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1. Introduction

Our main purpose is to give an extension of a construction which we have ob-
tained in [3]. A consequence of the discrete spectrum theorem is that transfor-
mations having discrete spectrum have a square root if and only if -1 is absent
from the spectrum. One of the important problems in ergodic theory is to investi-
gate to what extent the implications of the discrete spectrum theorem remain in
the general case. Along these lines, Halmos [10] has asked whether every trans-
formation with continuous spectrum has a square root. We remark that the ques-
tion is raised (see [8]) for one-to-one transformations since otherwise the discrete
spectrum theorem as well as the consequence it mentioned fail to hold. Note
furthermore that the spectral theorem holds only for one-to-one transformations,
and therefore we can expect the spectrum to determine the properties of the
transformation in this case only.

In [3] an example is obtained which answers the question of Halmos to which
we have referred. Here we extend the method to give an example of a one-to-one
ergodic and measure preserving transformation which has continuous spectrum,
is not strongly mixing, and which has no roots of any order. The fact that the
transformation is not strongly mixing is of some interest, as in view of the fact
that the shift transformations are strongly mixing.
The paper is divided into three sections. In the first we give a simple example

due to Kakutani and von Neumann. In the second section we formulate and
prove a general decomposition theorem for one-to-one measure preserving trans-
formations. The sufficient part of this theorem is a summary and codification
of ideas common to constructions given by several authors ([6], [9], [12], and
[13]). The example given in the first section is the simplest as well as the earliest
which exhibits the main features of the theorem. Our main intention in giving
the decomposition theorem is to fix ideas for the construction of the counter-
example which is the principal purpose of the paper. This construction is given
in the third section and is independent of the first two.
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In [4] we applied a small extension of the ideas suggested by the decomposition
theorem to obtain what seems to us to be a substantial simplification of the
example [13] of a transformation having no a-finite invariant measure. In his
thesis [5] N. Friedman has shown that these transformations are dense in the
strong topology in the anti-periodic transformations, strengthening a result
given in [14]. The method is sufficiently general so that one may show that this
property is common to a large class of transformations, and indeed the interest-
ing result was obtained in [1] that the transformations essentially given by
P. R. Halmos in [8] having discrete spectrum and no roots are dense in the strong
topology in the anti-periodic transformations. The class of transformations we
construct in this paper also has the property that it is dense in the strong
topology in the anti-periodic transformations, but since the proof is again like
that in [5], we refrain from giving details.

2. An example having discrete spectrum

The example of Kakutani-von Neumann is of a measure preserving transfor-
mation having discrete spectrum with eigenvalues of the form exp (27rim/2k),
m, k integers. We give the example as follows. A simple tower T is a finite ordered
partition {Ij, j = 1, * * *, n} of the unit interval which is composed of sub-
intervals of equal length. The transformation TT induced by the simple tower T
is defined by mapping Ik linearly onto Ik+l, k = 1, * * *, n - 1, so that the do-
main of TT iS U;: 1' Ij and so that its range is U7=2 I;. It is helpful to think of the
tower T as an ordered stacking of the intervals Ij with I, on the bottom, I,, on
the top, and with the other subintervals between them in order. We may then
think of TT as mapping each point of the unit interval in the tower T to that point
directly above, if any. Each simple tower T gives rise to a simple tower S(T) as
follows: write Ii as the sum of the two disjoint and consecutive intervals of equal
length II and I;, and set

(2.1) S(T) = {Ij, j = 1, * , n, I42,j = 1, ... , n}.

In terms of the description of T as a stack, S(T) is the simple tower obtained by
splitting T down the middle and putting the right-hand substack above the left-
hand one. Note that TS(T) is an extension of TT-

Next we define a sequence of towers inductively by setting

(2.2) T2 = {[O, 2], [2, 1]}, Tk = S(Tk-l), k > 3,
and set T = limk.4x TTk. That r is defined follows from the fact remarked above
that 7S(T) is an extension of TT, and that the measure of the top layer of the stack
Tk tends to zero as k tends to infinity. To see that exp (27rim/2k) is an eigenvalue,
note that the top layer of Tk is mapped by T onto the bottom layer. That T has
discrete spectrum follows from the fact that the subintervals of the stacks Tk
generate the Borel field.
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3. The decomposition theorem

Let (X, F, ,u) be an interval, the Lebesgue sets and Lebesgue measure, re-
spectively. Since we are interested in equivalence classes, modulo sets of measure
zero, of transformations of X onto X, our equations are understood to hold almost
everywhere. In particular, transformations need be defined only almost every-
where. The (invertible) transformation r of X onto X is measurable if A e F
implies T(A) e F and r-1(A) e F. A transformation r of X onto X is non-
singular, if it is measurable, and if A e F and p (A) = 0 implies that u(r(A)) =

A(T-1(A)) = 0. A transformation T is measure preserving, if it is measurable, and
if A e F implies u(A) = p(r(A)) = u(r-1(A)).
We first generalize the definition of a simple tower: a tower T is an ordered class

of subintervals {Ij,k, j = 1, * * *, n; k = 1, * * *, m(j)} which forms a partition
P(T) of the unit interval and which have the property that for each j, p(Ij,k) =
1,t(Ij,l), k = 1, * * *, m(j). The transformation TT induced by T is defined by map-
ping Ij,k linearly onto
(3.1) I',+1, 1 < k < m(j)-1; j = 1,**,n.
The base of the tower is defined as the set B(1, T) = U'I Ij,l and the top of the
tower is defined as the set B(2, T) = UJ1 Ij,m(j). Note that the domain of the
transformation TT iS [0, 1] - B(2, T) and that its range is [0, 1] - B(1, T).
We say that a tower T2 is finer than a tower T, if rT, is an extension of TT,, and
if P(T2) is finer than P(T1).

It is helpful to think of the tower

(3.2) T = {Ij,k,j = 1, * * *, n; k = 1, , m(j)}
as composed of n ordered stacks of varying height m(j). We may then regard rT
as mapping each point of the unit interval in the tower T to that point directly
above, if any. We note that if T2 is finer than Ti, then T2 can be obtained from
T, by an application of the following operation. Cut T1 by a finite number of
vertical cuts, and then stack in groups those resulting substacks of the same
width.
We define a nested null sequence of towers {Tn} to be a sequence of towers such

that Tk is finer than Tk-, k > 2, and such that the measure of the sets B(2, Tk)
tends to zero, that is, the measure of the tops of the towers tends to zero. If the
unit interval admits of a partition into two intervals I(1) and I(2), and if there
exists an integer N such that {Tn+N n I(1)} and {Tn+N n I(2)} are nested null
sequences of towers of I(1) and of I(2), respectively, then we say that the se-
quence {Tn} is divisible.

If {Tn} is a nested null sequence of towers, define rT.) as the limit, which
clearly exists almost everywhere, given by T7T') = limnc, TT,. We may now
state the decomposition theorem as follows.
THEOREM. If {T.} is a nested null sequence of towers, then 7)7(T.) is a one-to-one,

anti-periodic, and measure preserving transformation of the unit interval. Con-
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versely, if T is a one-to-one, anti-periodic, and measure preserving transformation of
the unit interval, then there exists a nested null sequence of towers {T.} such that
T(T,) is isomorphic to T. Furthermore, {T.} is in each case not divisible if and only if
T is ergodic.
The proof of the first part of the theorem is immediate. To prove the second

part we need the following lemma.
LEMMA. If T is a one-to-one, anti-periodic and measure preserving transfor-

mation of the unit interval, then there exists a partition of the unit interval into three
measurable sets A1, A2, and A3 such that

(i) Tr(A1) = A2,
(ii) r([A2 - -'(A3)] + A3) = A1.
PROOF OF THE LEMMA. Let S be the class of measurable sets A such that

m(An T(A)) = 0. Order the class a by set inclusion and apply Zorn's lemma
to obtain a maximal set A1 in the class. (We have made use of the fact that Li
is a complete lattice.) Next, define A2 = T(A1) and A3 = r-I(A1) - A2. That (i)
and (ii) are satisfied follows from the maximality of A1.
PROOF OF THE THEOREM. Apply the lemma to r to obtain a tower, and then

apply the lemma to the transformation induced on the base, and so on by
induction. We may assume without loss of generality that the partitions generate
the Borel field since we may always make them finer if necessary. We next apply
the von Neumann isomorphism theorem to see that the partition elements may
be supposed to be intervals, and the proof of the theorem is complete.

4. The main example

One-to-one and measure preserving transformationsr induce unitary operators
T, by setting Tjf (x) = f (r-1(x)) for f E L2. The transformation r is said to have
discrete spectrum if it is measure preserving and if its induced unitary operator
has a complete orthonormal set of eigenfunctions. The transformation r is said
to have continuous spectrum if it is measure preserving and if its induced unitary
operator has for its sole eigenfunction the function identically equal to one almost
everywhere.
Our result may be stated as follows.
THEOREM. There exists an explicit construction of an ergodic, invertible, and

measure preserving transformation r of the unit interval such that (i) T has con-
tinuous spectrum, (ii) r is not strongly mixing, and (iii) r has no nonsingular roots
of any order.

It is not hard to see that a nonsingular p-th root of an invertible, ergodic,
and measure preserving transformation is also measure preserving; we do not
use this fact in the sequel.

In order to make the proof as transparent as possible we first prove the follow-
ing theorem given in [3].
THEOREM. There exists an explicit construction of an ergodic, invertible, and

measure preserving transformation T of the unit interval such that (i) T has con-
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tinuous spectrum, (ii) r is not strongly mixing, and (iii) T has no nonsingular
square roots.
The proof we give here is an adaptation of the proof given in [3]. It is changed

in such a way that it can be readily extended to give the general result. We
indicate the extensions needed in the general case after the square root case is
carried out in detail.

Definition of the transformation in the square root case. Given a sequence
{j(k), k = 1, 2, ** *} of integers with j(k) 2 1, k > 1, we shall define an in-
vertible measure preserving transformation T = T({j(k)}) having the desired
properties. For convenience the transformation T is defined on the union of the
unit interval with another interval N disjoint from it; the length of N depends on
the sequence {j(k)}.
The transformation is defined inductively. For r = k, we suppose that the

transformation is defined on part of the space, and we extend the domain of
definition for r = k + 1.
For r = k, we suppose the transformation given as follows: let

(4.1) m(k) = 3m(k - 1)j(k) + 6, m(O) = 2,
and suppose that there exist m(k) intervals of equal length A1(k), * , Am(k)(k),
each a subinterval of the unit interval or of N, and that T maps A _1(k) linearly
onto Ai(k), i = 2, - * *, m(k).
For r = k + 1, we need to extend the definition of T in such a way that it

admits a representation as in the preceding paragraph, with k replaced by k + 1.
This is accomplished in two steps.
The first step is the following. Divide Ai(k), (1 < i < m(k)), into j(k + 1)

consecutive subintervals of equal length, denoting them
(4.2) Bi,1(k + 1), - * *, Bi.j(k+l)(k + 1), (1 < i < m(k)).
Since Ai_1(k) is mapped linearly onto Ai(k), (2 < i < m(k)), T also maps
Bi_1,,(k + 1) linearly onto

(4.3) Bi,j(k + 1), (2 < i < m(k), 1 <j j< (k + 1)).
In this first step we extend T by mapping Bm(k) j(k + 1) linearly onto
(4.4) B1,,j+(k + 1), (1 < j < j(k + 1)-1).
There are m(k) Ai(k)'s and each Ai(k) is divided into j(k + 1) Bi,j(k + 1)'s so
that there are m(k)j(k + 1) Bi,j(k + 1)'s altogether. We write these sets with
a single subscript Bi(k + 1), (i = 1, - * *, m(k)j(k + 1)), in such a way that T
as thus far extended maps Bi_1(k + 1) linearly onto

(4.5) Bi(k + 1), (2 < i < m(k)j(k + 1)).

The second step in the extension of T is obtained by dividing Bi(k + 1) into
three consecutive subintervals of equal length BR(k + 1), B?(k + 1), B3(k + 1).
The transformation T, as already defined, maps Bi_1(k + 1) linearly onto

(4.6) B,(k + 1), (2 < i < m(k)j(k + 1), 1 < u < 3).
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We take from the subinterval of N, where r is as yet undefined, six consecutive
subintervals of equal length, equal to the length of the Bi (k + 1), and denote
these six subintervals of N by Ej(k + 1), (1 < j < 6). (We suppose that N is
just big enough so that at each stage there is an interval left over.) Then extend
T SO that the sequence of 3m(k)j (k + 1) + 6 sets (with (k + 1) deleted for
simplicity), with s = m(k)j(k + 1),

1 1 ~~~22 B3 B3(4.7) Ely My, ..** B') E2) E31 B, * * Bsy E4) E,, E6, , * B,s

has the property that T maps each set, except for the last, linearly onto the
next set. We denote this sequence by Ai(k + 1), (1 < i < m(k + 1)), where
m(k + 1) = 3m(k)j(k + 1) + 6.
To complete the induction it remains to define r for r = 0. We set Al(0)

(0, 2) and A2(0) = (, 1) and define T initially as the linear map of Al(0) onto
A2(0). An intuitive description of the transformation is the following.
At the k-th stage there is a stack of m(k) intervals of equal length, and T

maps each point to the one directly above, so that the points of the top interval
are not yet mapped anywhere.
The first step of the extension of r is obtained as follows. The original stack is

split into j(k + 1) equal and consecutive stacks, and these are stacked in order.
This has the effect of mapping a j(k + 1) - I/j (k + 1) part of the top interval
of the original stack into the bottom interval of the original stack. (The sym-
metric difference of the image underT of the top interval and the bottom interval
has measure which tends to zero as j (k + 1) tends to infinity, therefore.)

In the second step of the extension, we take the resulting stack, which is clearly
composed of m(k)j (k + 1) intervals, and divide it into three consecutive and
equal substacks. We then take six consecutive and equal subintervals of N
where r is as yet undefined, of length equal to the length of each of the intervals
of the three stacks, and put one under the first stack, two under the second stack,
and three under the third stack. The thus modified three stacks are then stacked
in order.
Note that if we regard the union of the first interval of each of the modified

stacks as a set, then this set is mapped upward until it gets to the top, which is
one-third covered by a further subinterval. At the next step, one-third returns
to the bottom, and the part covered by the further subinterval returns to the
bottom in two steps.

Properties of the transformation. The transformation is defined inductively as
we have seen. In what follows we do not suppose that the measure space is
normalized. We deal with statements depending on {j (k)} and on r, and usually
concerning the transformation T = T({j(k)}) of the following sort.
The statement will be shown to be true for r = 0 and the truth of the state-

ment for r = 0, * - *, k - 1, with a certain choice of j(1), * * *,j(k - 1), will
imply that there exists a K = K(j(1), ***, j(k - 1)) such that if j(k) 2 K,
then the statement is true for r = k with that choice of j (1), ***, j (k). This
clearly means that there exists a sequence {j (k)} such that the statement is true
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for all r. It is furthermore clear that if there is a finite number of such statements,
then there is a single sequence {j(k)} such that all the statements will be true
for all r. We shall refer to this state of affairs by saying that a certain statement
holds for all r if {j (k)} tends to infinity sufficiently rapidly. It is clear from the
discussion that if a finite number of statements hold for separate {j (k)} tending
to infinity sufficiently rapidly, that then there exists a single sequence {j (k)}
tending to infinity sufficiently rapidly so that all the statements are true for all r.

For the sake of simplicity, we say that the set A equals the set B with an error
of 5, if the measure of the symmetric difference of A and B is no more than 5,
and we write
(4.8) A = B + E(a).
LEMMA 1. Let {Ej,k, 1 < j < r(k), 1 < k < +oo} generate the Borel field and

suppose that for each k, 1 < k < +, the sets {Ej,k, 1 < j < r(k)} are pairwise
disjoint. Suppose also that each Ej,k is the union of a finite number of sets from the
class {Ej,k+1, 1 < j < r(k + 1)}. Then for each E > 0 and A in the Borel field,
there exists a set of indices G(E, A) and an integer k(E, A) such that A equals
UjE.-G(E,A) Ej,k(e,A) with an error of e, and
(4.9) ,4AAn Ej,k(,,A)) > (1 - E)A(Ejk(,A))
for j E G(E, A).

PROOF. This is a straightforward result in measure theory.
LEMMA 2. The sets {Aj(k), 1 < j < m(k), 1 < k < +oo} generate the Borel

field. Furthermore, each Aj(k) is the union of 3j(k + 1) sets of the class
{Aj(k+ 1), 1 <j< m(k + 1)}.
PROOF. The lemma follows at once from the construction.
LEMMA 3. The sets {Bj(k), 1 < j < m(k - 1)j(k), 1 < k < +Xo} generate the

Borel field. Furthermore, each Bj(k) is the union of 3j(k + 1) sets of the class
{Bj(k + 1), 1 < j < m(k)j(k + 1)}.
PROOF. Lemma 3 also follows at once from the construction.
LEMMA 4. Given {a(k)} J 0 and if {j(k)} tends to infinity sufficiently rapidly,

then for all k,
(i) A(Um k) Aj(k)) > (1 - 6(k))I,(X + N),
(ii) M(TAm(k)(k)AAl(k)) < (1 -6(k))(Al(k)),
(iii) m(k) depends only on b(0), * * *, 3(k - 1).
PROOF. By AAB we mean the symmetric difference of the sets A and B. The

lemma follows at once from the construction, since m(k) = 3m(k - 1)j(k) + 6.
LEMMA 5. Let {j(k)} be given. Then r({j(k)}) has continuous spectrum.
PROOF. Suppose to the contrary. Then there exists a constant X of absolute

value one and a function f of absolute value one, almost everywhere such that
(r is clearly ergodic),
(4.10) T,f = Xf, X#1.

It follows from lemmas 1 and 3 that, given El, e2 > 0, there exists a set
B = Bi (.,l)(k(El, E2)) such that it has a subset A having the property
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(4.11) ;,(A) > (1 -el)A(B),
and, for x e A,

(4.12) f(x) = ei(0+5(X)) 13(x)l < E2.
In extending r from k = k(el, E2) to k + 1, we split, according to the construc-

tion, the stack composed of Bj(k), j = 1, * * *, m(k)j (k + 1), into three substacks
and put one extra interval at the beginning of the first substack, two extra
intervals at the beginning of the second substack, three extra intervals at the
beginning of the third substack, and then stack these modified substacks in order.
This means that the interval Bj(k) is split into three intervals of equal length,
Bj (k), Bj(k), and Bj3(k) such that

(4.13) Tm(k)+2Bjl(k) = B; (k) C Bj(k),
Tm(k)+1Bj(k) = B3(k) C Bj(k).

It follows from (4.10) that

(4.14) Tr-(m(k)+2)f(X) = X,-(m(k)+2)f (x),
TT-(m(k)+l)f(X) = X-(m(k)+l)f (x)

Putting (4.11), (4.12), (4.13), and (4.14) together we see that if El is small enough,
then there exist two sets of positive measure B' - Bj (k) n A, B2 = BJ2(k) n A
such that, for x eB',

(4.15) ei(0+±(x)) = Xm(k)+2ei(0+6(r-(k)+x))
and for x c B2,

(4.16) ei(0+8(x)) = Xm(k)+lei(C+5(r-(k)+lz))
Equations (4.15), (4.16), and (4.12), writing X = e4, imply, modulo 2Tr,

(4.17) |,6| < 462.
Since E2 can be chosen arbitrarily small, this implies that X = 1.
LEMMA 6. The transformation r({j(k)}) is not strongly mixing.
PROOF. Let B = Bl(k + 1). From the construction we have

(4.18) M(B n Tm(r)i(r)+2B) > Ip,(B)
for r > k. Since ,.(Bl(k + 1)) tends to zero as k tends to infinity, the normalized
measure of Bl(k + 1) also has this property. The proof is complete if we take k
sufficiently large, since strong mixing implies that

flBn 7iB) F M(B) 12
(4.19) lim (X +N) LM(X+N)J

In the sequel it will be convenient to define 1A = A, OA = 0, where A is a
set, and 0 is the empty set.
LEMMA 7. Let A = (2, 1), and let {j (k)} be given. Then for each k there exists

a sequence {xj(k), 1 < i < m(k)} of zeros and ones such that
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m(k)
(4.20) A = E xi(k)Ai(k).

i=l
Furthermore, we have

,i(k)
(4.21) T'A = x i Ai(k) + E(n(j(k + 1))),

t=1

for j = 1, * , m(k), where r/(j(k + 1)) tends to zero asj(k + 1) tends to infinity,
where the subscripts are taken modulo m(k).

PROOF. The first part of the lemma follows at once from the construction.
The second part follows since r maps Am(k)(k) onto Al(k), with error tending to
zero as j (k + 1) tends to infinity.

It is convenient in what follows to define (a, p3), where ,3 = (al, * , an), to be
(a, a,, * * *, a.), with analogous meaning for similar expressions.
LEMMA 8. Let a(k) = (xl(k), ...* Xm(k) (k)) where the sequences (xi(k), *

xm(k)(k)) are those of lemma 7. Then the a(k) are given inductively by
(4.22)
a(0) = (0, 1)

a(1) = (0 a(0) )*C ; 0,0, a(0),a ) (0), 0, O0, a(0), CTa0)

j (k) j (k)a(k)=
0, a(k -1), * ,a(k -1), 0, 0, a(k -1), * ,a(k -1),

j (k)
0, 0, 0, a(k-1 ), .,a(k- 1))

PROOF. This again follows from the construction of the transformation.
We note that subscripts on the elements of a(k) are understood to be modulo

m(k), so that letting i - j = r modulo m(k), then xi_j(k) = xr(k). Furthermore,
note that m(k), k = 0, 1, 2, - * *, are even numbers, so that with the convention
we use, xN(k) has an even subscript if and only if N is even, for each k.

Recall the definition of a(k) in terms of a(k - 1):
(4.23) a(k) =

j(k) j(k) j(k)
(0,(k-1),. .,,(k-1l,0,0,a(k- 1),. .,a(k- 1),0,0,0,a(k- i), ,a(k1.

3j(k)m(k- 1)+6 elements
and introduce the vector ,8(k):

j (k) 2j(k)m(k- 1) + 6

(4.24) A(k) = a(k -1),* *, a(k - 1), .00.
3j(k)m(k - 1) + 6 elements
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so that we may write
(4.25) a = S# + Sj(k)m(k-1)+3# + S2i(k)m(k-1)+6#,
where S is the one-step shift operator in the space of sequences of length
3j(k) m(k - 1) + 6 (deleting (k) following a and ,B in (4.25)).
LEMMA 9. Let M be an integer, and let N = (M), r(1) = (N + m(k - 1)j (k) +

1), and r(2) = (N + 2m(k - 1)j(k) + 3), where (a) is that integer equal to a
modulo m(k), which satisfies -m(k)/2 < (a) < m(k)/2. Then there exist three
positive numbers K1, K2, K3 (depending on j(k) such that

(4.26) lim 3(K1 + K2 + K3)m(k - 1) 1
m(k)

and for t = 0, 1,
m(k) m(k-1)

(4.27) , xj(k)xj_M_t(k) < 3K1 , xi(k - 1)x_N_(k - 1)
t=1 i=1

Fm(k-1) m(k-1)
+ K2 xi(k - 1)xi_,(l).t(k - 1) + , xi(k - I)xi-r(l)-l-t(k- 1)

m(k-1)
+ sE Xi(k -lXi-r(l)-2-tk- 1)

[,+m(k(--1) m(k-1)
+ K3 , xi(k - 1)Xi-r(2)-t(k - 1) + F, xik - 1Xi-r(2)-1-t(k - 1)

m(k-1)
+ xxi(k-1)Xi-r(2)-2-t(k-1)J.

PROOF. Fix the value of k, and using the notation of (4.24) and (4.25), we
see that

m (k)
(4.28) F, xj(k)xi_M(k) = aSNa,

i=l
and

(4.29) aSNa = (Sf3 + Sj(k)m(k-1)+3# + S2j(k)m(k-1)+6#)
. (SN+l + SN+j(k)m(k-1)+30 + SN+2i(k)m(k-1)+6f)

Using ySb = S-1y5 and Sr = S3i(k)m(k-1)+6+r, it follows from (4.29) that

(4.30) aSNa = ,BSN1 + #SN+2m(k-l)i(k)+4# + #SN+m(k-1)i(k)+1#3
+ #SN+m(k-1):(k)+2# + 3SN1 + f3SN+2m(k-1)i(k)+31
+ #SN+2m(k-1)i(k)+5# + #SN+m(k-1)j(k)+3#3 + 35SNf
= #SN# + #Sr(2)+lf + #Sr(l)#

+ #Sr(l)+lf + #SN# + #Sr(2)#
+ f3Sr(2)+2# + #S,r(l)+2f3 + #SN#.

We now denote the elements of f3 as follows:

(4.31) #(k) = (yi(k), - * , ym(k)(k)).
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It can then be obtained easily from (4.30) and (4.31) that
mtk)

(4.32) aSNa = 3 E yiyY-N
i=l

m(k) m(k) m(k)
+ 2I YiYi-ra) + 2 YiYi-(r(l)+1) + . YiYi-(r(1)+2)

m(k) m(k) m(k)
+ 2 YiYi-r(2) + X YiYi-(r(2)+1) + X YiYi-(r(2)+2).

t=1 ~~~i=1 i-i

For the fixed value of k we are working with, we define

j (k) j (k)
(4.33) a(k) = (0,,k - 1), , a(k- 1), 0, 0, (k - 1), . k, - 1),

j (k)
0,0,0,a(k -1), * ,&(k-1))

where, however,
m(k-1)

(4.34) a(k - 1) = ( , ,i )
All the previous formulas hold with bars on the various terms if the bar vectors

are defined in the obvious way. Our purpose in introducing them is to make
certain estimates, as follows. Let G, be the set of indices where both Yi and yi-N
are equal to one. Let G2, G3,-- , G7 be similarly defined using the pairs yi and
Y-r(1), ~Yi and Yi-(r(1)+1), Y- and Yi-(r(2)+2), y- and Yi-r(2), Y- and yi(r(2)+l), and Yi and
Yi-(r(2)+2). It follows from (4.32) with bars that

(4.35) lim 3n(Gi) + n(G2) + n(G3) + n(G4) + n(G5) + n(G6) + n(G7) - 1
i(k)-- m(k)

when n(Gi) is the number of elements in Gi. Furthermore, in (4.32) without bars
the sums can be taken respectively over G,--- , G7 since ya = 1 implies Y8 = 1.
We note also that for each i the set Gi is a set of consecutive integers, and that
G2, G3, and G4 as well as Gs, G6, and G7 differ by at most one element. This implies
that

m(k) m(k-1)
(4.36) L yj(k)ysN...(k) < K*1 L xi(k - 1)xi_w_t(k - 1), t = 0, 1,

i=1 i=l

where K1 is not larger than 2 plus the whole number of times that m(k - 1) goes
into the number of elements in G1. (We had denoted the number of elements in
G, by n(GU).)

Similarly, we have that
m(k) mn(k-1)
Y_ yi(k)yj-.r(1)-(k) < K2* xi(k - 1)xi-.(l)-t(k - 1),

(4.37) j=11=
m(k) m(k-1)

y (k)Yi-r(1)-1-t(k) < K3
1

xi(k - 1)Xi-r(l)-lA - 1),
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and that
m(k) m(k-1)

(4.38) . Yi(k)Yi-r(1)-2-t(k) < K4 , xi(k - 1)Xi-(l)-2-t(k- 1)
t=l i=l

t = 0, 1, where Ki is not larger than 2 more than the number of times m(k - 1)
goes into n(Gi), i = 2, 3, 4.

Similarly,
m(k) m(k-1)

yYi(k)Yi-r(2)-t(k) < K5 EI xi(k - I)Xi-r(2)-t(k - 1),
(4.39) t=1 i=1

m(k) r (k-1)
F- Yi(k)Yi-r(2)-l-t(k) < K6* , xi(k - l)xi-r(2)-l-t(k- 1),

and
m(k) m(k-1)

(4.40) F_ yi(k)yi-r(2)-2 t(k) < K7 E xi(k - 1)xi-r(2)-2-t(k- 1),
i=1 i=1

where t = 0,1, and where K5, K6, and K7 are defined as in the previous cases
and are not larger, respectively, than 2 plus the number of times that m(k - 1)
goes into n(G5), n(G6), and n(G7). We see from the remarks following (4.35) that
we may take K1 = K1, K2 = max (K2, K3, K4), and K3 = max (K5, K*, K7).

Before proceeding to the next lemma it is convenient to introduce the following
notation:

(4.41)=1 m[(k) m(k)
(4.41) M(k) =3m(k) supEL Xi(k)Xi-r(k) + x xi(k)Xi-r_l(k)

m(k)
+ xxi(k)xi-r-2(k)

noting that M(0) = 3
LEMMA 10. Let j(1), * , j(k - 1) be given so that

(4.42) M(r) < +e, r =1, ***,k-1.

Then there exists N so that j (k) > N implies that

(4.43) M(k) <4 + e

PROOF. The lemma is an immediate consequence of lemma 9.
LEMMA 11. Given e > 0, then if {j (k)} tends to infinity sufficiently rapidly, we

have for all n
1 m(n)

(4.44) n) xi(n)xi_j(n) <4 + e,

for all j an odd integer.
PROOF. The result holds for n = 0, as we easily see. We suppose that

j (1), * * *, j (k - 1) has been chosen so that the result holds for n = 1, * k - 1,
and also so that

(4.45) M(n) <4 + Et
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holds also for n = 1, * , k - 1. It then follows from lemma 9 that
m(k) m(k-1)

(4.46) E xj(k)x_j-(k) < 3K1 , xi(k - )x(j)(k- 1)
[ m(k-1) m(k-1)

+ K2 ,2 xi(k- 1)xj-,(j)(k- 1) + xi(k - 1)xj-r(l)-l(k - 1)

m(k-1)
+ E xi(k - 1)xi-,(l)-2(k- 1)

[m(k-1) m(k-1)
+ K3 E xi(k- 1)Xi_r(2)(k - 1) + xi(k - 1)xi-,(2)1l(k- 1)

_i-i i=l

m(k-1)
+ xi(k - 1)xi-,,2)-2(k- 1)1.

Applying the induction hypothesis and (4.45) to the right side of (4.46), we
obtain for j(k) 2 N(j(1), - * *, j(k - 1) that it is less than or equal to
(4.47) 3K1m(k - 1) ( + e) + 3K2m(k - 1) ( + e) + 3K3m(k - 1) (f + e).
If we now divide through by m(k) and apply the first part of lemma 9, we see
that if j(k) is chosen sufficiently large, the conclusion of the lemma holds for
n = k. This concludes the proof of the lemma.
LEMMA 12. Given e > 0, then if {j (k)} tends to infinity sufficiently rapidly

we have

(4.48) A(Anf i(A)) < + e,
for all j an odd integer.

PROOF. This follows directly from lemma 11 and from lemmas 7 and 8.
* As we have remarked earlier, TAm(k)(k) equals Al(k), with error tending to
zero as j (k) tends to infinity. (Recall that this means that the measure of the
symmetric difference of the sets tends to zero.)

Before proceeding to the next lemma, we introduce more notation: let GA(k),
1 < k < m(k), be that subset of Aj(k) which is mapped by Tm(k)-i+l into Al(k).
Then we have Gj(k) = ri-m(k)Gm(k)(k). We also let

m(k) m(k)
(4.49) G*(k)= U Gj(k), A*(k)= U Aj(k).

j= j=1

It follows from our preceding remarks that G*(k), which is obviously contained in
A*(k), equals A*(k) with error tending to zero as j (k + 1) tends to infinity.
Next, let A = (2, 1) as in lemma 7. We have then, as before,

m(k)
(4.50) A = xI(k)Aj(k),

i=1

and, for any transformation u-,
m(k)

(4.51) a(A) = ,2 Xi(k)o-(Aj(k)).
i=1
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Recall that we write A = B + E(a) for two sets whose symmetric difference has
measure less than S.
LEMMA 13. Let a be an arbitrary measurable transformation which commutes

with T and let A = (2, 1). We have then
m(k)

(4.52) a(A n G*(k)) = , xi(k)Ti-'(of(G,(k))) n G*(k) + E(a),
i=l

where a tends to zero uniformly in u- as j (k + 1) tends to infinity (and where the
xi(k) is given as in lemma 7).

PROOF. First we establish that
(4.53) G*(k) = X + N + E(v)
where 7 tends to zero as j (k + 1) tends to infinity. To see this note that we may
write

m(k)
(4.54) cG*(k) = cA*(k) + E T-[Am(k)(k) - Gm(k)(k)],

j=0
and consequently,
(4.55) ,u(cG*(k)) < ,u(cA*(k)) + m(k)/I(Am(k)(k) - Gm(k)(k))

< A(cA*(k)) + m(k)I(AmW(k))
.~(c~(k) + j(k + 1)

This implies (4.53) as we may readily see from the construction.
Next we note that (4.53) implies

(4.56) u(Gi(k)) n G* = cr(Gi(k)) + E(S/m(k)),
where a tends to zero uniformly in a as j (k + 1) tends to infinity. It follows from
the definition that

m(k) m(k)
(4.57) A n G*(k) = i xi(k)Gi(k) = E xiTi-Gi(k).

i=l i=l

Equation (4.56) and the fact that r is measure preserving imply that

(4.58) Ti-lo(Gl(k)) = ri-1(.(G1(k)) n G*) + E(S/m(k)).
Equations (4.57) and (4.58) together with the fact that a and r commute yield

m(k)
(4.59) o(A n G*(k)) = E x-Ti-(a(G1(k)) n G*(k)) + E(a),

i=l

where 5 tends to zero uniformly in a- as j (k + 1) tends to infinity.
LEMMA 14. If a is a measurable square root of T, then for each k there exist

{Hi(k), 1 < i < m(k)}, pairwise disjoint subsets of G1(k), such that
m(k)

G*(k) n -(Gl(k)) = Ti-Hi(k),
(4.60) =

Hi(k) = 71-i(Gi(k) n a(Gi(k))).
PROOF. If we define the sets by the second formula of (4.60) it is clear that

they satisfy the first. It only remains to show that the sets are pairwise disjoint.



GEOMETRIC CONSTRUCTION 349

In order to see this, suppose that there exists i(l) < i(2) and a point
x e Hi(l) n Hi(2). It follows from the definitions that this implies that there
exist two points xi and x2 in Gi(k) such that o-(xi) = Ti(2)-i(l)a(X2). Applying a
to both sides of the equation, we find that x belongs to Gi(2)-i(l)(k), which yields
a contradiction.

In the following lemma, as in lemma 13, the xi(k) are given as in lemma 7.
LEMMA 15. If a is a measurable square root of r, then there exist {Ji(k), 1 < i <

m(k)} pairwise disjoint subsets of A1(k) such that
mt(k) m(k)

(4.61) a(A n G*(k)) = E_ E_ xi(k)7(i+J-2)modm( )Jj(k) + E(a),

uhere a tends to zero uniformly in a as j (k + 1) tends to infinity.
PROOF. We note that as the j(k) are changed, the transformation r is

changed, and consequently, so are its square roots. The uniformity condition
given by the lemma is with respect to this changing class of square roots.
From lemmas 13 and 14, with Jj(k) = Hi(k), we have

,n(k) m(k)
(4.62) o(A n G*(k)) = E E xi(k)Ti-1Ti-1Jj(k) + E(61),

j=1 i=1

where 5, tends to zero uniformly in a as j (k + 1) tends to infinity. Note also, as
we shall show, that

(4.63) Tm(k)Ji(k) n Jj(k) = 0

if i 5$ j, 1 < i, j < m(k). If not, there exist i(l) and i(2) such that
(4.64) Tm(k)-(i(l)-l)+(i(2)-l)Ti(l)-lJi(l) n iT(2) 'Ji(2) $ 0.
This implies that there exist points xi and X2 in Gi(k) such that
(4.65) im(k)-(i(l)-l)+(i(2)-l)X1 = X2.

Equation (4.65) and the fact that the points are in Gi(k) imply that the exponent
in (4.65) is equal to zero modulo m(k). This is impossible, and we have (4.63).
Equation (4.63) implies that

(4.66) rTJi = Tjmodmt(k)J + E(i), 0 < j < 2m(k),
where the sum of the bi is bounded by the measure of cG0(k) n Al(k). This in
turn implies that

m(k) m(k)
(4.67) E E x (k)T-i-17-1'J(k)

m(k) m(k)
= E xi(k)T(i+j-2)modm(k)JA(k) + E[m(k),A(cGi(k) nAl(k))],

j=l i=l

which, together with (4.62), yields the lemma, since the measure of the set
cG1(k) n Al(k) tends to zero as j(k + 1) tends to infinity.
The next lemma is purely combinatorial, as are lemmas 8 through 11. It will

enable us to make estimates on the size of the intersection of the set A = (2, 1)
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with odd translates of itself (that is, translates under T2n-) under the assumption
that a nonsingular square root exists. The estimate will be that the size of the
intersection of A with certain of its odd translates is nearly as big as A. This, of
course, is sufficient to prove the theorem. The sequences we refer to in the lemma
which follows need not be given as in lemma 7, although it will only be applied
to such sequences. Finally, remark that the set A was selected to equal (2, 1) for
convenience. It could have been chosen equally well to be (0, 2) for example.
For a set G, we again let n(G) be the number of elements in it.
LEMMA 16. Let ai = (Xi, * * Xin), i = 1, * * *, k be k sequences of zeros and

ones of length n. Let {b;, i = 1, k, k} be nonnegative numbers adding to unity, and
suppose that there is a subset G of {1, * , n} such that

k
(4.68) bixij > 1 - for all j in G.

i=l

Then there exists an integer w, 1 < w < k, such that

(4.69) E bixijx.j > n(G)(1 -2).
jinG i=1

PROOF. We may assume, without loss of generality, that bi = 1/k, if we
proceed as follows. First note that we can certainly suppose them to be rational
numbers. Writing these numbers over a common denominator, we have bi =
mi/m. Then consider the problem for the a's, obtained by taking each ai mi
times; this reduces the lemma to the case where k equals the sum of the mi's, and
where all the b's are equal to 1/m.

Let B(i) be the subset of G such that for j in B(i)

(4.70) xij= 0.

Let

(4.71) =infnBi)
)1<ik n(G)

where n(B(i)) and n(G) stand for the number of elements in B(i) and G re-
spectively. By changing the order of summation from (4.71), we have

k

(4.72) L \B(i)(j) > kn(G)S.
jinG Li=1

It then follows easily from (4.72) that for at least one value of j, say j (0),
k

(4.73) E P,B(i)(J(0)) > kb.
i=1

Equation (4.73) implies that [k3] of the sets Bi intersects (here [ks] means the
least integer greater than or equal to ks), say Bi(l), Bi(2), * **, ([k, and
j(O) e C = nr 1 Bi(j). We then have

k

(4.74) E xjj(o) = E xjj(o) + L xjj(o).
j=l j(i(l), -,i([kS )) jE(i(l). ,iQk8 1))
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It follows from the definition of Bi(,) that xjj(o) = 0 for j E (i(l), ,i([k])),
and consequently, (4.74) implies that

k
(4.75) xjj(o) < k - [k6] < k(1 -6)

Since we have assumed that bj = l/k, (4.75) implies
k

(4.76) Y2 bjxjj(o) < (1-)
j=1

which together with (4.68) and (4.71), yields

(4.77) inf n(B(i)) = 6 < 7
<i<n. n(G)

Equation (4.77) in turn yields that there exists an integer w such that

(4.78) n(B(w)) <
n(G)

Now,
k k

(4.79) F xijxwj = 2 xijxwj
jeG i=1 i=ljEG

k k
= 52 xijxwj + L E( Xijxw

i=1 jeG-B(w) i=1 jEB(w)
k k

=- E XijXwi L GxijG
i=1 jeG-B(w) i=1 j(G-B(w)

so that
k

(4.80) 5 xjxwj = xij
jEG i=1 i=1 jeG-B(w)

k k
+ , n(B(w))- 2 n(B(w))

k
> FI Z xij - kn(B(w)).

i=1 j(eG
Keeping in mind that bi 1/k, this implies

k k
(4.81) E F, bixijxwj >. Y2 bixi1 - n(B(w))

jeG i=1 jEG i=l

> n(G)(1 - ,) - n(B(w))

=n(G) 41 _ '7_ n(B(w))}
= n(G){1 - n(G)

LEMMA 17. If {j (k)} tends to infinity sufficiently rapidly, and if T(j (k)) has a
nonsingular square root a-, then there exists an integer N(rq) such that

(4.82) (a(A) - rN(A)) < n

for each 77 > 0.
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PROOF. If {j (k)} tends to infinity sufficiently rapidly, then there exists a
sequence {f (k)} 4 0 such that

(4.83) lim 6(k)/M(Ai(k)) = 0,

m(k) m(k)
(4.84) o(A n G*(k)) = E xi_j+1(k)Di,j(k) + E(a(k)),

j=i i=1

where Di,j(k) = Ti-IJj(k), and consequently, where

(4.85) Di,j(k) C Ai(k), 1 < i, j < m(k),
and

(4.86) TDi j(k) = D*+,, (k), 1 < j < m(k) - 1,
as we may see from lemma 15. It follows from lemma 7 that we may also satisfy,
at the same time, the conditions

(4.87) G*(k) = X + N + E(5(k))
and

(4.88) f [k Aixij] - #jA < 6(k), j =0,1, *,m(k).

We have from lemmas 1 and 2 that for X > 0 and M > 0 there exists an
n> M and an index set G such that

(4.89) (A) = U Ai(n) + E(X),

(4.90) a(A) n Ai(n) = Ai(n) + E(XA,(Ai(n))), i e G.
From (4.84), (4.87), and (4.90) we obtain

m(k)
(4.91) F, xi_j+i(n)Di,j(n) = Ai(n) + E(26(n) + Xp.(Ai(n))).

,i=i

We then define bj = ,p(Di,j)/,(U(kl) Di ) and note that (4.91) yields
m(k) F2 1n(4.92) )xi-j+lbj > 1 (n) + i G.
i=1 IAp(Ai(n)) I EG

Since the sequence {a(k)} has property (4.83), we have that if M is sufficiently
large, then

m(k)
(4.93) F_ xi_j+1bj > 1 - 2X, i e G.

j=1

We are now in a position to apply lemma 16 with ai = {xj_i+1, 1 < j < m(k)}
in order to find that there exists a w such that

m(kc)
(4.94) F2 bjxi_1+1xi_.+1 > n(G)(1 - 4X).

iEG jel

In order to evaluate the left side of equation (4.94), we keep in mind the defi-
nition of the constants xi and bj, and the fact that the sets A i(k), i = 1, 2, **,
m(k) are pairwise disjoint, and that
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(4.95) Di,j(k) C Ai(k).
We see that it is given by

(4.96) 1 f{L () } {k L(k)

Further, it follows from (4.91) that
m(k)

(4.97) , D,jj(n) = Ai(n) + E(26(n) + XA(AI(n))),
3=1

and thus, that for M large enough,

(4.98) A (E(k) Dij) > A(Ai) (1 - X).
j=1

Formulas (4.89) and (4.98) imply

(4.99) h(L Dli)n(G)(1 - 4X) 2 (.u(a(A)) - X)(1 - X)(1- 4X)).
j=1

Furthermore we have that (4.84), (4.87), and (4.89) imply that
m(k)

(4.100) oa(A) = , _ xi_j+qDi,j(n) + E(X + 26(n)),
ieG j=1

and consequently, that with M sufficiently large,
r m(k)

(4.101) JEE xi_j+, Di-4-k(A) < X + 26(n) < 2X.
EG j=l

Putting (4.94), (4.96), (4.99), (4.88), and (4.101) together, we obtain that

(4.102) f kw-(A)a4(A) > ,(o-(A)) + e(X),
where E(X) tends to zero as X tends to zero, and we see that the lenuma follows
by taking X sufficiently small, with N = w - 1.

Proof of the theorem in the square root case. To see that the theorem holds, we
choose a sequence {j (k)} tending to infinity sufficiently rapidly for lemmas 5, 6,
12, and 17 to hold. We then have a transformation having continuous spectrum
which is not strongly mixing and which satisfies the condition that

(i) A(A n rjA) < 3 + e,
for all odd j, for A = (, 1). Furthermore, if the transformation has a nonsingular
square root, then for each i7 > 0 there is an N = N(77) such that

(ii) A(af(A) - TN(A)) < 77.

Part (ii) means that a(A) C 7TN(A) + F, where the measure of F is less than or
equal to 77, and thus
(4.103) 0-cr(A) C TN(a(A)) + a(F)

C TN (TN(A ) + F) + o-(F)
= T2N(A) + TN(F) + a(F).
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Since o is nonsingular and T is measure preserving, this implies that
(4.104) A = r2(A) + E(,q) + E(.E(f)),
where e(t7) tends to zero as t7 tends to zero, contradicting (i), if e is sufficiently
small and v is sufficiently small.

Definition of the transformation in the general case. Let p(n) be the (n + 1)-th
prime, so that p(l) = 2, and let 7r(n) = p(l) ... p(n). Given a sequence
{j(k), k = 1, 2, ** } of integers with j(k) > 1, k > 1, we shall define an in-
vertible measure preserving transformation T = T({j(k)}) having the desired
properties. For convenience, the transformation T is defined on the union of the
unit interval with another interval N disjoint from it; the length of N depends
on the sequence {j(k)}.
The transformation is defined inductively. For r = k, we suppose that the

transformation is defined on part of the space, and we extend the domain of
definition for r = k + 1.

For r = k, we suppose the transformation given as follows. Let m(k) =
3m(k - 1)j(k) + 37r(k), m(O) = 2, and suppose that there exist m(k) intervals
of equal length A1(k), * , Am.(k)(k), each a subinterval of the unit interval or of
N, and that T maps Ai-,(k) linearly onto As(k), i = 2, * , m(k).
For r = k + 1, we need to extend the definition of T in such a way that it

admits a representation, as in the preceding paragraph, with k replaced by
k + 1. This is accomplished in two steps.
The first step is the following. Divide Ai(k), (1 < i < m(k)) into j (k + 1)

consecutive subintervals of equal length denoting them
(4.105) Bi,A(k + 1), * * *, Bi,j(k+l)(k + 1), (1 < i < m(k)).
Since Ai_1(k) is mapped linearly onto Ai(k), (2 < i < m(k)), r also maps
Bi1,j(k + 1) linearly onto

(4.106) Bi,j(k + 1), (2 < i < m(k), 1 < j < j(k + 1))-
In this first step we extend T by mapping Bm(k) j(k + 1) linearly onto

(4.106a) Bi,j+1(k + 1), (1 < j < j(k + 1) - 1).
There are m(k) Ai(k)'s, and each Ai(k) is divided into j(k + 1) Bi,j(k + 1)'s so
that there are m(k)j (k + 1)Bi,j(k + 1)'s altogether. We write these sets with a
single subscript Bi(k + 1), (i = 1, * * , m(k)j(k + 1)), in such a way that T, as
thus far extended, maps Bi_1(k + 1) linearly onto

(4.106b) Bi(k + 1), (2 < i < m(k)j(k + 1)).
The second step in the extension of T is obtained by dividing Bi(k + 1) into

three consecutive subintervals of equal length BR(k + 1), Bh(k + 1), B3(k + 1).
The transformation T, as already defined, maps B_1 (k + 1) linearly onto
(4.107) B-(k + 1), (2 < i < m(k)j(k + 1),1 < u < 3).
We take from that subinterval of N, where -r is as yet undefined, 32r(k + 1)
consecutive subintervals of equal length equal to the length of the Bt (k + 1) and
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denote these 37r(k + 1) subintervals of N by Ej(k + 1), (1 j < 37r(k + 1)).
(We suppose that N is just big enough for there to be an interval left over at each
stage.) Then extend T so that the sequence of 3m(k)j (k + 1) + 371r(k + 1) sets
(with (k + 1) deleted for simplicity), with s = m(k)j (k + 1),
(4.108) E1, . , E1(k+l)_l, Bli, . , B', E.(k+l), . , E2.(k+ )_-

Bi, * ,B2, E2r(k+l)) * * E3,,(k+l), B3, *I* B3,
having the property that T maps each set, except for the last, linearly onto the
next set. We denote this sequence by Ai(k + 1), (1 < i < m(k + 1)), where
m(k + 1) = 3m(k)j(k + 1) + 37r(k + 1).
To complete the induction it remains to define T for r = 0. We set Al(0) =

(0, 2) and A2(0) = (2,1) and define T initially as the linear map of Al(0) onto
A2(0). An intuitive description of the transformation is similar to the square root
case and is the following.
At the k-th stage there is a stack of m(k) intervals of equal length, and T maps

each point to the one directly above so that the points of the top interval are not
yet mapped anywhere.
The first step of the extension of r is obtained as follows. The original stack is

split into j (k + 1) equal and consecutive substacks, and these are stacked in
order. This has the effect of mapping a j (k + 1) - 1/j (k + 1) part of the top
interval of the original stack into the bottom interval of the original stack.

In the second step of the extension, we take the resulting stack, which is
composed of m(k)j(k + 1) intervals, and divide it into three consecutive and
equal substacks. We then take 37r(k + 1) consecutive and equal subintervals
of N, where T is as yet undefined, of length equal to the length of each of the
intervals of the three stacks, and put r(k + 1) - 1 under the first stack, 7r(k + 1)
under the second stack, and 7r(k + 1) + 1 under the third stack. The thus
modified three stacks are then stacked in order.

Properties of the transformation in the general case. The transformation is again
defined inductively. In what follows we again do not suppose that the measure
space is normalized. We need to make one unimportant remark before proceed-
ing. The sequence {j(k)} must tend to infinity sufficiently rapidly so that N
has finite measure. This was true automatically before, since 7r(k) = 2 then. We
divide the proof into several lemmas. When the proofs are exactly as in the
square root case we omit them.
LEMMA 1. Let {EJ,k, 1 < j < r(k), 1 < k < +oo} generate the Borel field, and

suppose that for each k, 1 < k < +xo, the sets {Ej,k, 1 < j < r (k)} are pairwise
disjoint. Suppose also that each Ej,k is the union of a finite number of sets from the
class {Ej,k+l, 1 < j < r(k + 1)}. Then for each e > 0 and A in the Borel field,
there exists a set of indices G(E, A) and an integer k(e, A) such that A equals
UjCG(e,A) Ej,k(e,A) with an error of E, and

(4.109) 1(A n EJ,k(c,A)) > (1 - e)t(Ejk(6A))
for j EE G(e, A).
LEMMA 2. The sets {Aj(k), 1 < j < m(k), 1 < k < +oo} generate the Borel
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field; furthermore, each Aj(k) is the union of 3j (k + 1) sets of the class {A1(k + 1),
1 < j < m(k + 1)}.
LEMMA 3. The sets {Bj(k), 1 < j < m(k - 1)j(k), 1 < k < +oo} generate the

Borel field; furthermore, each Bj(k) is the union of 3j (k + 1) sets of the class
{Bj(k + 1), 1 <j < m(k)j(k + 1)}.
LEMMA 4. Given {a(k)} I 0, and if {j (k)} tends to infinity sufficiently rapidly,

then for all k,
(i) ,(UJT Aj(k)) 2 (1 - S(k))M(X + N),
(ii) A(TA.(k)(k) A Al(k)) < (1 - 5(k)).(Al(k)),
(iii) m(k) depends only on 8(0), * * *, 6(k- 1).
LEMMA 5. Let {j(k)} be given. Then T({j(k)}) has continuous spectrum.
LEMMA 6. The transformation T({j(k)}) is not strongly mixing.
PROOF. Let B = Bl(k + 1). We have from the construction that

(4.110) 8X(B nTm(rV(r)+,r(r)B) 2 1A(B),
for r > k. Since IA(Bl(k + 1)) tends to zero as k tends to infinity, the normalized
measure of Bl(k + 1) also has this property. The proof is complete if we take k
sufficiently large since strong mixing implies that

(4.111) lim (flr1)_j ,B) 2

j(, Ac(X + N) LM(X + N)J

We again define 1A = A, OA = 0, where A is a set, and 0 is the empty set.
We fix the prime p and prove that the transformation has no p-th root.
LEMMA 7. Let A = Am(p) (p), and let {j (k)} be given. Then for each k > p there

exists a sequence {xi(k), 1 < i < m(k)} of zeros and ones such that
m(k)

(4.112) A = E xi(k)Ai(k).
i=l

Furthermore, we have
mn(k)

(4.113) TrA = F, xi_.Ai(k) + E(t1(j(k + 1))),
i=1

for j = 1, * , m(k), where q (j(k + 1)) tends to zero as j(k + 1) tends to infinity,
where the subscripts are taken modulo m(k).
LEMMA 8. Let a(k) = (xi(k), * * , xm(k) (k)) where the sequences (xi(k), ***

xm(k)(k)) are those of lemma 7. Then the a(k) are given inductively by

(4.114) a(p) = 0* 0 I

/r(k) -1 j(k) 7r(k)
co (k) = O, * * Oy o(k -1), ..*, cx(k -1), O, ..* * Oy

a(k=()
j(k) -r(k) 1 j(k) )
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We note that subscripts on the elements of a (k) are understood to be modulo
m(k), so that letting i - j = r modulo m(k), then xi_j(k) = x,(k). Furthermore,
note that m(k), k > p, are numbers divisible by p so that with the convention
we use, xN(k) has a subscript divisible by p if and only if N is divisible by p for
each k > p.
LEMMA 9. Let M be an integer, k > p + 1, and let N = (M), r(l) = (N +

m(k - 1)j(k) + 1), and r(2) = (N + 2m(k - 1)j(k) + 3), where (a) is that inte-
ger equal to a modulo m(k) which satisfies-m(k)/2 < (a) < m(k)/2. Then there
exist three positive numbers K1, K2, K3 (depending on j(k)) such that

(4.115) urn 3(KI + K2 + K3)m(k - 1) 1
j(kc)-wo m(k)

and such that, for t = 0, 1,

m(k) m(k-1)
(4.116) , xj(k)xj_M_g(k) < 3K1 , xi(k -l)x__g(k - 1)

Fm(k-1) m(k-1)
+ K2 xi(k- 1)xir(l).t(k- 1) + , xi(k- 1)x_,(l)_l_t(k - 1)

m(k-1)
+ E xi(k -1)xir(l)-2-t( -1)

i=1

Fm(k-1 ) m(k-1)
+ K3 E xi(k- 1)xi_r(2)_t(k- 1) + E xi(k -l)Xi-r(2)-l-t(k - 1)

m(k-1)
+ xi(k -1)Xi-r(2)-2-t(k - 1)1.

i=1

We introduce the following notation:
1 Fm(k) m(k)

(4.117) M(k) = sup xxi(k)xi_r(k) + F, xj(k)xj_r_(k)

+ x(k)xi22(k)1.
for k 2 p > 2, noting that M(p) = jm(p).
LEMMA 10. Let j(p), j,j(k - 1) be given so that

(4.118) M(r) < I +e, r= p, -,k-1.

Then there exists N so that j (k) > N implies

(4.119) M(p) < I +

LEMMA 11. Given e> 0, then if {j (k)} tends to infinity sufficiently rapidly, for
all n > p we have

1 m(n) 1
(4.120) m E xj(n)xi-i(n) < + e,

for all j not divisible by p.
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PROOF. The result holds for n = p, as we easily see. We suppose that
j (p), * *, j (k- 1) has been chosen so that the result holds for n = p, k, - 1,
and

(4.121) M(n) < 3m(p) + e,

holds also for n = p, k, - 1. It then follows from lemma 9 that
m(k) m(k-1)

(4.122) E xj(k)xji_(k) < 3K1 , xi(k - I)xi(j)(k - 1)
imtk1 )i(k1

+ K2 [,2 xi(k - 1)xi_r(l)(k - 1) + __xi(k- I)xi-,(,)-,(k- 1)
m(k-1)

+ E xi(k- 1)Xi-r(l)-2(k- I)
Fm(k-1) m(k- 1)

+ K3 E, xi(k- 1)Xi-r(2)(k - 1) + , x(k- 1)xi-,(2)_l(k - 1)

m(k-1)
+ , xi(k- I)Xi-r(2)-2(k- 1)

Applying the induction hypothesis and (4.121) to the right side of (4.122) we
obtain for j (k) > N(j (p), * * , j (k- 1)) that it is less than or equal to
(4.123) 3K1m(k - 1) (, m(p) + E) + 3K2m(k- 1) (.m(p) + E)

+ 3K3m(k - 1) (sm(p) + e).
If we now divide through by m(k) and apply the first part of lemma 9, we see
that if j(k) is chosen sufficiently large, the conclusion of the lemma holds for
n = k. This concludes the proof of the lemma.
LEMMA 12. Given e> 0, then if {j (k)} tends to infinity sufficiently rapidly, we

have

(4.124) (A n Ti(A)) < 3m (p) + e,
for all j not divisible by p.

Recall that Gj(k), 1 < k < m(k) is that subset of Aj(k) which is mapped by
im(k)-i+l into Al(k). We then have Gj(k) = Ti-m(k)Gm(k)(k). We also let

m(k) m(k)
(4.125) G*(k) = U Gj(k), A*(k) = U Aj(k).

.=1 j=l

It follows from our preceding remarks that G*(k), which is obviously contained
in A*(Ik), equals A*(k) with error tending to zero as j (k + 1) tends to infinity.
Next, let A = Am(p) (p) as in lemma 7. Then, as before, we have

m(k)
(4.126) A = xi(k)Ai(k),

and, for any transformation o-,
m(k)

(4.127) o(A) = Ex(k)(A(k)).
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LEMMA 13. Let a be an arbitrary measurable transformation which commutes
with TX and let A = Am(p)(p). We then have

m(k)
(4.128) a(A n G*(k)) = xi(k)Tri-(o(G1(k)) n G*(k)) + E(a),

t=l

where a tends to zero uniformly in a- as j (k + 1) tends to infinity (and where the
xi(k) are given as in lemma 7).
LEMMA 14. If a- is a measurable p-th root of r, then for each k there exist

{Hi(k), 1 < i < m(k)} pairwise disjoint subsets of G1(k), such that
m(k)

G*(k) n a-(Gi(k)) = i-Hi(k),
(4.129) i=1

Hi(k) = rl-i(Gi(k) n a(Gi(k))).
LEMMA 15. If a is a measurable p-th root of Tr then there exist {Ji(k), 1 < i <

m(k)} pairwise disjoint subsets of Ai(k) such that
m(k) m(k)

(4.130) a-(A n G*(k)) = E Xi(k)T(i+i-2) mod m(k)J#(k) + E(a),

where a tends to zero uniformly in a as j (k + 1) tends to infinity.
LEMMA 16. Let a, = (Xi,, - , x in), i = 1, . .. , k be k sequences of zeros and

ones of length n. Let {b1, i = 1, * , k} be nonnegative numbers whose sum equals
one, and suppose that there is a subset G of {1, * , n} such that

k
(4.131) E_ bixij > 1-rl for all j in G.

i=l

Then there exists an integer w, 1 < w < k, such that
k

(4.132) , _ bix3jxwj > n(G)(1 -2,).
j in G i=1

LEMMA 17. If fj (k)} tends to infinity sufficiently rapidly and if r(j (k)) has a
nonsingular p-th root a, then there exists an integer N(rq) such that

(4.133) (ay(A) - TN(A)) <5 7

for each 77 > 0.
Proof of the theorem in the general case. To see that the theorem holds, choose

a sequence {j(k)} tending to infinity sufficiently rapidly for lemmas 5, 6, 12,
and 17 to hold. We then have a transformation having continuous spectrum
which is not strongly mixing and which satisfies the condition that

(i) A(A n TwA < 1mp +e

for all odd j not divisible by p, for A = Am(,)(p). Furthermore, if the transfor-
mation has a nonsingular p-th root, then for each v > 0 there is an N = N(G)
such that

(ii) A(a(A) - rN(A)) < v.
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Part (ii) means that a(A) C TN(A) + F, where the measure of F is less than or
equal to 7, and thus
(4.134) oP(A) C rPN(A) + ao'(F) + 7N(o-p2(F)) + * + T(-,1)N(F).
Since a is nonsingular and T is measure preserving, this implies that
(4.135) A = 7vN-1(A) + E(in) + E(a(r1)),
where, if e is sufficiently small and v is sufficiently small, e(rq) tends to zero as
tends to zero, contradicting (i).
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