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1. Introduction

It is proved here that at sufficiently low temperatures, a phase transition
occurs in the model of a lattice gas with pairwise interaction of the particles,
if a constraint, meaning roughly that the negative part of the potential in some
sense "outweighs" its positive part, is imposed on the interaction potential;
or if the potential is nonzero, nonpositive, and decreases sufficiently rapidly at
infinity. The proof is based on a further development of the method introduced
independently by the author in [1], [2] for the proof of the existence of a phase
transition in the Ising model of a lattice gas, and by Griffiths [3] for the solution
of a similar problem. Using the same method, Berezin and Sinai [4] proved
the existence of a phase transition in models of a lattice gas with a nonpositive
finite potential, which is negative in the segment [0, R].

All the constructions presented below are carried out analogously for lattices
of any dimensionality greater than one (as is known, there are no phase tran-
sitions in one-dimensional lattices). For greater clarity, we carry out the reason-
ing for two-dimensional lattices (the generalization to higher dimensions is
described in detail in [2]).
Let Vt be a square with side t in a two-dimensional square lattice, that is, the

set of points X = (xl, x2), xi = 1, 2, * * *, t; i = 1, 2. We shall call the subset
a = (X1, - * *, XN) of N elements of Ve the arrangement of N particles in the
square Vt. We denote the set of all such arrangements by CON,e. For clarity, we
shall often interpret Vt as a square piece of graph paper with unit square cells
by assigning to the point of the lattice a cell whose center is this point. The
arrangement a is thereby interpreted as a way of choosing N of the P cells in
Vt, which are declared filled, while the rest, including the cells outside Vt, are
empty. The potential will be a function U(Y) defined in the set R of all integer,
two-dimensional vectors Y, except zero, and depending only on the length IYI
of the vector Y. (The results extend almost without change to the case in which
U(Y) can depend on the direction of Y.) The number

(1.1) Z(N, t T) = TEexp1 U(Xi -X(}
is called the statistical sum. The constant T > 0 is the gas temperature. Suppose
that
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(1.2) IU(Y)I < ClY[-2-E
for some C < X and some e > 0. Under the assumption that the number of
particles Ni depends on 4 and that

(1.3) li = 1 < v <

(v is called the specific volume, and X is the particle density), there exists a finite
limit

(1.4) f(v, T) = lim -log Z(Nj, I, T)

where f(v, T) is a convex, continuous function of v for any fixed T. The proof of
the analogous fact for a continuous model (see [5]) carries over literally to the
lattice case considered here. It has been shown in [5] that although condition
(1.2) may be weakened slightly, it is impossible to set E = 0 in it.
The segment [vl, V2], v1 < v2 is called a phase-transition segment for some fixed

T if f(v, T) is for this T, a linear function of v for v, < v < v2. Physically this
means that the gas pressure, equal to T(df(v, t)/Ov), and its chemical potential
T(v(df(v, T)/Ov) - f(v, T)) are constant in the phase-transition segment.
THEOREM. Let Ei, i = 1, 2, 3, 4, be integer vectors of unit length and let

D C R be the set of vectors Y such that U(Y) > 0. Let 5 be the complement of 5D.
Assume that the following conditions are satisfied: (1) either the inequality

(1.5) L (IYI + 1) U(Y)

4 _max (U(Y), U(Y + El), * ,U(Y + E4))
YE5,Y+EiE5,*,Y+E4E.

holds, or D is empty and U(Y) is not identically zero; and (2) there exist constants
C < X and e> 0 such that

(1.6) IU(Y)l < CYK-4-e.
Then there exists a T., > 0 such that for T < Tcr there is a nonempty phase-
transition segment [vl', V2T]. As T -O 0 the limits of the segment are v- 1, V2Too-

(In the three-dimensional case, it is necessary to replace 4 by 6 in (1.6), and
the factor 4 by I in (1.5).)
Let us note that for condition (1.5) of the theorem to be satisfied it is suffi-

cient that the set O lie in a circle of radius Ro, that the inequality
(1.7) U(Y) <-B, B > 0, R1<IYI < R2

be satisfied in the segment [R1, R2], and that

(1.8) (Ro + 2)3 max U(Y) < IB[(R2 - 3)2 - (R1 + 3)2].
This follows from the fact that 7(Ro + 2)2 and 7r[(R2- 3)2 - (R1 + 3)2] are,
respectively, upper and lower bounds for the number of integer vectors in the
circle of radius Ro and in the annulus between the circles of radii R, + 1 and
R2- 1. Therefore, condition (1.5) is an explicit form of the assumption that
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the negative part of the potential "outweighs" the positive part. The specific
form of this condition is associated mainly with the method of proof proposed
here, and it has no independent physical meaning. Even without introducing
new ideas into the arguments it could be weakened somewhat, but at the expense
of complicating its formulation. On the other hand, there are intuitive grounds
for considering that some condition of a similar type is necessary for the exist-
ence of the phase transition of the kind considered here,. As regards condition
(1.6), it is not different in principle from the optimum condition (1.2), and is
introduced to facilitate the proofs.
We shall not give estimates for Tc, and v1, vT, which could be obtained by

retracing the subsequent proofs since they would be very rough for nowhere in
the course of the arguments did the question of their refinement arise. Only one
among all the physical constants associated with the phase transition was cal-
culated. We shall show that the chemical potential at the phase-transition
point is equal to the value it, given by
(1.9) = 2 E U(Y).

YER

The series giving the right side of this equality will converge because of the
inequality (1.6).

2. A probabilistic lemma

Let Vt = U O=OVN,t be the set of arrangements having arbitrary numbers
of particles in Vt. It will later be convenient to consider the arrangement a E V
as a function Gy, where the argument Y runs over all possible two-dimensional
integer vectors, and the value Gy = 1 is taken, if a particle is at a point cor-
responding to Y (the corresponding cell is filled), and Gy = 0 if no particle is
there (the corresponding cell is empty; all the cells outside Vt are empty).
Let N(a), a E Vt denote the number of particles for the arrangement a (the
number of filled cells).

Let us now introduce the function
(2.1) W(a) = -4 E U(Y1 - Y2).

GYi=l,GY2=0

(The summation in (2.1) extends over the set of pairs of cells, one of which is
occupied, and the other is empty.) Evidently, for a = (Gy, Y E R) = (X1,

, XN),
(2.2) W(a) = -2 E U(Y1- Y2) +2 U(Y1- Y2)

GYi=1,Y26YI GYi=1,GY2=1,Y20Y1

I-,N(a) + L U(Xi- Xj).
i<j

Finally, let us consider the probability distribution in Vt given for S C Ot by
the formula

(2.3) Prt {S} = Q(t)-L exp { W(a)A
aeIx WT a)
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with the normalizing factor

(2.4) Q(4) = exp {- W(a)}
a(EVt _T

(The dependence of Q(t) on T will not be indicated explicitly in this notation.)
In conformity with (2.2), the distribution (2.3) may be interpreted in physical
language as the distribution in a large canonical ensemble with the chemical
potential ,.
LEMMA 1. In order that a nonempty phase-transition segment with chemical

potential u, given by (1.9), exist for some T, it is sufficient that for some a > 0,
y > 0 and all sufficiently large t,

(2.5) Pre N(a) 21 >

The segment [(2 + 6)-', (- 6)-1] is in this case a phase-transition segment.
The proof presented below also shows that the necessary and sufficient condi-

tion for a phase transition with chemical potential ,u is that the left side in (2.5)
should not approach zero exponentially rapidly as t -- oo.
PROOF. It follows from (2.2), (2.3), and (2.4) that

N{
a
2 } () 2(2.6) Pr{ N(a > SI = (N_ Q(N, t) ( F0Q(N, f))'4 IN-t2l >612 N=0

where

(2.7) Q(N,4) = Z(N, t, T) exp { N} N(W)=N (a)}

Furthermore, taking into account condition (1.3), we deduce from (1.4) that

(2.8) lim 1 log Q(Nt, 4) = + Xf (A T) g(, T).
I-

2 lo (N,e - + Xf
From the fact that f(v, T) is a convex continuous function of v, it follows that

g(X, T) is a convex continuous function of X (this can be proved, for instance,
by differentiation). Moreover, let us show that

(2.9) g(I - 6, T) = g(I + 6, T).
Indeed, let us consider the arrangement a E cUt, which is obtained from the

arrangement a E te if the empty cells in Vt are replaced by filled cells, and the
filled cells by empty cells (the cells outside VI do not change). With this defini-
tion one can write (see (2.1))

(2.10) W(a) - W(a)

2+2 U(Y1-Y2)-22 U(Yl-Y2).
Gy,=O,Y2eVe,YcEVt Gyi=1,Y2( Vt

Because of the absolute convergence of the series (1.9), for any E> 0 there
exists an R < - such that as soon as the distance from Y, to the boundary of
the square VI exceeds R, then 12 FY2Vt IU(Yl - Y2)1 < e. It follows that as
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-* oo the difference W(-) - W(a) is of the order of magnitude o(42) uniformly
in a. Finally, since the correspondence between a and - is one-to-one, and since
N(a) = -' N(a), then, according to (2.7),
(2.11) Q(N, 4) = QQ(42- N, 4) exp {o((P)}
from which (2.9) follows.

Using the estimates
max Q(N, 4) < ,I Q(N,4) < 4 max Q(N, 4),

IN-It2I > 2 [N-Jo21 >3o2 IN- jt2 >Bt2

(2.12) Q(N,4) < Ci2 exp{N E IU(Y)I}

< (N) 4N exp {2 E IU(Y).I< exp{62 sp(N/t2)}

where sp(x) -*0 as x -O0, and the inequality g(X, T) 2 0 we find from (2.6)
and (2.7) that

(2.13) lim 1log Pre { 2IN>a-
-max g(X, T) - max gX )=g )-g)
IX-lj>9 O<X<l

The convexity and symmetry of g(X, T) are used in the last equality. Since it
follows from (2.5) that the right side in (2.13) is zero, then under the conditions
of the lemma, g(X, T) is constant in the segment [-6, 2 + 6]. It now follows
from (2.8) that for v E [(2 + 6)-', ( -6)-1]

(2.14) f(v, T) = vg (- T)-T

and the statement of the lemma now follows from the definition of the phase
transition and the chemical potential.
Lemma 1 is due to Berezin and Sinai [4]; however, the proof they proposed

is more complicated than the one presented above. This lemma reduces the
question of the phase transition to the question of "violation of the law of
large numbers" in a large canonical ensemble (inequality (2.5)). The purpose
of Griffiths' work [3] was the deduction of the fact that for sufficiently large T
and 4 the mean value of N(a)/e2 is less than I - 6, from which (2.5) certainly
results. In [2] the author used a stronger condition of the same kind rather
than the equality (2.5) as the sufficient condition for a phase transition, and
this led to the introduction of complicated constructions now shown to be
unnecessary. However, they appear to have independent interest.

3. The tree of connected components

Let us take some number M > 0, whose exact value will be chosen below.
Without restricting the generality, we may consider only values of t which are
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multiples of M. With this choice of M the square Ve is divided into (t/M)2
subsquares containing M2 cells each. We call these subsquares boxes.

Moreover, let us consider a fixed arrangement a in Vt. Let us call a box a
box with filler (respectively, a box with emptiness) if it contains at least one filled
(respectively empty) cell. Each box is either with emptiness or with filler, but
these two possibilities are not exclusive. The boxes outside Vt are boxes with
emptiness, but without filler. We call two boxes contiguous if they have a common
side or vertex. Call path a finite sequence of boxes in which the adjoining boxes
in the sequence are contiguous. A subset of boxes such that for any two boxes
of the subset there is from one to the other a path composed of boxes of this
subset will be called a connected set. A set of boxes with a filler decomposes
uniquely into connected components which we call components of boxes with a
filler. Components of boxes with emptiness are defined analogously. Among the
components there is exactly one component of boxes with emptiness which
contains the exterior of Vt. It will be called the initial component. We call two
components contiguous if they contain a common box or two contiguous boxes.
Evidently only a component with filler and a component with emptiness may
be contiguous.
LEMMA 2. If the components are interpreted as the vertices of a graph, and

the contiguous components are connected by links, then this graph turns out to be
a tree, that is, the graph has no cycles. Its vertex is the initial component.
PROOF. Geometrically it is evident that to each finite connected set of boxes

there corresponds uniquely a closed broken line which does not reintersect
itself (double return to one vertex is permitted) and is such that the whole set
lies within this broken line, with a box from the set on the inside of each link
and a box from the complement on the outside of the link. We will call such a
broken line associated with a component the envelope of the component. Only
the initial component has no envelope. Let a component A, for definiteness be
a component with filler. Then all the boxes adjoining its envelope from outside
its links will belong to the same component with emptiness. They may be con-
nected by a path along the envelope. We denote this component by A and we
call it the enclosure of the component A. Evidently A is contiguous to A. We call
the component B external (correspondingly internal) to A if it is not an enclosure
of A and consists only of boxes external (internal) with respect to the envelope
of A. Let us show that there are only four possibilities.
Component B may be either an enclosure, or external, or internal to A, or

may coincide with A. In fact, since any path of boxes connecting the boxes
within and without the envelope "intersects" the envelope, and hence, has
common boxes with A and A, then component B, which is not external or
internal, coincides with A or A. Moreover, let us show that if the component A
is contiguous to another component B, then either A is the enclosure of B or
B is the enclosure of A. Indeed, let us note that if one component is external
to another, these components may not be contiguous. Hence, if the statement
were not true, then A would turn out to be a component internal for B, and B
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would be internal for A. Then these two different componeilts would have a
common envelope, which is impossible.
Turning directly to the proof of the lemma, let us assume that there is a

sequence of components A1, A2, * - , A,, = A1 such that Ai is contiguous to
Ai+,. Since for each component there is only one component which is the en-
closure of it, either each next component in this sequence is the enclosure of
the preceding, or conversely, each preceding component is the enclosure of the
next. But evidently if A is the enclosure of B, then the envelope of B will lie
within the envelope for A. And if the statement of the lemma were false, we
would have a cyclic sequence of plane broken lines lying within each other,
which is impossible according to topological considerations. Since only the
initial component has no envelope, it is the vertex of the tree.

Let us call the subset of boxes from A, which are also boxes from B or are
contiguous to boxes from B, the boundary between components A and B.
LEMMA 3. For any components A and B the boundary between A and B is a

connected set of boxes.
PROOF. Since the boundary is empty for noncontiguous components, then

without limiting the generality it may be assumed that A is a component with
filler, and B is a component with emptiness. Let a and d be arbitrary boxes
from A on the boundary with B. Let b and b be boxes from B contiguous to a
and a, respectively. There exists a path a from a to a, which lies in A, and a
path ,B from B to I, lying in B, since the components A and B are connected.
It is necessary to construct a path y from a to a, which will lie on the boundary
between A and B. We shall later interpret the path as a broken line whose
links connect the centers of adjacent boxes of the path. Since the path oy may
be constructed successively from one point of intersection of the paths a and ,
to their next point of intersection, then we assume without restricting the
generality, that the paths a and # do not intersect (except possibly at the
endpoints). Appending segments connecting a to b and a to b to a and ,3, we
obtain a closed contour within which a set of boxes C lies. The intersection
A n C decomposes into connected components, one of which A abuts on the
path a. The envelope of I (defined in exactly the same way as the envelope of
the component in the proof of lemma 2) consists of -y and of a second path a
which also goes from a to a. A path going from b to b can be drawn along the
boxes with emptiness adjacent to the boxes from S. Hence, these adjacent
boxes belong to B. This means that the boxes in a lie on the boundary between
A and B, and a is the desired path.

4. A bound on the number of ways of producing a given arrangement

Let us number the boxes from VI in some way by numbers 1, ... , (W/M)2.
Let us ascribe to each component, except the initial component, a number
equal to the smallest of the numbers of the boxes of the outside boundary of
this component. The numbers may take the values 1, - , (W/M)2, but not all
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of them correspond to a component. We shall consider that each filled cell from
Vt belongs to a component of boxes with filler, which contains the box in which
this cell lies. We proceed analogously with the empty cells. Let us designate
the component B as upper relative to the component A if the path of components
from B along branches of the tree to the vertex of the tree does not pass through
A. All the remaining components (including component A itself) will be called
lower relative to A. Define a mapping Ti(a), i = 1, *--, (e/M)2 transforming
all the arrangements VCU into 0e as follows. If there are no components with
number i in the arrangement a, then Ti(a) = a. If Ai is the component with
number i in the arrangement a, then in constructing Ti(a) by means of a for
all cells belonging to the components of the arrangement a which are lower
relative to Ai, the filled cells are replaced by the empty cells, and the empty
by the filled; the cells of components which are upper relative to Ai remain
unchanged.

Let us designate the boundary with the adjacent upper component as the
upper boundary of the component Ai. Let Ki(a) be the number of boxes belonging
to the upper boundary of the component. The component Ai does not exist, let
Ki(a) = 0.
LEMMA 4. There exists a constant D < - such that for any i = 1, ***, (i/m)2

and any a e cUe the number of arrangements a E "Ut such that Ti(a) = Ti(a), does
not exceed DKi(a)
PROOF. Let us prove, first, that the quantity of different connected sets of

K boxes which have a common box does not exceed 7K. Indeed, each box has
eight sides and vertices which we number 1, - * *, 8. Furthermore, let us intro-
duce the following method of numbering boxes of any of the sets under con-
sideration by the numbers 1, 2, * - *, K. If the numbers 1, * * *, i have already
been ascribed to boxes, we then select the least, in number, of the numbered
boxes to whose side or vertex a still unnumbered box of the set adjoins; we
select that one of these adjoining unnumbered boxes which adjoins the side
or the vertex with the least number and we ascribe the number i + 1 to this
chosen box. By virtue of connectedness, any box of the set receives a number.
Let us note now that even if the set were not known in advance, the numbering
possibilities at each step of our algarithm, except the first and second, will not
be greater than the seven possibilities of selecting the box next in number;
at the second step it will be eight, and at the first, one. Hence, it also follows
that the number of sets considered is not greater than 8 - 7K-2 < 7K.
Having fixed the arrangement a and the component A ,, let us call a box

upper if it belongs to a component which is upper relative to Ai. We define a
lower box analogously. If the box belongs to two components at once, then
these components are adjacent. Hence, only boxes of the outer boundary of A
may be simultaneously upper and lower; that is, boxes are classified in three
groups: upper, lower, and belonging to the outer boundary. The mapping Ti(a)
may now be described thusly: the arrangement in the upper boxes remains
unchanged; the filled cells in the lower boxes are replaced by empty ones, and
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the empty ones by filled; the box of the outer boundary becomes entirely
empty if Ai is a component of boxes with filler, and becomes entirely filled if
Ai is a component of boxes with emptiness. Furthermore, it may be asserted
that a box is upper if and only if from any other upper box there exists leading
to it a path which does not also pass through the outer boundary of A j. This
easily follows from the fact that a path along the tree of components passing
successively over the components to which these boxes belong may be associated
with any other along the boxes; and conversely, for any path along the tree of
components it is possible to construct a path along the boxes which will run
through the boxes of these components in sequence.
From the description just given of upper boxes it results that their set is

uniquely determined, for given a and Ai, if the boxes of the outer boundary are
specified. Therefore, the total number of different methods of classifying all the
boxes into upper, lower, and boxes of the outer boundary equals the number
of methods of selecting boxes of the outer boundary; and this number, by
virtue of lemma 3 on the connectedness of the boundary and the estimate
given above, does not exceed 7Ki(a) (for all a the components of Ai have a com-
mon box with number i). Knowing which boxes are upper and which are lower
for the arrangement a, we may reproduce the arrangement in these boxes by
means of Ti(a). Since the arrangement in any box may be given by 2M2 different
methods, the number of different ways of reproducing the arrangement a in the
boxes of the outer boundary of Ai by means of Ti(a) is 2M2Ki(a), and we obtain
that the total number of methods of reproducing a by means of Ti(a) does not
exceed (7.2M2)Ki(a), and lemma 4- is proved for D = 7.2m'.

5. An estimate of the function W(a)

Let us call the potential U(Y) nonperiodic if there exists a finite sequence of
vectors F1, * * *, Ym such that U(TO) s 0, i = 1, * , m, and F1 = Y2 +

.** + Fm = E, where E is the unit vector.
LEMMA 5. If inequality (1.5) is true or if the potential U(Y) is a nonpositive,

nonperiodic potential, and if, in addition (1.6) is true, then one may choose the
length M of the side of the box in such a way that there is a constant d > 0 such
that for any a E OC1, i = 1, . .. , (t/M)2, the inequality

(5.1) W(a) - W(Ti(a)) 2 dKi(a)
holds.
PROOF. In conformity with definition (2.1) and the definition of the trans-

formation Ti(a), either the term -2 U(Y1 - Y2) enters simultaneously in both
the sums defining W(a) and W(Ti(a)), or it does not enter in either of these
sums if both cells Y1, Y2, belong to the upper component relative to Ai or both
belong to the lower component relative to Ai. On the other hand, let one of the
cells Y1, Y2 belong to the upper and the other to the lower component. If one
of these cells is filled, and the other is empty, then -2 U(Y1 - Y2) enters into
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the sum for a, but it does not enter into the sum for Ti(a). Conversely, if both
these cells are filled or both are empty, then -2 U(Y1 - Y2) does not enter
into the sum for a, but it enters into the sum for Ti(a). Hence, if F is the set
of upper and P the set of lower cells, then

(5.2) W(a) - W(Ti(a)) = 2 E 'YY,Y2 U(y1 - Y2)
Y1EF, Y2EF

where yy,,y, =-1, if one of the cells Y1, Y2 is filled and the other is empty,
and yy1,y, = 1 otherwise.

Later we shall consider several particular cases in turn. Let us assume first
that U(Y) is a nonperiodic, nonpositive, finite potential (that is, U vanishes for
IYI > R, R < Xo). Let us select M so that M > R and so that all the terms Yi
and all the partial sums Y1 + Y2 + * * + Yi, i = 1, * * *, m in the sequence
defining the nonperiodicity of the potential, are less than M in absolute value.
Let us note first that because of the finiteness condition U(Y1-Y2) wd 0 only
if Y1 and Y2 belong to the same or adjoining boxes. But if both cells Y, and Y2
are empty here, or both are filled, then they belong to the same component
and the corresponding term does not enter into (5.2). This means there are no
terms with yy,,y, = 1 in (5.2), and W(a) > W(Ti(a)) in the case under con-
sideration. In order to give a more exact estimate of the type (5.1), let us note
that if some box belongs to the outer boundary of Ai, that is, the boundary of
Ai with the component A which is upper and adjacent to Ai, then there is a
cell Y appearing in Ai which is in this box or in the adjacent box belonging to
the outer boundary, such that the cell Y + E (where E is any unit vector)
belongs to T. Indeed, this is obvious if the box b belongs to Ai and A simul-
taneously, and hence contains both the cells entering in Ai and those entering
in Z Therefore, this is true even if one of the adjacent boxes b belongs to Ai
and A simultaneously. Finally, if the box b belongs only to Ai, and the adjacent
boxes only to X, then the cells abutting on the sides of the box b possess the
required property. Furthermore, let Y belong to Ai and Y + E to N. Let us
consider the sequence of cells Y, Y + Yl, * *, Y + Y, + - * + Ym+ Y + E.
In conformity with the selection of M, the neighboring terms of this sequence
Y + YF + * * * + Yi and Y + Y, + * * * + Yi+i belong to the same or adjacent
boxes and thus, to the same or adjacent components. Hence, for some io the
cell Y + YF + * * * + Yi, belongs to Ai, and the cell Y + Y1+ * * * + Yi+i
belongs to N. This yields the contribution -I U(Y1i,+) > 0 to the sum (5.2).
By virtue of the selection of M the cell Y + Y, + * + Yio belongs to the
box adjacent to that to which Y belongs. Hence, for any box of the outer boun-
dary, we have found a cell Y, (this is the cell Y + F, + * * + Fio), which lies
in a box adjacent to the box adjacent to the initial box so that there is a com-
ponent with the Y, in the sum (5.2) which is greater than - I maxi.i,..
U(Fi). Since the set consisting of the initial box, the boxes adjacent to it, and
the boxes adjacent to the adjacent box, contains 25 boxes, then a cell Y1 will be
contained in one of each of the 25 boxes of the outer boundary which will yield
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a contribution not less than - maxi=, ...,m U(Vi) to the sum (5.2), and we
have proved (5.1) for
(5.3) d max U(ii).

Moreover, let us again assume that the potential is nonperiodic, and non-
positive, but let us demand, instead of finiteness, only compliance with inequal-
ity (1.6). We select the side of the box M such that, as before, first Yil and
Irii + * * * + Y,i, i = 1, . .. , m do not exceed M. The second constraint on M,
which replaces the requirement M > R, will be mentioned below. The same
reasoning as was presented earlier for the finite potential shows that

(5.4) y2 E y,,Y, U(Y1 - Y2) 2 d Ki(a);
YiFi,Y2EF,zlY2=Y-1

however, it is now impossible to state that the members with yy,,Y, = 1 are zero,
and the sum of these negative members must now also be bounded from below.
Let us introduce the following auxiliary concept. We shall call the pair of cells
YI, Y2 associated with the box b, if the box b lies between the horizontal on which
Y, lies and the horizontal on which Y2 lies, and the vertical on which Y1 lies
passes through the box b, or if the same property is true if Y2 replaces Y, and Y,
replaces Y2, or the verticals by the horizontals, and the horizontals by the
verticals. Let us show that for any arrangement a and any cells Y, E F, Y2 E F
such that -YY1,Y2 = 1, the pair of cells Y1, Y2 is associated with one of the boxes
of the outer boundary of the considered component of the arrangement Ai,
or with one of the boxes adjacent to the boxes of this outer boundary. Indeed,
two filled or two empty cells belonging to different components may not belong
to the same or to adjacent boxes. Therefore, Y, and Y2 belong to different non-
adjacent boxes. Let us draw a path along the boxes from the box in which Y1
appears to the box in which Y2 appears so that this path proceeds first along a
horizontal and then along a vertical. On this path there is at least one box of
the outer boundary, since if the initial and final boxes of the path are not boxes
of the outer boundary, then this path will be a path from the upper to the lower
boxes, and the required fact was noted in the proof of lemma 4. If this box of
the outer boundary is not at the beginning, at the end, or on a turn of the path,
it is the desired box. If this is not so, then one of the adjacent boxes of the path
is the desired box.

Let us now estimate the sum

(5.5) S = 2 E U(Y1-Y2)
over all pairs of cells Y, and Y2 associated with the fixed box b. To do this, let
us note that if 5)r is the set of all cells on the horizontal a distance r from the
cell Y, then in conformity with (1.6),
(5.6) HI = 12 ~ U(11 - ) < AC y11- -4+E

= IC (k2 + r2)-(2+1/2e)
k=-x
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Replacing this series by an improper integral, it is easy to establish that for
some Z <co

(5.7) H7 < 7r-(3+e)-
There are r - M pairs of horizontals, spaced a distance r apart, the first of
which will be above, and the second below the box with side M. It follows that

(5.8) ISI < 4 _ M(r - M)H, < 4ZiM E (r -M)r-(3+)
r=M+l r=M+l

< 4ZM r-(2+,) < CM-c
r=M+l

where C < oo is a certain constant. Since the total number of boxes of the
outer boundary or of the adjacent ones does not exceed 9Ki(a), it results from
(5.8) that

(5.9) ,2_ yE y,,Y, U(Y1 - Y2)1 < 9CKi(a)M-e.
YiEF,Y2E=F,ty,,y,=1

Having selected the length of the side of the box M sufficiently large, we may
insure that the sum (5.9) does not exceed I dKi(a) (let us notV that by virtue of
the definition (5.3) the value of d is independent of the selection of M), and
hence, the statement of lemma 5 results from (5.9) and (5.4) in the case now
under consideration.

Let us now assume that condition (1.5) is satisfied and the potential is finite,
that is, U(Y) = 0 for IY7 > R. Then, exactly as in the case of a nonpositive
finite potential, by selectingM > R we obtain that U(Y1- Y2) = 0 for 'yy,,y, =
1, and we must estimate only the sum of the terms with yy,,y, = -1. Let us
call singular a cell of the arrangement a which belongs to a component Ai and
is such that one of the four neighboring cells along the horizontal and vertical
belong to the component A which is upper for Ai and adjacent to Ai. Let Li(a)
be the number of such singular cells. Since there is a singular cell for each box
of the outer boundary in this or an adjacent box, then

(5.10) Li(a) > 'Ki(a).
Let Y1 e Ai be a singular cell and Yo + E, where E is the unit vector, a cell of
the component T. For any Y with absolute value Y1 < R the cell Yo + Y
belongs either to a component As or T. This means that either yYo,,Yo+Y = -1
or yyo+E,Yo+Y = -1. Hence, if Gy, is the set of cells Yo and the four cells abut-
ting on the sides of Y0, then

(5.11) E' YYI,Y2 U(Y1- Y2)
> L max (U(Y), U(Y + E1), *- , U(Y + E4))

YeID,YEE2E5,Y+E.. 5)

where the F_' is taken over pairs of cells Yi, Y2 such that Y17 E F, Y2 c F,
U(yl - Y2) < 0 and either Y1 or Y2 enters into Gy0. Since the same cell may
belong to Gye for not more than the four singular cells of Yo, then
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(5.12) 2 _ EYY,Y, U(Y1 - Y2)
YlEF,Y2eF,U(Yl- Y2) <0

Li(a) ( _ max (U(Y), U(Y + E1), U(Y + E4)
7 YeD, Y+EZe5D,** *,Y+EGeD

In order to estimate the sum of the members with U(Y1 - Y2) > 0, let us
introduce the following concept. Let us say that the pair of cells Yi, Y2 are
associated with the cell Y0 if Y, lies on the same horizontal as Yo, and the
vertical on which Y0 lies passes between the verticals on which Y1 and Y2 lie,
or coincides with one of these verticals, or, if the same is true when Y, is re-
placed by Y2 and Y2 by Y1 or the verticals by the horizontals and the horizontals
by the verticals. Let us note that if Y, E Ai, Y2 e X and Y, - Y21 < M, then
the pair Y1, Y2 is associated with some singular cell. In fact, the path along the
cells from Y, to Y2 which first passes along the horizontal on which Y, lies and
then along the vertical on which Y2 lies will contain only cells of the components
X and Ai, and hence will contain at least one singular cell which will be the
desired one. Let us note now that if the vector Y has the components xi, x2,
then for any cell Yo there will be lx11 + 1x21 + 1 pairs of cells Y1, Y2 such that
Y,-Y2 = Yo and the pair of cells Yi, Y2 will be associated with this cell Yo
(there are here Ix2l + 1 ways of setting Y, on the vertical on which Yo lies,
with one pair in common, arising when Y, coincides with Y0). It follows that
for Y = (xI, x2)
(5.13) " U(Y1 - Y2) < yE (lxii + 1x21 + 1) U(Y)

U(Y) >0

where the sum " is taken over all pairs of cells Y,, Y2 such that U(Y1 - Y2) >
0 and the pair of cells Yi, Y2 is associated with the cell Y0. Taking into account
that lxiI + IX21 + 1 < 2(IYI + 1) and that any pair of cells Y, E F, Y2 e F, for
which U(Y1 - Y2) > 0 is associated with some singular cell, we deduce from
(5.13) that

(5.14) 2 _ E YY,Y U(Y1 - Y2)
YiEF,Y2EF,U(Y -Y2) >O0

2-Li(a) L- (I|Y| + 1) U(Y).
U(Y) >0

(The factor a on the right side occurs because U(Y1 - Y2) and U(Y2 - Yl)
entered separately into the right side of (5.13).) From (5.14) and (5.12) and
(5.10) it follows that

(5.15) 2 E U(Y1 - Y2)
YiEF,Y2EF

lo [ U(Y) >° )U 4 y _
D,Y E~E-5-YEE

max (U(Y), U(Y + El), * , U(Y + E4))],

and since by virtue of the condition (1.5) of the theorem the quantity in the
square brackets is positive, then statement (5.1) follows from (5.15).
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The extension to the case when (1.5) is true but the finiteness condition is
replaced by condition (1.6) is carried out exactly as for the nonpositive poten-
tials. It is only necessary to choose M so large that if the summation in the
square brackets will turn out to be greater than 90CM-c (see (5.9)).

6. Conclusion of the proof of the theorem

In this section lemma 6 will be proved. From a comparison of this lemma
with lemma 1 the fundamental theorem formulated at the beginning will
quickly follow.
LEMMA 6. If conditions (1) and (2) of the theorem are satisfied, then for any

2<2 there exists a Ta such that for T < Ta, some y > 0 and all t

(6.1) Pre{ (2a) < ->6}>> 0.

PROOF. Let us first assume that the assumptions of lemma 5 are true. Using
lemmas 4 and 5, we find that

(6.2) exp{T W(a)} <K,(a=K exp { TW(Ti(a)) exp { Td}
< {_ddKK exp){- 1W{(b)}P b: Ti(a) =b,K,(a) =K _T

<exp K (d - log Q(t).

(See (2.4) for the definition of Q(f).) Finally, we deduce from (2.3) that

(6.3) Prt{Ki(a) = K} < exp -K (+4 - lg)

Let us note now that each component, except the first, lies within its envelop-
ing broken line (see the proof of lemma 2), and since this enveloping broken
line goes along the sides of boxes of the outer boundary, the length of the envel-
oping contour of the components of Ai does not exceed 4MKi(a). But by the
isoperimetric inequality, the area within a contour of length L does not exceed
(47r)-1 L2, from which it follows that the total number of cells in the component
Ai does not exceed C(Ki(a))2, where 6 is a constant independent of a and i.
Since any occupied cell belongs to some component of the arrangement which
is different from the initial component, then

(6.4) N (a) < C ) (Ki(a))2.

However, it follows from inequality (6.3) that for any 5 > 2, a Ta may be chosen
which is so small that for T < Ts the mathematical expectation
(6.5) M(Ki(a))2 < (2 -
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and from (6.4) it follows that for T < Ta the mathematical expectation
(6.6) M N(a) < (I -o)0
It follows that (6.1) is true.

It still remains to replace the assumptions of lemma 5 by the more general
assumptions of the theorem, that is, to replace the assumption of nonperiodic-
ity in the case of a nonpositive potential by the assumption that it is not iden-
tically zero. Let the potential be nonpositive, that is let the set 5o be empty.
Let us call the integral vectors Y1 and Y2 connected, if there exists a sequence of
integral vectors Y1, Y2, * * *, Ym such that U(Yi) < 0 and Y2 = Y, + Y2 +
... + Fm. Evidently, all the integral vectors decompose into nonintersecting
classes of mutually connected vectors. Let g be the length of the least vertical
vector which is the difference between two vectors of the same class. Then,
geometrically it is clear that there will be g2 classes in all, each of which is a
sublattice of the integral lattice. The case g = 1 will correspond to the case of a
nonperiodic potential. Let Nj(a), j = 1, * *, g2 be the number of filled cells
belonging to the j-th class. Then
(6.7) N(a) = Ni(a) + N2(a) + *-- + N.2(a).
The probability distribution, induced by the distribution (2.3), on the arrange-
ments of the cells in the class will again be given by a formula of the same kind,
and hence, all the constructions carried out for a nonperiodic potential go over,
in a trivial manner, to the case of arrangements in cells of a class, and hence we
obtain analogously to (6.6) that for some T < Ta

2

(6.8) M Nj(a) < (2-°6) 9-

The statement of the lemma for the case ulnder consideration follows from
(6.7) and (6.8).
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