00. Thus
v c L* if v -d 0. Obviously 0 E L. This completes the proof of theorem 6.
THEOREM 7. If =r-OP2r(0) < 00 then L* = L. If r0=O p2r(°) = oo, then L*

consists of all points of L which can be reached from 0 in an even number of steps
with positive probability.
Theorem 6, together with the fact that L* is a subgroup of L, shows that L*

contains all points of L which can be reached from 0 in an even number of steps
with positive probability. If v is any point which cannot be reached from 0 in
an even number of steps with positive probability, then p2,(V) = 0 and

(7.35) V(v) = 2a2 , p2(O);
r=O

and theorem 7 follows at once.
Theorem 7 shows that L* is nontrivial (that is, consists of more than 0) when

p(O) < 1; and that, if we wish, we can make L* = L by choosing a system of
random walks W such that p(O) > 0.

8. Distributional properties of serial harnesses

Consider a random walk W(t, v) of t steps starting at v. We define the walk-
sum S[W(t, v)] by means of

(8.1) S[W(t, v)] = ECI(Wr)
r=O

where wo = v, and w, is the point of L which W(t, v) visits at its r-th step. Then
define

(8.2) Y,*(v) = Ew(t,v)S[W(t, v)],
when Ew(c,v) denotes the expectation over all t-stepped walks W(t, v) starting at
v. Comparing (8.2) with (7.5) we see that the only difference between Yt(v)



112 FIFTH BERKELEY SYMPOSIUM: HAMMERSLEY

and Yt*(v) is that we have written E,(w) in place of Et_r(w). Thus the distributional
properties of Yt and Yt are the same. Thus

(8.3) HI(v) = Yt (v) - 1-t*(O)
is a weighted sum of the random variables Er(w), say

(8.4) H,(v) =E E c(r, v, w)e (w).
r=O wEL

However, when v e L*,

(8.5) a F, [c(r, v, W)]2 = Vt(V) < V(V) < X;
r=O w(EL

and hence,

(8.6) E [c(r, v, w)]2 < x, v e L*.
r=O weL

The random variables Er(w) have zero mean and are independent. So, applying
Kolmogorov's three series theorem to (8.6), we deduce that

(8.7) H(v) = lim H*(v), v L*,

exists almost everywhere in the product probability space of the E's. The limit
in (7.36) exists in the same sense. We can, if we prefer, take (8.7) as a definition
of a serial harness.
The problem of specifying what possible distributions H(v) may have is an

interesting and probably rather difficult question. I formulate it Lelow but do
not answer it. Let K,(x) = log Eeixe denote the cumulant generating function
of the common distribution of the e's, and let KH(V)(x) be the corresponding cumu-
lant generation function of H(v). Then since

(8.8) H(v) = E [pT(w) - Pr(W -V)(W),
r=O weL

we have

(8.9) KH(V)(x) = E K{[pr(w) - p,(w - v)]x}.
r=O w(EL

Except in special cases, this will be an awkward expression to evaluate. Even
harder is the problem of determining whether functions Kf(x) and p(w) exist
such that KH(V)(x) has some prescribed form.
One particular case may, however, be answered completely. If each of the E's

is normally distributed, then H(v) is normally distributed, whatever the tran-
sition function p(v) may be. The converse is also true. If H*(v) = P + Q is
normally distributed with P and Q independent, then P and Q must be normally
distributed; and we can take, for any prescribed ro and w0,

(8.10) P = [Pro(Wo) - Pro(V - WO)]ero(WO),

(8.11) Q = H*(v) - ,

which shows that ern(wo) is normally distributed.
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There is, moreover, a property of the normal distribution which may be
relevant to harness theory, particularly in connection with the remarks on
extension of the Markovian concept in the next section. This property is ex-
hibited in the following theorem, which Professor E. Lukacs communicated to
me privately in a letter [6] in answer to a question about harnesses, and which
he has kindly allowed me to reproduce here.
THEOREM 8. Let z1 and z2 be two independently and identically distributed

random variables with zero mean and finite variance g2. If the conditional mean and
the conditional variance of zi - z2, given z1 + Z2, are both constant, then the common
distribution of z1 and Z2 is normal.
We have the conditional expectations

(8.12) E(zi -Z21Z1 + z2) = E(zi -Z2) = 0;

and hence,
(8.13) var(zi -z21zI + z2) = E[(zi -Z2)21Z1 + Z2] = E(zi -Z2)2 = 2a2.

Lukacs [7] has proved that if x and y are random variables with Ey finite, and
if E(yjx) = E(y) almost everywhere, then

(8.14) E(yeitx) = E(y)E(eitx)
for all real t. Applying (8.14) to (8.13) we get

(8.15) E[(z1 -Z2)2eit(Zl+Z2)] = 2af2E[eit(z1+Z2)] = 2a-2[ff(t)]2,
where

(8.16) f (t) = EeitzI = Eeitz2
is the characteristic function of the common distribution of z1 and Z2. Expanding
(8.15), we have

(8.17) 2a2[f(t)]2 = 2E[Z2 eitzl]-2E2[zieitzI]
since z, and Z2 have the same distribution and are independent.

Since
(8.18) f'(t) = iE(zjeitzl), f"(t) = -E(zleitzI),
we get

(8.19) f"(t) -[f'(t)]2 -a2[f(t)]2
Since f (t) $6 0 in some neighborhood of t = 0, we may there divide by [f(t)]2 to
obtain

(8.20) d 2f'(t)1] 2

Hence,

(8.21) f'(t)/f(t) =-2t
because E(z) = 0; and finally
(8.22) log f(t) = -U2t2/2.
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According to a theorem on analytic characteristic functions, due to R. P. Boas,
this solution can be continued so that it is valid for all real t, and accordingly,
z1 and Z2 are normally distributed.

9. Extensions of the Markovian concept

The problem of formulating an extension of the familiar Markov property to
a multidimensional situation has exercised mathematical statisticians for many
years, although very little progress has so far been made. I wish to make some
extremely tentative and speculative remarks about this. In the simplest one-
dimensional situation we have a sequence of random variables zl, Z2, - * * , such
that the distributional properties of Zn, Zn+l, * * * , given zI, Z2, *Z where
m < n, are the same as the distributional properties of Zn, zn+ ***n given Zm.
This is the ordinary Markov property. (It would not matter if the z's were
vectors: what is important is that the indexing variables m and n are one-
dimensional.) The problem is how to extend this concept to the situation when
the indexing variables m and n are multidimensional.

Consider, for simplicity, the case when the indexing variable is a vector v
belonging to a lattice L. The random variables are then of the form z,. Let A be
any arbitrary subset of L, and (in a sense to be defined presently) let B be the
boundary of A. We write A' for the complement of A with respect to L and
suppose that A' D B. Let vi, v2, * * *, Vk be any subset of lattice points all
belonging to A. Then we want the joint conditional distribution of z,, Z,, * * * Zy,
given zw for all w E A', to be the same as their joint conditional distribution,
given zw for all w E B. This is a possible and natural extension of the Markovian
concept to a multidimensional index v.
The system of harnesses introduced via (7.5) seems to satisfy this extension,

provided that we define B suitably. Given A, let us define B as the set of all
points w E A' such that w can be reached in one step from some point of A with
positive probability for walks governed by the transition law p(v). That is to say,
w E B if p(w - v) > 0 with some v E A and w e A': the v in question may
depend upon w. For example, if L is the square lattice and p(v) = 0 except for
transitions between nearest neighbors, then the boundary of A is the set of
points of A' which immediately surround A in the ordinary geometric sense.

Suppose now that we wish to define a random variable Y*(v) such that Y*(v)
has prescribed values on A', say Y*(v) = y(v) when v E A'. We proceed as in
(8.1), but with a slight modification. If v E A, we write WB(v) for a random walk
which starts at v and which terminates immediately after first leaving A, namely,
as soon as it reaches B. We then write

(9.1) S[WB(V)] = [_ E,(W,)] + Y(WB)
r

where wo = v, and w, are the successive points of A which WB(v) visits, and WB
is the terminal points of the walk in B. Then we take

(9.2) YB(v) = EwB(V)S[WB(v)]
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when the expectation is over all walks WB(v). We shall have
(9.3) yB(V) = [ , pB(w, V)er(W) + E fr(W, V)er(W)]

r wEA wEB

where p,'(w, v) is the probability that a walk starting at v visits w at the r-th
step without having previously left A, and ff(w, v) is the probability that a
walk starting at v first reaches B at the r-th step with w e B as the point of B
thus reached.

I have not yet had time to study properly systems such as (9.2) or (9.3), but
it seems plausible at first sight that they may provide some sort of mathematical
model for an extended Markovian concept. Levy [5] has some results.

In particular, suppose we are considering the simplest possible case, that of the
one-dimensional integer lattice and that A consists of a single point, say the
integer v. Then if p(1) = p(- 1) = 2, the boundary of A will be the two points
v - 1 and v + 1. For instance, we are given y(v - 1) = y-i and y(v + 1) = y+,
and we have to consider distributions for Y(v) = Yo, say. Write z1 = Yo -y-
and Z2 = Y+ -Y. Then z1 + Z2 is given and the distribution of Yo is entirely
determined by that of z1 -Z2- If the physical situation requires that the con-
ditional mean and variance of Y0 is constant, then, according to theorem 8, the
distribution of Y0 must be normal. The relevance of this remark to the general
question of an extended Markovian concept is not at all clear to me at this stage,
but I nevertheless hope it worth putting on record to provoke discussion.

10. Harnessed processes

We shall extend the treatment of section 8 to a more general specification
which allows us to discern certain relations between central and serial harnesses.
We proceed formally in order to fix attention on the underlying ideas: rigor
would be out of place at this early stage of the investigation.
We suppose, as before, that we are given a lattice L and a probability tran-

sition function p(v) defined for v E L. Let (Q, A, u.) be some probability space
with points X EQ. Let T: w -- Two denote some measure-preserving transfor-
mation on Q. With each point v c L we associate a sequence of random variables

(10.1) fo(v, co) = f(v, c), f7(v, o) = f(v, Trc), r = 1, 2, * - - .

We do not suppose that the fr(v, w) are independent. The complete set of all
f,(v, w) constitutes a stochastic process which we denote by F(L, c). Next we
define

(10.2) g(v, c) = fo(v, w) + E p(w - v)fr(W,(w).
r=1 wEL

Then g(v, w) satisfies
(10.3) g(v, c) = f(v, C.) + E p(v - w)g(w, Tw).

wEL

We may define the difference operators V2 and AT by means of

(10.4) vh(v, ) =-h(v, c) + E p(v - w)h(w, c.)
wEL
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and
(10.5) ATrh(v, w) = -h(v, w) + h(v, Tw).
(The operator V2 has sometimes been called the pedestrian operator because it
arises from a random walk. When L is hypercubical and the walk is the ordinary
P6lya walk, v2 reduces to the finite-difference analogue of the Laplacian oper-
ator.) In terms of these operators we can write

(10.6) f((V, ) + AT9(V, o) + vg(v, Tw) = 0.
Still more briefly we may write

(10.7) f + (AT+ T 0,

or

(10.8) f + ET,p9 = 0.
This equation may well have many solutions; but the solution (10.2), which is,

in a sense, its Neumann solution, is of special interest, and we denote it by

(10.9) ET,f (v, 7) E E p,(w - v)f (w, Trc.).
r=O wEL

Thus, ignoring all questions of convergence and existence, we have produced a
process

(10.10) (v,F(L, ) = {DTf(v,w)}.
We may call lT-'F(L, w) the harnessed process derived from the process F(L, c),
and consider ET as a harnessing operator.

If we choose f (v, w) = eo(v, w) all independent, and choose T so that all
f (v, Trw) are independent both over v and r, then we shall obtain the serial
harnesses

(10.11) H(v, w) = T-[f(v, w) - f(0, c)].

If, on the other hand, we choose f (v, w) = Eo(V, w) and take T to be the identity
transformation, (10.7) will reduce to
(10.12) f + V2g = 0,
and we shall be led to a central harness. We see, in effect, that the first-order
operator AT in (10.7) is producing some sort of damping of the kind sought in
section 6.

Clearly, the operator IT 1 offers plenty of scope for deriving a variety of new
processes. For example, we could consider harnessed harnesses D2T`H(v, w)'
and so on.

11. Conclusions

For the original metallurgical problem, the conclusions seem to be fairly satis-
factory. If our model is a three-dimensional serial harness, then the long-range
misorientation is bounded. With a three-dimensional one-sided harness, the long-
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range misorientation wvill oinly increase as the square root of the logarithm of the
distance, and, with the numbers involved in the physical situation, this function
increases so slowly as to be viirtually bounded. This finding agrees with physical
expectationis, according to which there can only be long-range misorientation if
some phenomenon (such as a large angle grain boundary) occurs which is much
more drastic than small local variations between neighboring domains.
From the point of view of statistical theory, this paper is exploratory, tenta-

tive, and doubtless suffers from prolixity and muddled thiniking. But the general
problems considered, rather than the methods here used to approach them, are of
considerable importance, and I hope that this paper will encourage others to work
in this field. Very little is so far known about statistical theory in more than one
dimension. Only a handful of problems has been brought to successful solution
(of which perhaps the two most celebrated solutions are Onsager's solution of the
two dimensional Isinig problem with p = q = 2, anid the Fisher-Kasteleyn-
Temperley solution of the two-dimenisionlal dimer problem).
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