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1. Introduction

The notion of a general branching process was introduced in ([1] chapter III).
The general branching process is a Markov branching process whose state space
Q consists of all nonnegative integral-valued measures concentrated on finite
subsets of a given space X. In [1], the discrete time-parameter case is studied
in detail.

In the present paper we shall be interested in the continuous time-parameter
case, and we shall restrict ourselves to the purely discontinuous Feller type.
This restriction, not allowing diffusion of individual particles, is natural for some
basic spaces X and generally for those processes where the types of particles
change by fission only. In [1] references are given to papers studying general
branching processes with a kind of diffusion of individual particles and with a
simple fission. The present paper does not include these examples as special cases;
on the other hand, it studies the purely discontinuous case in full generality.
The axiomatic treatment presents certain existence problems which are solved
in section 2. In section 3 we shall provide necessary and sufficient conditions for
the degeneration of the process. We may expect that the general case could be
studied in a similar way if Feller's pure-discontinuity condition were replaced
by a kind of mixed-type condition.

In the whole paper we shall use, with few exceptions, the same notation as
in [1]; in particular, X will denote the space of types of particles. We shall assume
that X is a s-compact metric space (that is, a denumerable union of compact
subsets), and we shall denote by & the corresponding s-algebra of Borel sets in X.
By @, we shall denote the set of all nonnegative measures » on &, which are con-
centrated on finite subsets of X and assume integral values. Each element

w € @ may be characterized by a double vector (x;, ny; - ;ax, n) where
{xy, -+, zx} is the finite subset of X on which w is concentrated (that is,
w(@ — {z1, -+, x}) = 0) and n; = o({z,}). According to the definition, n, is a

nonnegative integer. If we denote by Z the measure concentrated at the point
z € X and which assumes there the value 1, we may express the relation between
w and the corresponding double vector (x;, n1; - - - ; Tk, T&) by @ = X1 0%
We shall denote by Y the Kolmogorov s-algebra in Q, that is, the least o-
algebra containing all cylinder sets {w € Q: w({z}) = n}, z € X, n an integer.
The set of all bounded -measurable functions on X will be denoted by &, and
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the set of all nonnegative or nonpositive functions from F will be denoted by
F* or 5. The symbols 0 or 1 will denote the function f = 0 or f = 1; the symhol
0 will also denote the measure w € Q, w(X) = 0. For f € F and w € @ we shall
write [f, w] = fxf(;v)w((lx). The total variation of a finite generalized measure
m on X will be denoted by |m|, and S, will be the shift operator in 2, namely
S.I' = {0': o — w € I'}. The set indicatrix in an arbitrary space will be denoted
by d.

2. Branching processes with continuous time parameter

Any function P(s, w, ¢, I') defined for all s £ t, w € Q, and I' € Y will be called
a branching process with continuous time paramcter if it satisfies the following
conditions:

(2.1) P(s, -, t, 1) is Y-measurable;

(2.2 P(s,w, t, ©) is a nonnegative measure on Y;
(2.3) P(s,w, t,Q) = 1;

2.4 Plyw t, 1) = dw, I');

(25) 1’([1, w, t;;, 1‘) = /; 1)(t2, w', t:;, I')I’([l, w, tz, ([U)/) f()l' all t] S lz S 13;

(2.6) P(s,w) 4 @y 1, 1) = ﬁz ﬂz d(wl + wh, 1)P(s, @i, 1, dat) (s, ws, £, dwy);

@n I Pltyw,s,1) = Pls, 0,8, 1) _ | Pls0,41) = Pls, 0,5, 1)

t—s” t—s t—s® t—s

= p(s,w, I') exists and is finite for cach s, w, I'.
Clearly, the following three conditions hold for p:
(2.8) p(t, -, ') is Y-measurable;
(2.9) p(l, », +) isa finite generalized measure on ;
(2.10) p(s, 0, {w}) L0, p(s, 0, 1) 20
for TCQ— {w and p(s,w,Q2) =0.
Let us denote by @ the Laplace functional of (s, w, ¢, -), that is, ®(s, w, ¢, f) =
/” eV 1P (s, w, t, do’) and let us write ¥ (s, w, t, f) = log ®(s, w, t, ) and ¢(s, w, [) =

L ebp(s, w, do’) and ¥ (s, w, f) = e~ V<lp(s, , [). By (2.6), ®(s, w1 + w1, f) =
‘1’(8, w1, t; f)d)(sy w2, t: f) &lld, by (27)) (a/as)CP(s, w, t} f)]8=t‘ = ‘P(ty w,_f). I'](‘llC(‘,

(2'11) ‘ro(t: wy + w2, f) = ¢(t) Wiy f)e[f.w-:} + (p(t, w2, f)p(f’wk]
and dividing by exp [f, w1 + w2} we obtain
(212) ‘P(t) wi + ws, f) = '/’(t) Wi, f) + lﬁ(t, Wy, f)

In the theory of branching processes, the transition probabilities, starting
with one particle of a certain type, arc fundamental. We introduce a special
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notation for them writing P(s, z, {, I') = P(s, %, t, I'). We shall apply the same
convention to all other functions p, ®, ¥, ¢, ¥, and so on. Particularly, the func-
tion p(t, x, T') = p(t, T, I') satisfies the following three conditions:

(2.13) p(t, -, T) 1s C-measurable;
(2.14) p(t, &, <) is a finite generalized measure on ;

(2.15) plt,x, ) <0 and pl,z, 1) >0 for T'CQ— {T},
plt, 2, Q) = 0.
The condition (2.13) follows from the fact that the mapping 2 — Z is X-Y-

measurable. Using this notation we may rewrite (2.12) in an equivalent form;
namely (¢, w, f) = [¢(¢, +, f), ] which implies

k
(2.16) p(t,w, T) = 25 np(t, 2, Szi—oT)

i=1
forw = Y f_, nx.

The existence problem may be formulated now as follows. Given a function
poon T X X XY satisfying (2.13)—(2.13), does there exist a function P for
which (2.1)-(2.7) hold with p defined by (2.16)? We shall solve this problem
under the assumption that 5(¢, x, I') is continuous with respect to ¢. This assump-
tion is supposed to hold in the rest of scction 2.

Suppose a function p on 7 X X X Y satisfying (2.13)-(2.15) and continuous
with respect to t is given, and let us define a function p on 77 X @ X Y by the
relation (2.16). 1t is easily seen that it satisfies (2.8)—(2.10) and it is continuous
with respect to . Hence, we may construct the fundamental Feller solution (sce
2]

(2.17) P(s, 0,1, 1) = kZO P®(s, w,t,T),

where
])((')(S’ w! t’ I') = (i(w) I‘) Cxp ['I<87 t? .>’ w]’
P® (s, @, t, T)

- /;l exp [/ (s, ¢, ), w] /:z PED(, ot Tpu(s', w, dw') ds',

(2.18) J@g@=ﬁﬁ@wwi

{{(8, w) = p(S, w, {w})r
ij(s: l) = q(s, ),
pl(sy W, I) =p(s,0I' — {wJ‘ )
It is well known from [2] that I’(s, o, ¢, I') satisfies (2.1), (2.2), (2.4), (2.5),
(2.7). Using (2.2) we could also prove that (2.6) holds. We shall omit the proof
which would be similar to that of theorem 3.3 in [3]. The only problem that re-

mains is to find under what conditions the process I” is “honest,” that is (2.3)
holds. To the author’s best knowledge no simple necessary and sufficient condi-
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tions are known even when the set X is finite and the process homogeneous. We
shall prove, however, that under a simple and not too restrictive condition on
first moments the process is honest.

We shall write m(w,t ¥) = [oo'(V)ple, t,ds’) and my(w,t, ¥V) =
Ja o' (Y)pi(w, t, dw’). Clearly,
mw, t, 1) = «(¥)q(t, w) + milw, {, Y),
Im|(w, t, 1) < —w(Y)q(t, ) + m(w, t, ).
We shall also use the notation 7 and 7; according to the rule stated above. It is
easily seen from (2.16) that m(w, t, Y) = [m(-,t, ), w].

THEOREM 1. For each t > 0, let

(2.19)

(2.20) 0 SUp 1g(s, )] < o, sup s, z, X) < «.

Ls<ltz€X 0<s<txEX

Then there exists exactly one process I satisfying all the conditions (2.1)—(2.7). The
corresponding logarithmic functional ¥ is the only nonpositive bounded solution o
the infinite system of differential equations

(2.21) 2 W2, 40) = =¥, 5,65, 4, 1), @EX,0<5<0)

with the initial condition ¥(t, x, &, ) = f(x).

Proor. Let us denote by I’ the Feller fundamental solution and by ®, ¥ the
corresponding Laplace and logarithmic functionals. We shall first show that the
corresponding functional ¥ satisfies (2.21). According to (2.17),

(2.22) B(s,w, t,f) = exp [f + J (5,8, *), w]
+ ‘[,t /;z exp [J(S, S’, '); w](l)(s" w,, f, ,f)pl(s', w, dw’) ds’.

Taking derivatives with respect to s we obtain
223) S a(s0,0) = =40 ), @] ep [+, 1, +), o]
— [, 865, o, 4, Npils, 0, d')
—[q(s, ), w] /st '/;l exp [J(s, &, ), w]®(s', o', t, HHp (s, w, du’) ds’
= — L ®(s, o, 1, )p(s, @, do')
= —&(s, 0, t, f) j;l exp [¥(s, -, 4, ), o — wlp(s, v, do').
Dividing by &(s, o, ¢, ) we get
(2.24) 2 s, 0,,0) = —4ls, 0, %G, -, 4,1)

which proves (2.21).
Yor each t > 0 and f € 5~ there exists a constant ks < 0 such that ky <
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Y(s,z,t,f) <0forallz € X and 0 < s < £. This follows from (2.20) and the
inequality

(2.25) P(s, z,t, T) > d(z, T) exp f Lals', @) ds'
which implies
(226)  B(s,2,1,f) 2 exp {f(@) + ['q(s', 2) s}
> exp {igf flx) + tislllf g(s', 2)} > 0.

We shall now prove that ¥(s, z, t, f) is, for each f € ¥ and ¢ > 0, the only
bounded nonpositive solution of (2.21) with respect to 5,0 < s < ¢ with the
initial condition f(x) for s = ¢. Let us suppose that this is not true for some ¢ and
f and let us write, for this ¢ and f, (s, x) instead of ¥ (s, z, {, f). According to the
assumption, there exists another solution %,(s, z) and a constant k; < 0 such that
k: L yi(s,z) K0fori=0,1,0<s<tand z € X, y(t, z) = nu(¢, z) for all =
and yo(s, ) # (s, ) for some couple (s, x). Let so be the greatest lower bound
of all those s for which yo(s, ) = (s, x) for all z € X. Clearly, s, is finite and
9o(so, ) = y1(so, x) for all z because of the continuity with respect to s. On the
other hand, to each ¢ > 0 there exist 2’ € X and s, sy — ¢ < s’ < s such that
yo(s', ') # yu(s', @'). Put ky = max {|kd|, |ki},

(2.27) ks = sup {mu(s, z, X) — q(s, 2)},

0<s<t,zEX
and e = (1/3ks) e=*and 8 = Supsy—e<s <snzex |Yo(s, ) — yi(s, z)|. According to the
assumptions, 0 < 8 < « and |yo(s;, T.) — (s, 71)] > (6/2) for some s, so —
e < 8 < s and x; € X. Integrating the equation in s; < s < s we get

(228)  yols, ) — sn, w) = [7 @lo, 1, vols, ) = Pls, 1, 3as, ) ds

= [ [ (exp no(s, ), @ = F] = exp (s, ), & — BDPals, 7, ds) ds.

Using the relation e* — ¢* = ¢*(u — v) (with w lying between w and v) and the
inequalities

[yi'(s) '); w = —fl] S _yi(s) xl) S k2y
l,/S; [.1/0(3; ) - .7/1(8, '), w — —2—?1]]—71(8, I, (]w) S 0’33,

we finally obtain

(2.29)

(2.30) g < |yo(ss, T1) — yalsy, 21)| < (80 — 81)0kse™

which implies the contradiction 1 < 2k;efe < 1.

Since y(s, ) = 0, (s < t, z € X) is a solution of (2.21), and since there is no
other nonpositive bounded solution with y({, ) = 0, we have ¥(s, z,¢,0) =0
which implies P(s, z, ¢, 2) = 1 for all z and s < ¢. Hence, the fundamental Feller
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solution is “honest” and it is well known from the general theory that it repre-
sents then the only solution of (2.1)—(2.7).

We shall now introduce the first moments of the transition probabilities. I.et
us write M(s, w, f, }) = fg o' (V)P(s,w, t,do’)and M (s, x, ¢, Y) = M(s, T, ¢, V).
Clearly,

(2.31)  M(s,w,t, Y)

i @(8, w, t, U([('y )'))]'7=U
do

il

% \I,('S) w, ty 0'([(', )V'))]6=0 = []7(5) ) ta Y); w]'

THEOREM 2. Let (2.20) hold for each t > 0 and lct (s, x, }') be continuous
with respect to s. Then all first moments are finite and

(2.32) Ms,x, ¢t T)
—den+ [ [T

i m(sy, T, day) - - Msp, ey, V)A(8y, -+, 8i)

where (s, ), denotes the sel s < 8 < --- < g < L.

Proor. The formula (2.32) is a formal consequence of (2.21) and (2.31).
However, since we do not know a priori whether the first moments are finite,
we must proceed more carefully. Tet us write, for a fixed ¢t > 0 and Y € &,
By(s, z,0) = B(s, 2, t, al(-, Yo <0) and W5 2,0) = log dy(s, 2, 0). Fur-
ther, choose arbitrary ¢; and ¢» such that ¢ < 62 < 0. I'rom the proof of the-
orem 1 we know that there is a constant K, > 0 such that ®(s, z, ¢) > K, for
al0 £ s<t,reXand o7 < ¢ < 0. Since w(1)e“®) is bounded in ¢ < o9
and w € Q, there exists A» < « such that

9 w(1)e P (s x {, dw)
2.3 2 s, 2, 0) = - ) ek
(2.33) % Y(s, 2, a) B .0 < K,

forall0 < s <t ze X, 0 <0 < oo Clearly,

(234) J(S, €, \IIU(S) ) U)) = [, cxXp [\I’U(sr Ty U)7 w = T]I_’(S) x, d"")

and

- i
(2.35) ;;-a oexp [Wo(s, -, 0), w — T

d
CcxXp [qlﬂ(sy ) ‘7), w = T:l 5; [‘P(’(Sv ) O')y W = T]

< &5 '(s, v, o) Kaw(X) < Ki'Ra0(X),
and we sce by (2.20) that (3 'de) exp [W(s, -, 0), w — F] is integrable according
to the measure p(s, z, +), uniformly with respect to oy < o < 02 Hence,

(2.36) a"d Bols, 7, 0) = — 2 J(s 2, Wils, -, o))

= = / 9 V(s ¥, 9)h(s, x, o, dy)
Jx dg
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where h(s, z, o, -) is a finite measure on X defined by
(237) h(s) z, g, Y) = _/;("J(Y) - z(Yv)) exp [‘I’O(S, ) O')? w = T]ﬁl(sa x, dw)

The measure 7, is nonnegative, finite, and continuous with respect to s for each
I'CyYand fn w(Y)Pi(s, x, dw) is continuous by the assumptions of the theorem.
Then, according to a well-known theorem, [, w(Y)pi(s, «, dw) is continuous with
respeet to s for all I' C Y and, since exp [¥o(s, -, 0),w — T] < &5 '(s, 2, 0) <
Ki' < «, the measure h(s, z, o, ¥) is continuous with respect to (s, ¢). Then,
according to (2.33) and (2.36), (82/d¢ 3s)¥, is continuous with respect to (s, o).
On the other hand,

Bk o 2 3 .\

3500 0= P (4"’ 35 00 20 (60’ 4"’) )

Clearly, the derivative (9/9s)P(s, x, t, T') exists and is finite and continuous with
respect to s for each I' € Y, and the function w(Y)e ™ is bounded in @ X (o1, 02).
This is sufficient for the following two formulas to hold:

(2.38)

a 92 - d

(.239) a—g‘% ‘I)U(S, x, 0') = 'Klw()’ )e""’(y) % ])(8, x, t, dw),
(2.40) 9 (s, 2, 0) = | e L ps, z, 1, d)

<. Js ) o ds y 4y by ’

and we see that both funetions are continuous with respect to (s, ¢). Hence,
(82/8s d0) ¥, is also continuous with respect to (s, ¢) which implies (92/ds 8s)¥, =
(82/9s d0)W¥,. This proves, according to (2.36) that (3/d¢)¥, satisfies for each
o < 0 the system of differential equations

a (0 5}
(2.41) s (5; (s, z, o')) = — /‘; e Vy(s, y, o)h (s, x, o, dy)

in 0 <s <t For each ¢ <0, supo<s<tzex (3/30)¥u(s, x, 0) < © because of
(2.33). Further, for each ¢y < 0
(2.42) sup |Rl(s, z, 0, Y) < K;

X

0<8<t,01 <0 L0, €

854,010 U,

where K3 = Ki' supo<s<tcex (M,(s, 2, X) + G(s, ) < .

Using (2.42) we could prove in the same way as in theorem 1 that (3/d0)¥, is
the only bounded and nonnegative solution of (2.41) with the initial condition
(8/80)¥(t, z, 0) = d(zx, Y). Let us consider the series

(2.43)
i@ X)+ 3% |
k=1

(8

[ Hs 2,0, d) -+ s, 2, 0, Vs, - 2).

According to (2.42), the k-th term of this series is less than (K5t*/k!) uni-
formly with respect to 0 < s < t, oy < ¢ < 0, € X. Hence, the series is con-
vergent and, for the same reason, it is term-by-term differentiable. It is also
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easily seen that is satisfies (2.41) and, consequently, (3/9¢)¥(s, z, o) is equal
to (2.43). Since the series is convergent uniformly with respect to oy < ¢ < 0,
we may apply the term-by-term limit procedure ¢ — 0 and (2.32) results.

3. The homogeneous case

‘We shall suppose in this section, that the process is homogeneous and we shall
write P(w, ¢, ') instead of P(0, w,{, T') = P(s, w, s + t, T'), and similarly for all
related functions. The infinitesimal functions p, m, and so on, do not depend on s
in this case. The main assumptions of theorems 1 and 2 are '

3.1) sup Mz, X) < =, sup |g(z)| < .
zEX z€X
The system (2.21) of differential equations assumes the form
d
and
o Tk %
(3.3) M1, ¥) = da, ¥) + 3 m——%’—)

where m® (x, V) = f\_ m&*—V(y, Vym(x, dy). Similar expressions can be obtained

for second moments.
Let us write

Viw,t, V,2) = [L@(¥) = Mo, t, Y)W (Z) = Mo, t, D) P(o, . d),
B4 0V, 2) = [[@(X) = ()W 7 — (Z)p, ),

we, ¥, 2) = [,o' (V) (@)pilw, do’).

Clearly,
0?2 .
\I,(wx t: ’71({(') 1) -+ U2d('; Z))]d1=a-:=0,
60'1 (")02

(3.5) v(w, ¥, Z) = &%;;yb(w, (-, V) + oad(-, Z))lnmamo,

v w, Y, Z) = 01w, Y, Z) — o(YV)mi(w, Z) — o(Z)mi(w, ¥) — (Y N Z)g(w).

We shall write again V(x, t, Y, Z) instead of V (%, t, Y, Z) and similarly for » and
V1.
THEOREM 3. Let

(3.6) sup o,(x, X, X) < =, sup |§(x)] < .
z&X rEX

Vie,t, Y, Z) =

Then all V(w, t, Y, Z) are finite
(3.7 V(e t,Y,7) = [V(x) t,Y,7),w]
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and

(3.8) Vit Y, 2) = L : [X Wy, s, Y, 2)M(z,t — s, dy) ds
where

(3.9) W,s,Y,2) = [, Tt UL, 2, db, 2)-

Proor. Since we do not know a priori whether the second moments are finite,
the complete proof should follow the method used in theorem 2. We shall omit
these details, which would show, in an analogous way, that all ¥ are finite and
uniformly bounded in z and that formal differentiation of (3.2) is correct. Hence

d 92 d =
(3.10) 3t 3o 9o Y(z,t, ad(-, Y) + oed(-, Z)) = 7 Vi, ¢, Y,2Z)

do, dos

= [AVC,4Y,2),0 =31+ [M(, 1, ¥),0 — RH(, 1, 2), 0 — Bz, du)

which yields the following system of differential equations:

(3.11) d% Viz,t, Y, 2) = /Y Vy,t, Y, Zym(z, dy) + W(a,t, Y, Z).

As in theorem 2 we could prove that there exists exactly one bounded solution,
and it is easily seen that (3.8) satisfies (3.11).

We shall now prove three theorems on the degeneration of the process. We
shall have to impose further restrictions on the process. The main assumption
will be that the first moments are compact and strictly positive operators on an
appropriate subspace G of ¥. From several natural possibilities we shall choose
G equal to the class of all continuous bounded functions on X. Let m be the
linear operator on & defined by mf = [x f(y)m(-, dy) and let m; be the linear
operator defined by 74z, Y) in a similar way. Put m; = m 4 kI where k =
sup:ex |q(z)| and I is the identity operator.

We shall suppose in the rest of this section that m, is an operator on G, that is
m,f € G if f € G, and that it is compact and strictly positive with respect to the
cone G+ = + N G. Let p be the spectral radius of m,. It is well known from the
theory of strictly positive compact operators (see [4], for example) that there ex-
ists exactly one function I € G* and exactly one finite and nonnegative measure A
on X such thatmyl = pl,0 < a < l(x) < B < = forallz € X, fx me(x, YIN(dx) =
oA(Y), MX) = 1, [[,\] = L. Clearly, the operator m has the same pair /, A of
eigenvectors corresponding to the largest eigenvalue r = p — k. The operator
M¢, induced by M (z, t, Y) is equal to exp mt = e~** exp mot. It is also compact
and strictly positive on § with the same pair I, A of eigenvectors and with the
largest eigenvalue equal to e™.

The following formula (3.12) will be useful. Set for a fixed z and ¢, F(r) =
¥ (z, t, 7f) for 0 < r < 1. Using the Taylor expansion F(1) = F(0) + F'(0) +
1F"(7) for some 0 < 7 < 1, we easily see that
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G12) ¥, ) = [, @)l do) + 33, 1, )
X -{5 L [f, w]2er Pz, 1, dw) — ( ﬁ [f, wleUelP(x, 1, (10)))2}
= [JOT @ty + 8@t [ (16 6] = Vo, 4 1))ev P, 4 do)

where ¥'(z, t, 7f) = & '(a, ¢, 7f) 4/;1 [f, wle«iP(x, t, dw). Since the last term in
(3.12) is nonnegative,
(3.13) 0> ¥z, t,f) > [ f) T, 1, dy).

We shall call the process degenerate, if Pz, t, {0}) — 1 for all z € X.
TrEOREM 4. Ifr < 0, then the process is degenerale.
Proor. By (3.13)

(3.14) (2, t, —0)] < /\,l(y)fﬁ(l‘, t, dy) = ¢'l(x) = 0.
- t
On the other hand,
(3.15) Pla, 1, (o 0(X) > 1) < L2 ¥BL 0,
- t

THEOREM 5. Let r = 0 and let ¥(z, f) € G for each f € . Then the process is
not degenerate if and only if
(3.16) P, {w: w(X)=1}) =0 forall z e X.
Proor. Suppose first that (3.16) does not hold. By (3.13)
(3.17) Y, t, —) > — f\, W) (x, 1, dy) = —l(x)  forall z,¢,
and from the fundamental relation
('318) ‘T’($,S+ tyf) = \T/(:l:) S,\Tl('yt)f));
we see that ¥(z,s + ¢, —1) > ¥(x, s, —{). Hence, lim. ¥(z,t, —1) = foz)
exists for all , and by (3.18) we have
(3.19) Yz, s, fo) = folx) for all z and s.
By the assumption of the theorem, §(x, f) is continuous for each f & F—. It is
casily seen from the construction of the process that ¥(-, s, f) € G for each s and
f € 5. Hence, fu(-) = ¥(-, s, fo) € Gand, at the same time fo(x) = ¥(x, s, fu) >
f‘\-_fu (y)M(x, s, dy). If f, £ 0, then (by [4], theorem 8) fy = I for some v < 0
and ¥(x, s, fo) = [x fo(y)M (x, s, dy) which implies that the last term in (3.12) is
equal to zero for all z and some 0 < 7 < 1. Then
(3.20) p(xr 8, {wi [fo,w] = ‘I/,(.ZZ, s, f0))) =1
for all z and s. Integrating with respect to the measure P(z, s, ), we obtain

Jo@) = [xfoy)M (z, 5, dy) = ¥'(x, 5, 7o), or, Ple, s, {w: [, @] = Ux)}) = 1.
Since l(z) > a > 0forall x € X, this is possible only if P’(z, 5, (w: w(X) =1}) =
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1 for all z and s, or, if p(z, {w: w(X) = 1}) = 0 for all . But we have supposed
the contrary and, consequently, fo(x) = 0 which proves that ¥(z, ¢, —1) - 0 for

all x. The fact that the process is degenerate follows now in the same way as
in the preceding theorem. On the other hand, if (3.16) holds for all z, then

(3.21) Pl t, {w: o(X) =1}) =1 for all x,t¢
and the process is not degenerate.

TuEOREM 6. Let r >0 and K = sup;ex vz, X, X) < =%. Then the proc-
ess 18 not degenerate.

Proor. Iet £(f) be the sample functions of the process. For each ¢, £(t) € Q,
and we may therefore define a new random variable

(3.22) ot) = e [ LE, ay).

We shall first estimate E.(6(1)) and F.(62(1)), where I, means the expectation
with respeet to the initial distribution concentrated at {T} :

(3.23) 1L(6() = e f [, w]P(z, 1, de)

et -/t\_ l(?l)ﬂ(x, t, dy) = I(.T) 2 a> 0.

By (3.8),
(3.24)

EL02(1)) = e f [l, 0Pz, 1, dw)

] [ AT, 10, 2) + ([ 10T, W)}

= o f () [ ettt d, )T, = s, duy ds + (o) |
52-{1@—1@—” ﬁ) e ds + 1} < B(K(ar)' + 1) < =.

If the process were degenerate, then

(3.25) E0() < (Eo6*()P(x, t, {w: w(X) 2 1))'* =0

in contradiction to (3.23).

IA
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