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1. Summary

We characterize the sets of positive states and null states for nonsingular
Markov processes and, more generally, for positive contractions in L1. The set
P of positive states is an invariant set and carries all finite invariant measures
which are absolutely continuous with respect to a given measure ,u, the initial
distribution. The Cesaro averages of the "probabilities of being in B at time n"
converge to a positive limit for any subset B of P with ,.(B) > 0. The set N of
null states is a countable union of sets Xi with the property that the Cesaro
averages of the "probabilities of being in Xi" tend to 0 for each Xi. We further
generalize Hopf's decomposition of the state space into a conservative and
dissipative part by introducing monotonically decreasing weights, obtaining the
positive part P as a special "weighted conservative part" with divergent sum of
weights. As an application we derive an ergodic theorem with appropriate
weighted averages under conditions which do not imply the usual ergodic
theorem (corollary 2).

Different characterizations of the decomposition into P and N have been
described by Mrs. Dowker [7] (for point mappings) and by Neveu [20]. (See
also Neveu's paper of this Berkeley Symposium. I noticed the decomposition
independently, but later than Neveu. Also A. Hajian and Y. Ito have some
related (so far unpublished) results, which overlap with Neveu's present paper
and are based on his paper [20].) I am indebted to Professors D. Freedman,
Y. Ito, and W. Pruitt for some references.

2. Introduction

Let (X, i, ,u) be a measure space with ,u(X) = 1. All sets and functions intro-
duced are assumed to be measurable. Sets as well as functions are identified if
they coincide almost everywhere. Let T be a positive contraction in L1=
L1(X, 5, uA), that is, a linear operator in L1 with Tf> 0 for all 0 < f E L1, and
with 11 TIj = supjIfIj =1 11 Tf 11 < 1. By the Radon-Nikodym theorem, L1 is isomor-
phic to the Banach space ¢ of all signed measures so which are absolutely con-
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tinuous with respect to ,u: so <<,p. The contraction T induces in 4) an isomorphic
operator A defined by

(1) (Asp)(A) = I T(dp/ld) d/l, (P e 4))

Conversely, A may be given first and T defined by spf(A) = fA f du and Tf
dpy1/d,u. This is the case if A is given by a stochastic kernel P(x, A) by the
relation
(2) (A#p)(A) = fI P(x, A) d*p, (,p E 4), A e 9)

where P(x, A) is nonsingular, that is, ,(A) = 0 implies P(x, A) = 0.
Let Ac be the complement of A. Functionsf with Tf = f and measures so with

Aso = so are called invariant. A set I E 5F is called invariant if Tf = 0 on Ic for
any f > 0 with f = 0 on Ic, or, equivalently, if Apo(Ic) = 0 for any sp 2 0 with
P(IC) = 0.
Our main result will be derived from the following generalization of a theorem

of Y. Ito [15], which was obtained independently by Dean and Sucheston [6]
and by Neveu [20].
THEOREM A. The following conditions are equivalent:

(i) there exists a strictly positive invariant function f E L1;
(ii) infn A",p(A) > 0 for all A ff uwith ,u(A) > 0;
(iii) limnx {supj n-_E t0 A;+iu(A)} > 0 for all A E ff with p.(A) > 0.
Note that (i) is equivalent to the existence of a finite invariant measure so > 0

with u << so <K<,. For references concerning the existence of invariant measures
see [22], [15], [10], [16]. Some more conditions are described in a paper by
Hajian and Ito [9].
The following theorem is essentially due to Hopf [12].
THEOREM B. The space X is the disjoint union of two uniquely determined sets

C and D, respectively the conservative part and the dissipative part of X, such that
(i) for every f > 0, k5=o Tkf converges on D;
(ii) for every f 2 0, ,k=o Tkf diverges on {x: Ek=o Tkf > 0} n c;
(iii) C is invariant.
Chacon and Ornstein [4] proved the following theorem, which was conjectured

by Hopf. This author also gave a simplified proof later [12], [13].
THEOREM C. For every f E L1 and 0 < p s L1, the limit

n-1
E Tkf

(3) lim k = h(f, p)
E Tkp
k=0

exists and is finite on {x: F_k'=o Tkp > 0}.
Let XA be the characteristic function of A. Define Tc and TD by Tcf XeTf,

TDf = XDTf for f e L1. Then

(4) Rcf = xcf + Tc(xDf) + E TcTD(xDf)
k=i
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defines a positive contraction. Chacon [2], [3] proved the following theorem.
THEOREM D. The invariant subsets of Cform a c-field 3. For every 0 < p e L1,
(i) the function h(f, p) * p is integrable;

(ii) the equality h(f, p) = h(Rcf, Rcp) = E(Rcf13)/E(Rcpl3) holds on C n
{x: E_k =o Tkp > 0}.

3. The positive part and the null part of X

For 0 < f e L1 with Tf = f, let P(f) = {f > O}. It is easy to see that there
is a maximal set P among the sets P(f). We will obtain P by a different approach
and characterize P in probabilistic terms.
THEOREM 1. The space X is the disjoint union of two uniquely determined sets

P and N, respectively the positive part and the null part of X, such that
(i) P is an invariant subset of C;
(ii) there exists an invariant 0 < f E L1 which is strictly positive in P;
(iii) for any op E 4( and A e 5F, the limit

n-i
(5) lim n-' E Akp(A n P) = X,(A)

n-x k=O

exists (X, E (D is invariant). Let f = d.p/d,u; then we have

(6) X),(A) = fA n p fE(Rcf 13)E(?13)-1 d..

Thus, if f > 0 and fAnPf dM > 0, then Xq,(A) > 0;
(iv) N = X - P is a countable union of sets Xi, i = 1, 2, * such that

n-1
(7) lim n-1 L Akp(Xi n A) = 0

nf- k=O

holds for any A c 5, op e c and i = 1, 2,
PROOF. We consider (X, 5, 1i) as a measure algebra. A real-valued function

H on 3: is called monotonic if B C A implies H(B) < H(A). The construction of
the decomposition is based on the following simple lemma.
LEMMA 1. If H is a nonnegative monotonic function on 3f with H(O) = 0, then

X is the disjoint union of two uniquely determined sets P and N such that
(i) H(B) > 0 holds for all 0 FD B C P and
(ii) N is the disjoint union of countably many sets Xi, with H(Xi) = 0.
PROOF. Measure algebras are closed with respect to the formation of arbi-

trary unions. (Such unions may always be replaced by countable unions.) Let
N be the union of all sets B E 5f with H(B) = 0. Passing to subsets we may
assume N = Uf-i Xi with disjoint Xi and H(Xi) = 0. Let P = X - N. Then
(i), (ii), and the uniqueness are obvious.
For any bounded sequence {x.1 of real numbers let

n-1
(8) M{xn} = lim supn-1 L xi+j

n-x) j i=O
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(this M is the maximal value of Banach limits, (see [6], [22])). The function
H(B) = M{Anu(B)} is monotonic. Further, P and N are characterized by the
conditions
(9) M{AnU(B)} > 0 for every B C P with ,u(B) > 0,
(10) N is the disjoint union of countably many sets

Xi, i = 1, 2, *- where M{An,u(Xi)} = 0.

Before proceeding with the proof, we will collect some facts about M. It is
known and not difficult to prove that
(11) M{xn + Yn} < M{xn} + M{yn} for every {xn}, {yn} eP

(12) M{axn} = aM{xn} for a > 0,
(13) M{xn} < sup |XnlI

n

We will further need the equation
(14) M{x. + Ynl = M{x. + Yn±+} for every {xn, {yn} Et-,
which follows by an easy cancellation argument.
With the above, the proof of (iv) is immediate: we may assume so > 0 and

A = X. Let f = d/d,u, fn = min {f, n}, g. = f - fn, and let son and V,n be re-
spectively the measures with fn = dp,,/d;L and g. = dt'./dM. For every e > 0,
11l,4ll = 11g.11 < E for sufficiently large no. For every n,

(15) IAnpo(X,) . Anso (X,) I + - Atn46, (X,) < no IAn1(X,) + e.

Therefore,
(16) M{An((X,)} < noM{An,(X,)} + e = e.

Since e > 0 was arbitrary, this proves M{Anp(X,)} = 0, a statement which is
slightly stronger than (iv), since

n-i
(17) M{Xn} > lim sup n-' L Xk.

n--+-o k=O

Now for every F X 5 let rp be the operator in b defined by
(18) r#(A) = 4(FfnA), A Eco.

The next lemma will be used in the proof of the invariance of P.
LEMMA 2. Let 0 < 4 E 41, 4o(Ac) = 0, and A4o(E) > 0 for some set E. Then

there exists an e > 0 and a set B C A with ,u(B) > 0 such that

(19) A4 (E) > e*(B)
for allO <., e (D.

PROOF. Let g = d4p/d,. Then A' = {x: g(x) > 0} is the smallest carrier of
so. We may assume that A = A'. Define r(F) = ArFF4(E). It is easy to show
that q E 4 and I << p. If f = dl/d4p, it follows from 71(X) = A40(E) > 0 and
X << (p << 1i that Mu{x: f (x) > 0} > 0; and, hence, that for some e > 0, B =
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{s: f (s) > e} has positive measure. Changing f on a sp-null set, we may assume
that B C A.

If 0 <4 E 4) is carried by A, then A = A' implies P6 << 'p. To prove (19), we
first assume d/d'p = XH for some H C A.
Then
(20) A;t(E) = ArHVp(E) = t1(H) fHf dp > ef fldp= e+(B)-

The usual extension procedures yield (19) for arbitrary 0 -< 4 <<KP, equivalently
for every rPAt, (0 < # E 4b). If 0 .< 4t E 4) is arbitrary, then the inequalities
(21) A,*(E) > Ar1A4(E) > ErA4(B) = eA(B)
complete the proof.
We proceed to prove the invariance of P. Assume that P is not invariant. Then

there exists some nonnegative 'p e (P with Vp(N) = 0 and Asp(N) > 0. Hence,
there is an index io with A(p(Xi.) > 0. Apply lemma 2 with A = P and Xi. = E.
From (9) we obtain

(22) M{A-y(Xjo)} = M{A-+1ju(Xi,)} > EM{AAnu(B)} > 0,
which contradicts (10).

Let us now consider the influence of the null part. We define inductively for
every sp E 4),
(23) s(o = rp(p, 'P* = rINP,

2pk+l = rpApk*, 'pk+1 = rNApk*.
Then
(24) Anp = Apo0 + * + Al'p-1 + pn + spn
follows by induction and 11'pk+1i1 + jjvk*+,Ij < jjv*kj| implies Ek=O ll'PklI < 11011
Therefore, Tp'p = Ek=orp(ArN)k v defines a contraction.
LEMMA 3. For every B C P we have M{Ano (B)} = M{AITp,u(B)}.
PROOF. Define ;1k, 4k by (23). First note that B C P implies 1gu(B) = 0 for

every n since P is invariant. For every e > 0 we may choose no so large that
k=n. ||Mkjj < e. Then from (13) and (24) we derive the inequality

(25) IM{An°+n,u(B)} - M{(A-+n,o + *-- + An,uno)(B)} < .

Equation (14) implies both M{An-+n,2(B)} = M{An;(B)} and

(26) M{(An,+nAo + * + AnAun.)(B)} = M{A-+n(Ao + ... + uno)(B)}
= M{An(Ao + *-* + An.)(B)}.

Therefore, M{An(I.o + * + jno) (B)} tends (for no -m ) to M{An,,(B)} and to

(27) M {A" (, ,Uk) (B)} = M{AnIPj.(B)}.
The essential step in the proof of theorem 1 is an application of theorem

A. Observe that P is invariant and that *pk is equivalent to rpPM, that is,
rp,u << Ipj << rpA. If ,u(P) = 0, theorem 1 is now trivial. If ,u(P) > 0, we may
assume that TpA(P) = 1 by normalizing the measure. Lemma 3 says that A
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satisfies condition (ii) of theorem A applied to (P, aI n P, *pIA, A). Hence, there
exists an invariant measure rp on P which is equivalent to Ip., and therefore
equivalent to rp/L. Set so(N) = 0. Then f = dp/dju is invariant, strictly positive
in P and 0 in N, which proves (ii). That P C C follows from (ii) and theorem B,
since _k-o Tkf = E_=o f diverges in P. The proof of (iii) rests on (ii), theorem C,
theorem D, and the following lemma.
LEMMA 4. For every f e L1 the sequence {xpTkf, k = 0, 1, * } is uniformly

integrable.
PROOF. For g E L1 put Tpg = xpTg and TNg = XNTg. We define for f e LI

the sequences {ff} and {fj*} by

(28) fo =xpf, f= XNfI
fk+l = TPfk, fk+1 = TNfk-

Then Ijfk+±Jj + ljfk*+iJj < 1IfkII implies E' o 1IfILI < lf II, and for j > 1 we have
fj = TpTJ1(xXNf). From the invariance of P we conclude that X'V Tng = TNg and
Tn(Xpg) = Tp(xpg) for all g E L1. It is now intuitively clear and also follows by
induction that

(29) XPTkf = XP E Tjfk-j.
j=O

To prove uniform integrability of {XpTkf}, we may and do assumef> 0. For
a given E > 0, choose t = tL so large that

.0

(30) j= l! < e/6.
Let h = XpTpf, and let 0 < f E L1 be invariant and strictly positive on P. We
choose m so large that
(31) f (h - mf)+ d < f/6,

where g+ = max {g, 0}. Finally, a. > 0 may be chosen so large that

(32) f[ml>a.) mf dA < e/6.
It follows from (30) and (31) that for any k > t,
(33) Ak = {x: Tk-(h - mf)+ + Tk-4-1f1+i + *- + Tofk > aj
has measure s(Ak) < a1 -e/3. The inequality
(34) XpTkf < mf + Tk-1(h - mf)+ + Tk-1-if?+1 + *-- + T0fk
implies
(35) Pnf {Tkf>2aj} C {mf> a} + {mf<af}a lAk.

Therefore,

(36) Tkf>2a.) xpTkf du < j>a.) mf d,u + f(h -mf)+d,

i,1=E+l lIfLl + f. a. ds < e.
j=1+1 + JA,
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This establishes the inequality

(37) Xkl>c.XpTkf dM < e
for cf > 2a, and all k > t so that, for Cf large enough, (37) holds for all k > 0.

For the proof of (iii) let (p E 4) and f = dq,/dp.. Theorem C applied to f and to
p = f states

n-1
(38) lim n-' E Tkf = h(f, f)*f

nl-) k=O

in P. Since f = xPf we have Rcf = f. By theorem D

(39) xph(f, f)jf = xpfE(RcfI3)/E(f13) E L,.
Lemma 4 implies that {Xpn-f E_:k-1 Thf} is uniformly integrable; hence,
'Pn _k=O' Tkf tends to xph(f, f) *f in norm. This limit is shown to be invari-
ant by a cancellation argument. Norm convergence implies convergence of
limn, n-1 _k=0 Ak(p(A n P) for any A E ff since Ak(p(A rl P) = fAnP Tkf dp.
The theorem is thereby completely proved.
REMARK. (1) Dean and Sucheston ([6], theorem 3) have shown the follow-

ing: for (p = p,u and P = X n-1 'k=0 Ak+ (An P) converges uniformly in i.
We mention that this remains true for general (p E (P and P as may be shown by
extending their method to the present case. The application of their proposition
3 must then be replaced by an application of lemma 4 of this paper.

(2) Let fo E L1 be strictly positive. Neveu [20] mentions that P is the inter-
section of all sets {Fk=o Tntf0 = +oo} where {ni} runs through all subsequences
of the nonnegative integers. Another characterization of P in terms of T is
given by proposition 1.
PROPOSITION 1. Define Pf for 0 < f E L1 by

r ~~~n-1
(40) Pf = {x: lim inf n-1 E Tkf(x) >

n-x k=O J1
Then P = Pf holds for all f E L1, which are strictly positive in X.
PROOF. Theorem C implies that Pf does not depend on the choice of a

strictly positive f E L1. Taking f = f + XN with f = Tf strictly positive in P,
we obtain Pf D P. Next takef 3 1. For every Xi,

1I n-1 n-1 r
(41) 0 < (lim inf n-' E Tkf) d, < lim inf n- Tkf d

JXi\ n-- = / n-x k=O JXi

n-1
= lim inf n-1 E Aktu(Xi) < M{A1'1(Xj)} = 0;

n--x- k=O

hence, all Xi belong to P,.
Property (iv) of theorem 1 might lead one to expect the convergence to 0 of

(1) even with Xi replaced by N. However, in that case the Cesaro averages of
An,(N) will usually decrease to a positive lower bound, and for appropriate
A C N the numbers n-1 Ekn- Aku(A) may oscillate. This observation is due to
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Mrs. Dowker ([7], theorem 3), who considered ergodic point mappings. We
mention the following generalization of her result.
PROPOSITION 2. If ,u is nonatomic (that is, every A with ,u(A) > 0 contains a

B with 0 < ,u(B) < ,u(A)) and P = 0, and IIAkM!I = 1 for all k, then for any given
a, ,3 with 0 < a < 1 < 1, there exists a set Aa, e 9 with

n-1
lim sup n-1 E AkA(Aa #) = ,

(42) nl-- k=O
n-1

lim inf n-1 E AkM(Aa,) = a.
k=O

PROOF. Clearly, the measures pn = n'- Xk-Ak= are equivalent to ju. By
theorem 1 (iv) the following lemma of Mrs. Dowker is applicable.
LEMMA A. Let X be the disjoint union of countably many sets Xi, and let J, be

nonatomic and {,Un} a sequence of normalized measures which are equivalent to ,u
and such that limn, An(Xi) = 0 for every Xi. Then for any given a, 1 with
O < a <. < 1 there exists a set A,,, with (42).

4. Weighted conservative parts

We now introduce "weighted conservative parts Cu," by considering ex-
pressions _k-o wkTkf with monotonically decreasing weights:

(43) W = {Wk}, k = 0, 1,* ; Wk > Wk+ > O.

The result will be a finer splitting of the conservative null part C n N (see
example 1). In the elementary special case of Markov chains we may consider
this splitting as a classification of the null-recurrent states according to the
speed of convergence to 0 of the "probabilities of return at time n." This classi-
fication does not yield nearly as precise statements about C n N as some results
of Vere-Jones [24] and Kingman [19] do about D. It seems, however, to be the
first suggestion of any method for further classification of C n N and might be
of interest as a common generalization of both the decompositions X = C + D
and X = P+N.

Ergodic theorems with weighted averages were first introduced by Baxter [1],
who used recurrence probabilities as weights. Jamison, Orey, and Pruitt [18]
showed that far more general weights may be used for the summation of inde-
pendent identically distributed random variables.
We first state two elementary lemmas which make it possible to replace

C6saro means by weighted averages with monotonically decreasing weights in
practically all theorems of pointwise ergodic theory.
LEMMA 5. Let {fk}, {pk}, {wk} be three sequences of real numbers (k = 0, 1, * *)

with Pk 2 0, _k=O pk > 0, and (43). If
n-1 -1

(44) E Efk / EF pk
k= / k-0
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converges to a finite limit, then so does

n-1(fk/ n-1
(45) E, Wkfk/_E WkPpk.k=O /k=O

In the case 7k= Wkpk = x, the limit is the same.
(The special case where all pk> 0 and E WkPk = 00 is equivalent to a known

theorem of the theory of summability; see, for example, Hardy ([11], p. 309).)
PROOF. Put Sn = 0fk, rn = ,o pk, Sw, =n 2_ Wkfk, and rw,,,n = _0 Wkpk.

By a translationfk fk - Xpk we may and do assume the limit of (44) to be 0.
Furthermore, it is sufficient to assume po > 0. We investigate the ratios

n-1
E_ Sk(Wk - Wk+l) + SnWn

(46) Stw,n k=OX
(4)rw,n Erk (Wk - Wk+l) + rnWn

k=O

which are obtained by means of the Abel transformation. The ratios bk = skrk1
tend to 0. Put Sk = bkrk in (46). If the denominator remains bounded, then rnwn
is bounded and Fk=o rk(Wk - Wk+l) < °°. In that case, x,0=O bkrk(wk - Wk+l)
converges and SnWn tends to 0. If the denominator tends to infinity and e > 0
is given, choose K such that Ibnl < e/2 for n > K, and then choose L > K such
that Ir,w S=O5k(Wk=-Wk+l)I) < E/2. Then Is ,-r',I < e for all n > L.
While lemma 5 carries over the convergence theorems and the theorems on

identification of the limit to the case of monotone averages, we need a second
lemma for the proof of a maximal ergodic theorem and a dominated ergodic
theorem.
LEMMA 6. If XO, * * Xn are any real numbers Yo> 0, yl, Yn* * 0, and

0 < Wo2 wl 2 ... > Wn 20, then

(47) max Yo + * >*+ Yk > max WoXo+**+WXi0<k<n YO + O+Yk 0<k<n WO0Y + * + Wkyk

PROOF. We may assume Wk > 0, (k = O, - * *, n). Let X be the expression on
the right-hand side of (47), and let k be the first index for which the quotient
equals X. Then
(48) WjX, +* + WkXk > X(Wjyj + * + Wkyk)
for all j with 0 < j < k. Find ao, * * , ak successively by solving the equations
w; F-t=o ai = 1 for j = 0, k, k. The monotonicity of the wj implies ai 2 0,
and then (48) implies

aO(woxO + WlXl + * + WkXk) > XaO(WOyO + Wlyl + + Wkyk),

(49) a, (wixi + * + WkXk) 2 Xai(wiyi + * + Wkyk),

akWkxk 2 XakWkYk.

Adding these inequalities we obtain (xo + ... + Xk) > X(yo + * + Yk).
REMARK. We mention another inequality which may easily be derived from
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(47). Let fk be real numbers (k = 0, 1, 2, * - *) such that 5k =o Xkfk converges for
every X with 0 < X < 1, and let Pk be nonnegative and po > 0. Then

n

E Xkf, fk
(50) sup < sup

O<X<1 E O° <n<o<
o 0

Apply lemma 6 to the classical dominated ergodic theorem (see, for instance,
Jacobs [17]) and observe that it is sufficient to prove this theorem forf 2 0 and
positive operators T. Then a dominated ergodic theorem with monotone weights
follows.
Next let us apply lemma 6 to Hopf's maximal ergodic theorem [12]. Put for

f E Li,
(51) E = {x e X: max E Tf(x) > o},

O<k<n i=O

r ~~~k-1
(52) Ew,n = x e X: max Et wiTif(x) > 0}.

O<k<n i=O

Hopf's theorem states that

(53) fE.fd, 2 0

for any f e L1 and n > 1. Applying lemma 6 we obtain Ew,nc En. Since
{x: f (x) > 0} C E,n, (53) now implies fE._f d,u > 0. This is the desired maxi-
mal ergodic theorem with monotone weights. We mention that Garcia [8] has
presented a very short proof of (53).

Rota's [21] basic lemma as well as his dominated ergodic theorem of the
Abel type, follow in a similar way from (50). A generalization of the Riesz
lemma may be obtained by applying the idea of the proof of lemma 6. An
ergodic theorem for continuous flows and monotone weights Wt (t > 0) may be
proved by using lemma 5 and an extension of the usual method applied to
wt = 1 (see, for example, Jacobs [17]).
The main result of this section needs for its proof only the maximal ergodic

theorem with monotone weights. However, as we assume knowledge of theorem
C in this paper, the easiest derivation uses lemma 5.
Take w = {Wk} as in (43) and define the operators S.,n in L1 by

n-i
(54) Sw =Lg wkTkg.

k=O

From theorem C and lemma 5 we infer that for f, p E L1, p > 0 the ratios

(55) Qw,n(f, p) = Sw,nf/Sw,np
converge to a finite limit on {x: ,k=o Tkp(x) > 0}. If PI, P2 E LI are strictly
positive in X, we derive from (55) with f = pi, p = P2 and with f = P2, p = pl
that Cw,i = {x: F2k =O WkTkp = Xo} is independent of i. We define the w-con-
servative part C. of X (with respect to T) to be C.,j. The set Dw = X - Cw
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is called the w-dissipative part of X (with respect to T). We now generalize
theorem B.
THEOREM 2. If T is a positive contraction in L1, then X is the disjoint union of

two uniquely determined sets CtZk and D. such that
(i) for every f > 0, _k2=O WkTkf converges in D,;
(ii) for everyf 2 0, _k=O wkTkf diverges in C. n {x: _k2=o Tf > O};
(iii) C. is invariant.
PROOF. Properties (i) and (ii) are immediate by the same kind of argument

which proved that C.,, equals Cw,2.
To prove (iii) we first remark that for any integrable g the inequality

Tg+ > (Tg)+ holds since T preserves order. If p = P1, pwk = -0o w,Tip, and
p = f'=o (wi- wi+i) Ti+lp, then p is integrable; hence Tpw,k < p-0w + p is
bounded in Dw.

If C,w, is not invariant, then there exists an integrable f 2 0 such that f = 0
in D. and Tf is positive in a subset of D, of positive measure. Then there is
some n > 1 with
(56) 11(nTf-pw,- -p)+II = a > 0.
Since pw,k T X in Cw,

(57) 11(nf - pw,k)+Il < a/2
for sufficiently large k. The estimate

(58) 11(nTf - pw.- -p)+Il < I(nTf - Tpw,k)+Il < IIT(nf - pw,k)+I
< II(nf- pw,k)+fl

makes it evident that (57) contradicts (56). (This proof uses the same idea as
known proofs of the special case Wk 1, but avoids unnecessary complications.)
We now describe C,,, and D. in terms of A and 1, since 4( is the space of most

interest if A is given by a stochastic kernel. Such a description will also be useful
in the proof of theorem 3 and it seems to make the relation to the concept of
recurrent states in the theory of Markov chains a bit more transparent. It is,
however, equivalent to theorem 2.
THEOREM 2*. If A is a positive contraction in 4', then X is the disjoint union of

two uniquely determined sets C,,, and Dw such that
(i) for every (p E 4' with so > 0, D. is a countable union of sets X, with the

property 'k=o WkAkp(X,) < ;
(ii) for every 0 < ( Ep and any A C C,,,, the series Fk'=O wkAk.p(A) diverges

or is 0;
(iii) C,,, is invariant.
PROOF. (i) Letf = dio/di. and X, = {x: v < F'-o wkTkf(x) < V + 1}, v =

0, 1, * . . Then (i) follows from Akpo(B) = fB Tkf d,u, and (ii) follows from the
same relation, since Ek2=o wkTkf (x) diverges in C,, n {'k=o Tkf (x) > 0}.

It would be of interest to know whether the decomposition {X,} of D. (like
that of N) may be given for all so e 4' simultaneously.
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Let us now show that for any A the positive part P equals C,,, for some
W = {Wk}-
LEMMA 7. Let {am,k} (m = 0, 1, *--; k = 0,1, *--) be an infinite matrix of

nonnegative numbers such that
n-1

(59) lim n-1 L am,k = 0
n-o k=O

for any m. Then there exists a decreasing sequence w = {Wk}, (k = 0,1, *--) of
positive numbers such that Ek= Wk diverges and _k=O Wkam,k converges for every m.
PROOF. Put no = 0, and choose n1 > 1 such that n > n, implies

n- O' ao,k < 2. If ni < n2 < ... < ni are chosen, we next choose ni+i > ni
so large that ni+1 - ni > ni - ni- and such that for n > nj+j and m = 0, * i,

n-1
(60) (n - ni)-l E am,k < 2-(i+1).

k=ni
We put

(61) Wo = = Wni-1 = nX1, * X w,, = *** = wni,1-1 = (ni+1 - ni)
Then {Wk} decreases, 5k. Wk = 00 since any weight (n1+j - nj)-1 occurs
(nj+i - ni) times, and we have

ni+1-1 ni,1-1
(62) E Wkam,k = (ni+j - n,)-1 E a.,k < 2-(i+±)

k=ni k=ni

for m = 0, * , i. Therefore Yk=o Wkam,k converges for every m.
THEOREM 3. The positive part P of X with respect to A is the intersection of all

parts C,,,for which _k=o wk = X . More precisely, for every A there exists a w = {Wk}
with (43) and Xk=o Wk = Xo and P = C,.,.
PROOF. Let Fk=o Wk = Xo. If 0 < o E 4 is invariant and equivalent to rpp,

then Ek=o wkAk4O(A) = Fw=owksP(A) = 00 for any A C P with ;,(A) > 0.
Therefore P C C,.
Next let {Xi, i = 1, 2, * be a decomposition of N such that

n-1
(63) lim n-l E Ak,(Xi) = 0.

n-- o k=O

By lemma 7 we may find a sequence w = {Wk} for which F_okw. = oo and
Ek-O WkAkl.(Xi) < 00 for all i. Theorem 2* (ii) now implies 's(Xi n c,,) = 0.
Hence, N n c., = 0, or equivalently, P D C,,.
COROLLARY 1. The following condition is necessary and sufficient for the exist-

ence of a finite invariant measure (p with ,u << sp << ji: k=O WkTkxX diverges in X
for every {wk} with (43) and Y_k'=O Wk = 00-

The next corollary may replace the ergodic theorem in those cases when the
ergodic theorem does not hold. That occurs quite frequently according to the
following result of A. Ionescu Tulcea [14]: among all positive, linear, invertible
isometries T of the space L1(0, 1) of Lebesgue-integrable functions on (0, 1),
the operators T which do not satisfy the pointwise ergodic theorem form a set
of the second category in the strong operator topology.



CLASSIFICATION OF STATES 427

COROLLARY 2. For any positive contraction T in L1 there exists a decreasing
sequence w = {Wk}, with _k=O Wk = XC, such that

n1 \ /(n-1(64) lim. E- WkTkf ) ,EWk
n k=O //k=O /

exists a.e. for any f E L1. The limit is invariant, vanishes in N, and is given by
(39) in P. In particular it is strictly positive in P n {-,-=o Tkf > O} for f > 0.
PROOF. Choose w with P = C.,,. Then k'=o wkTkf converges in N. The other

statements follow from lemma 5 and the considerations at the end of the proof
of theorem 1.
REMARK. The assumption u(X) = 1 is not essential in this paper; u may be

a-finite, since b depends only on the null sets of A. Without this assumption,
however, the formulation of theorem D and its applications is somewhat more
complicated.

5. The elementary special case of Markov chains

We now adopt the terminology of Chung [5]. Let I be a countable state space,
(p'J') i, j E I the matrix of the n-step transition probabilities of a stationary
Markov chain, and fi(n) the probability that starting at i the first visit to j takes
place at time n. Let w = {Wk, k > O} with Wk > Wk+1> 0. We call the state
i C Iiel~~~~~~~~~~~~~~~~~~k(i) w-recurrent in the case Fk=o Wkpi,i = oo, and

(ii) w-nonrecurrent otherwise.
In the special case Wk -1 we say recurrent and nonrecurrent respectively. The
relation to the results of sections 3 and 4 becomes obvious if we put X = I and
let , be a measure which assigns positive measure to every point. Then c1 consists
of all signed finite measures on X. If A is generated by (pQ(1)), then C. consists of
the w-recurrent states and P consists of the positive states. In particular, in this
case, theorem 2* states the following.

The property of being w-recurrent or w-nonrecurrent is a class property.
The set C. of w-recurrent states is closed. Of course this also follows easily from
estimates of the type

(65) p(m~~~~?+ k +n) < p mp(k)p (n)

and from Xk o (Wk - Wk+l) < wo.
Let us convince ourselves that the classification by the sets C. may split the

set of recurrent null states into proper subclasses.
EXAMPLE 1. There are Markov chains such that for one state i the first

return probabilities f),f (n 2 0) are an arbitrary probability distribution with
f(O) = 0. Simply take i = 1 and pass from 1 to state k with probability fk); then
from state k > 2 pass through (k - 2) auxiliary states associated with k deter-
ministically, finally going back to 1. The generating functions F(s) and P(s) of
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{ffp} and {pin} satisfy P(s) = (1-f (s))-'. Take F(s) = 1 - (1 - s)P for some
p with 0 < p < 1. Then

(66) P(s) = (1 - s)-P = r(p)-> E r(n + p)r(n + I)-Is,
n=O

has coefficients pci with p)fr(p)n1-P 1 (see, for example, Titchmarsh [23],
p. 57-58). We may construct a decomposable Markov chain which has only
recurrent null states using two such chains, say with p = 2 and p = 4. However,
only the states of the part with p = 2 are w-recurrent with w = {(1 + k)>-12}.
Of course one would not need monotone weights to separate the classes if the
probabilities pff) behave so regularly. The advantage of the classification C,. is
its general applicability.
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