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1. Introduction and summary

Toss a fair coin independenltly n tiiiues anid let S,, be the numuiiber of heads
mlinlUs the iiumber of tails. Klhiiitchliiie [26] proved the law of the iterated
logarithm
(1) rnlin suip (2n log log n)-12S= 1, a.s.

n

Tlhus if the supreCIiuIm1 of aii cmpty set of niatural niumlbers is understood to be 0,
then

(2) P: = sup {n: (2n log log n)-112Sn > C5

is a raudomi- variable for c > 1 represeintiiig the speed of the upper half of
the law of the iterated logarithm.

In the first part of this paper we will be mainly concerined with the distribution
of P anid of similar random variables. Our research has beeii initiated by a
remiiarik of Professor Alfred R16ntyi to the effect that ET = oc. Here is a simple
proof:
(3) ET > E (numiiber of times n such that (2n log log ,)-1/2Sn > c)

PiPr (2n log log n)-112S > c'-

b)y niormiiial approximat ion.
UInfortunately, this argumienit seemiis to lhave a very limited scope. Rteplace, for

inistanice, (2n log log n)-(i/2) in the definiition of T by (2n(log n + log log n))-(1 2)
anid puit c = 1. 'T'hen ET = x (as will follow from corollary 4.7 of this paper),
but

(4) E Pr {(2n(log n + log log n))-1/2'S& > 1, < .
n

Moreover, the argumienit (3) fails if applied to im-omenits other tlhani the meani.
In order to state our first result in a more suggestive way, let us introduce a

Hahilitationssehrift zur Er]ingung der venia legendi fiir Alathernatik an der Uiiiversiuit
IErlangeni-Nuriiberg. This p)aper was prel)are(d while the atuthor was Habilitand(elIstipenl(diat
of the D)eutsche Forsc(lungsg,einieiis(cliaft.
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new motion of lim sup for random variables. Given a sequence 01, 02, of ran-
dom variables (such as A,n = anS. with positive constants a.), put for any real c

(5) Tc=sup{n:, >cn}.
The statement

(6) "lim sup O)n = X, a.s.,"
where x e (-ooc, + 0) (we identify an almost constant measurable functionl with
its almost sure value) may be expressed by means of the TP in the following way:

PeT < o a.s. if c > x,

T( =00a.s. if c<x."
We define by analogy
(8) "lim sup 0,. = y (r-quickly),"
where y E (-oo, +X0) and r > 0, to mean

9'"ET < X if c > y,

Eir = oo if c < y."
Thus y is the largest element of (-00, +X0) such that any neighborhood of y will
still be visited by 0. with n so late that the time of the last visit has infinite
r-th moment. Note that y always exists and is uniquely determined and that
x < y if x exists.
THEOREM 1.1. Let X1, X2, *-- be a sequence of independent identically dis-

tributed random variables such that EX1 = 0 and EX2 = 1. Let r > 0, z > 2(r + 1),
and EIX1I < X0. Then if Sn = Ei <nXi,

(10) lim sup (2n log n)-12Sn = \r (r-quickly).
This result follows from corollary 4.7 of the present paper in the same way as

Khintchine's law of the iterated logarithm follows from the Kolmogorov-
Petrovski-Erd6s criterion (that is, the general law of the iterated logarithm (see
Erd6s [20] and It6-McKean [25], pp. 161-164)).
Having answered the question about the existence of moments of random

variables like P, we may ask for a more detailed description of the distribution
of such random variables. To simplify matters, let us first replace the coin-
tossing process (or the more general random walks considered in the above
theorem) by a standard Brownian motion t. For any positive function < on
R+ (= the set of positive real numbers) such that t-("/2)(o(t) increases with t, put

(11) TIP = sup {t: W(t) > S(t)}.

A well-known zero-one law assures that Tf, is either a random variable or T, = °°
a.s. Because in the second case we know the distribution of T, perfectly, only the
first case is of interest. The Kolmogorov-Petrovski-Erdos test tells us when this
case happens,
(12) Pr {Tf < X}=1
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if and only if

(13) | ph-3/p(t)e-(W)'2t dt < x.

It is natural to expect some information about the distribution of T,. from
the known proofs of this criterion. P. L6vy ([33], pp. 271-276) discusses this
question and obtains upper bounds for the probabilities of the tails of T,, bounds
which come out of the proof of the 'if' part. A special case of LUvy's results has
been rediscovered recently by Baum and Katz (theorem 6 in [2], see [33], p. 275,
(59)); we remark that P. L6vy gets the 'if' part and his upper bounds for a large
class of martingales with individually bounded differences, and Baum and Katz
prove their result for random walks satisfying Feller's condition). In their elegant
proof of the 'if' part for Brownian motion, Ito and McKean [25] derive the
following inequality:

(s) exp
f P()1

(14) Pr {T > t}< 2 Lp(8)1 28 f ds,V\2-7r8
which is valid under the slight additional assumption that tlp(t) decreases as t
increases. Formula (14) contains P. L6vy's results (for Brownian motion).

Getting lower bounds seems to be more delicate, and the proofs (including
Motoo's [36]) of the difficult 'only if' part of Kolmogorov-Petrovski-Erd6s'
criterion apparently do not help. The main result of the first part of this paper
is the following.
THEOREM 1.2. (Compare with theorem 3.6.) Let so be a positive function on

R+ with a continuous derivative and such that t-5(p(t) increases in t for some a > 0.
Assume that

(15) op'(8) as t X- j

and that T, <0, a.s. Then T,, has a continuous density D, (except possibly for
some mass at 0) and

(16) D,,(t) '-p'(t)(2rt)-112e- (t)1/2t as t oo.

Thus if, for example,
(17) (p(t) = [2t(log2 t + a log3 t + log4 t + * + (1 + e) logk t)]1/2
where k > 3, e > 0, and log1+j t = log (logi t), then

(18) D,(t) - ["47r t log t log2 t . . . (logk-1 t)1+ ],
or if

(19) so(t) t(1/2)+a

where a > 0, then

(20) D (t) _ a+i ta- exp {Vl.
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The slightly more genieral theoreimi 3.6 of this paper applies also to

(21) c(t)= Cbe
with b > 0, givinig

(22) 1)D(t) - '2 2Xp ( 2/Jbt
WAe reiimark hliat if s is contcave iii aim iuterval (r, x ) (as tihe p in (17), and(l (19)

for a < 2), tlheni (p'(t) (27rt)- L.2) eXp {-yO(t)2 /t1 overestimiiates I),(t) in (r, x
if p is conivex in (r, oc ) (as in (19) for a > 4, anid (21)), theni it iuniderestimiiates
D,(t) in (r, oc). The above theorem niot ouily gives us iniformilationi abotut the
distribution of TV, it also leads to a better uniiderstanidinig of the Kolmogorov-
Petrovski-Erd6s criterion. It is not hard to see that the assumnlptiolns of theorem
1.2 abouit p imply that for t -x oc, (p'(t) has the samiie order of magnitude as

t-<p(l), so that, for suichl ftunietionis thle iuutegraui(l of (13) lhas by (16) th1 saine
order of magniitude as the denisity of Tf. ThIuIs (13) simiiply states that this (leuisity
is initegrable. The restirictioni (15) ont so being easily removed (see tlheorei
3.6 anid corollary 3.7) this actually leads to a proof of the 'ollly if' part of the
Kolmogorov-Petrovski-Erd6s criterioni.

In the second part of this paper we extenid the previous results to miiore general
stochastic processes by meanis of almost sture inivaliantce prinlciples, whicll have
beeni introduiced in [42] in anialogy with Donusker's distiribt tiont type inivariantce
prinlciple (see Douiskeri [13], Prohorov [39], B3illiiigsley [4], I'rickeherg [30]). As
in [42], oui method here is based oii Skorohod's represenitationi of sums of iiide-
penideit ranidom variables by meanis of stoppinig times for the Birowniiaii motioni
(Skorohod [40], p. 180; see also Knight [28]). This representation may be geni-
eralized to discrete parameter martingales in a straightforward mannmer (for a
genter-alizatioin to conitiniuous parameteu- martitiingales wVithl comttimuotis salimple
paths, see Dubins-Schwarz [18], [17] aiid Dambis [9]).
We prove three almost sure iinvariaiice prinlciples, the first of which applies to

martitigales. Lester Dubinis anid David Freedman also obtailied an almiiost: sure
inivarianice principle for martinigales _i<l XiXwith uniiformly bounded lXil, anld
they informed me in a letter abouit their restult aiid its proof wlhile the present
paper was beinig writteni.
THEOREM 1.3. (Compare with theoremii 4.4.) Let S, = i<,, Xi be a 1(arti)1-

gale with finite secondl( omments. Assume that

(23) V,, = Z E(XlXm,XI X-i_) x a.s.

as n X and that

(24) Fi fi (VI')- f,2zs . (1 Pi- -l,,\ < ?.1 -R1n' XN11 O 1S

where f is a positire nondecreasing funetion on R+, which increass(S slower than1 t.
Then, if the underlying prolbal)ility space is rich enouigh, there is a Blrovii(aniin/tiuon
t such that
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(25) S(t) = (t) + o((tf (t))I 14 log t), a.s. as t -*

where S is obtained by linlearly interpolating SI at V,.
Onie coinsequenice (corollary 4.5) of theorem 1.3 is the extensionl of thle

Klolmogorov-Petrovski-Erd6s criitelioni to mlaItiiugales satisfyinig a conlditioll
which for sumils of inidependentt ranidoiii variables is almiost as weak as Feller's
coindition ([22], p. :399). In the samie wvay Chunig's criterioni [7] may also be
genoeralized to martinigales.
Our seconid invarianice prinlciple (theoremii 4.6) applies to rantdomii wvalks unidelr

coniditionis oni the momilents anid yields ilheoremii 1.1 anid the miore genieral corollary
4.7. The assumiiptiois for this inivarianice priniciple have beeni reduced to a
mmiiiiuImuiI wvith the help of recenlt results of Baaumll anid Ilatz [1], [2].

'lo extenid as muitlch of tlheoremii 1.2 as possible to other rai(atdoiii walks wve have
to assume the existence of a moiiienit genierating fuimetioni (comiipare Baumi-Katz-
ltead [3], theoremii 1). Doinig this we get by a third imivarianice priniciple (theorem
4.8) tlie followinig theoreiii.

TIIEORENM 1.4. (Compare with theorem 4.9.) Let X1, X2, -* be indlependent,
id(enctically distributed with mean 0, variance 1, and a finite momenlt generating
flunctiont in a neighborhood of 0, and let p be as in theoremtt 1.2 with S = 2 and
tMe additionial restriction that p(t) < t' for all t and somen h < 3. T'henz

(26) Pr (-,,, > s(p(m) for'some mn > n} f. '(t) cxp {-( } dt

as nix.
Tlhtus, for inistance, if

(27) (p(t) = (2t(log log t + 3 Iog3 t + lg4 t + + (1 + e) logk t)' '2,
then

(28) Pr .(SI', >.P0(m) for somiie ml > n1} o
/4~7rE (10gAk-111)

Wle coneluide with some reniiarks aimd problenis. It is niatural to ask for ant r-
quick anialogue of theoremi 2 of [42]. Uiider the assumptionis of theorem 1.1 of
the presenlt paper, the followinig scems likely. If -q,, is obtainied by linlearly
initerpolatinig (2n log n)-('2),i at i/n, (1 < i < n), theti the sequeilce (1q,)n1>2 is
r-quickly relatively ntormli compact (in C(0, 1)), anid the set of its r-quick tormi
ilimit poinits is {x: x e (K(0, 1), x(0) = 0, x is absolutely continuous, anld
2 t' (lt < r, . Ilere we liave used t lie followinig definiitionis: (T,), >2 is r-qulickly
relatively inorimi compact if for aniy e > 0 there is a fimiite UnliOln U of E-sphieres in
(C(0, 1) suichl thlat

(29) A'~~~/(sup '-nt: 1q4 (: U' ), < ;

antd x is aii r-quick normii limit point of (7/n)n>2 iff for aniy open U 3 x,
(30) E(sup 7n: , e U )r = x.

'I'lme resuilts of 1)voretzky-lErd6s [19], Spitzer [41], T1'akeuclhi [44], Takeuclmi-
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Watanabe [45] and Wiener-Ito-McKean (see Lamperti [32], Ito-McKean [25],
pp. 255-257) give rise to a series of straightforward conjectures of the type (16)
up to an order of magnitude. Most of these, however, seem to be hard to verify
(see also Ciesielski-Taylor [8]).
Theorem 1.3 (4.4) may be sharpened by repeating its proof usinig corollary

4.5 in place of lemma 4.1. Then, however, 4-th conditional moments will appear
in the assumptions as well as in the coilclusioin. For random walks it is easy to
get the following.
THEOREM 1.5. Let Xl, X2, * be independent identically distributed such that

(31) EX1 =0O, EX2 = 1, EX < a.
Then if the underlying probability space is rich enough, there is a Brownian motion
t such that

(32) Sn =t(n) + O((n log log n)114(log n)112) a.s. as nX .

It would be interesting to know whether (32) with o instead of 0 implies
that X1 is Gaussian, and also whether (32) and the assumptions of theorem 1.5,
except (31), imply (31) (by [43], this is true for the first two statements of (31)).

Blackwell's paper [5] suggests that theorems 4.6 and 4.8 also hold for certain
martingales.

I am grateful to Professor Kionrad Jacobs for his constanit and generous sup-
port. It is also a pleasure to thank Professor Aryeh Dvoretzky for his valuable
criticism and Mrs. Ada Augustin and Dr. Clifford Brown for their help.

2. Notation and conventions

The followinig definitionis are used througlhout the paper:

(a) R+= {t: t real and positive',
(b) II = {, is a positive real functioni on R+,
(c) I = {f: s6 is a noindecreasinig real functioil on R+,
(d) 4. = {z: 4' is a nonincreasing real fuinctioin on R+},
(e) T = identity functioni on R+,
(f) (u, v) = {r: u < r < v} for any real u < v ((-t, v), (it, ), and (u, iv) are de-

fined similarly),
(g) Gp = (exp {-,62/2 /2T) e II for any real funcetioni 41 oti R+.

Iff and g are real-valued fuictiouis on any set, thenf V g andf A g denote the
pointwise maximum anid minlimumii respectively of f and g.
The process t is always a standard Brownianimotioni (Doob [14], Krickeberg

[31], 1to-McKean [25]), but need not denote the same individual copy through-
out the paper. We treat t as a continuous function on {0} U R+ which depends
in a Borel measurable way on the poiInts w of the underlying probability space.
This dependenice on co, however, will not be expressed explicitly. We will use the
strong Markov property of t without mlentioninig it (see Huiit [24], It6-McKean
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[25], p. 22). Measurability arguments are skipped because only standard ones are
needed (It6-McKean [25], pp. 12-17, Nelson [37]). The underlying probability
space is always assumed to be complete. The abbreviation 'a.s.' means 'almost
surely'. If t is given and if 4' is a piecewise continuous real function on R+, then
we define

(h) S, = inf {s: s > 0 and s(s) > 4(s)},
which is assumed to be oo if the set on the right is empty;

(j) T4, = sup {s: s > 0 and s(s) > 4A(s)},
which is assumed to be 0 if the set on the right is empty. Both Sp anid TP are
measurable functions on the underlying probability space which take values in
R+ U {0, +0 } . A standard zero-one law (Ito-McKean [25], p. 25, problem 2,
together with p. 18, problem 3; Hewitt-Savage [23]) assures that either TP is a
random variable (namely, T4, < oo, a.s.) or T# = xo, a.s. Also, either So = 0, a.s.
or S, > 0, a.s. By Fp we will denote the (sub)distribution function of SP. Thus,

(k) F,,(t) = Pr {t(u) > 4,(u) for some u E (0, t)}
if 4, is right-continuous at t > 0. Generalizing, if 0 < s < t, x real, and 4, again
right-continuous at t, we define

(m) Fpir(8)=x(t) = Pr {t(u) > 4'(u) for some u E (s, t)jI(s) = x}

= Fo,(t -s),

where 4'1 = 4(s + T) - X.
Finally, we remark that in the last part of the paper ranidom variables Tn and

S. = 7i<. Xi will occur, which have nothing to do with To, SP. Possible con-
fusion will be prevented by the context.

3. Brownian motion

LEMMA 3.1. Let a and b be piecewise continuous real functions on R+ and
t> 0 such that a < b in (0, t) and a > b in (t, t + 5), where 5> 0, a and b are
differentiable at t. Then

(33) lim-sup [Fa(t + k) Fa(t-h) _ Fb(t + k) -Fb(t-h) <0.

PROOF. (A correct proof of this lemma was first given by Professor A. Dvo-
retzky.) Let both h > 0 and 0 < k < 5 be so small that a and b are continuous
in (t - h, t + k), and for 0 < e < h, put

(34) c(e) = sup {b(u): t-e < u < t}-a(t-e).
Theni c(f) = O(e) as e -+0. We have
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(35) F+,,(t + Ak) - F (t-h) - (FbQ(t + k) - Fb(t - h))
Pr -Sa, c (t - h, t + k), - Pr {iSb c (t - h, t + k),

< Pr' {S, c (t - h, t), < b iin (0, t),

<(1- ) Pri <Kb inI (s, t) (s) = a(s)} dlF,,(s)
< (1-i) Pr < c (t - s) inI (0, t - s), dFa(s)

= f|, > Pr -{t(t - S) < c(t - s), dFIa(s) (by lemmiiiia 3.2, (37) below)

< stil) Pr' {i(1)l < e) Pr{Sa C (t - h, t)}

= 0(/I'2) 1)r{Sa E (t - hi, t)].
We have to show that P'r -AS, e (t - h, t)} = o(hl/2). Let 6 > 0, L the straight line
through the poiilt (t, a(t)) witlh slope a'(t) - 6 (so that L > a in a left neighbor-
lhood of t, say in (I - H, t)). h'l'eil if x < a(t - II) and h < H,

(3(;) l'r {S., G (t- h, t)I < a in (0, t - H), (t - H) = X4
PPr -Ab(r+t-llx- e (1-1 , I'I

< I-'r {SL(+t-II)-xx (II - h, II),'
+ Pr {S.L(T+t-H)-X C (Hi - h, H), t < L(T + t - H) - x

in (II - h, HI)}

The first suiiiii1ai9(Ildere is 0(li) III1ifoImIIIly in x, b)ecause by lemma 3.2, (38) below
with 1 = L(T + t - II) - X, SL(r+t-I!)-x has a denisity in (0, H), bounded uni-
formly for x < a(t - H) < L(t - H). The second summand in (36) is <
SUNuG(H-h,H) Pr <t< L(r + 1 + t - II) - a(ut + t - H) in (0, II - u)} <
46h"12 for smiall h, usinig lemmiia 3.2, (37) below aiid L(v) - a(v) < 26(t - v) for
smnall t - v. Thus the left side of (36) is < 561l 12 for small h uniformly in x. Iinte-
gration yields Pr fSa C (t - h, t),- < 56h18k2 for small ht, so that the lemma followvs
because 6 is arbitrary.
The followinig lemma is well kinowni (L6vy [34], p. 211, (6) togetlher with

Cameroni-MIartin [6]; a simple direct proof may be found in Dinlges [12]).
LEMMA 3.2. Let t > 0, m > 0, (I real, I = m + qT and x < I(t). Then

(37) Pr {t < I iii (0, t), t(t) < 4r
= Prl {i(t) . 4} _ c-2" Pr {i(t) < x - 2ni.

Tlhus (by Pir {S1 > s' = 1'r {S < I ini (0, s)}),

exp s(?n ± s

(38) Fm'(s) } = Gi(s) for aniy s > O0

Also
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(39) Pr {max It(s)I > m} < 4 Pr {t(t) > m}.
8 <t

LEMMA 3.3. Let 6 be a piecewise continuous realfunction on R+ with continuous
derivative in (u, v) where 0 < u < v. Then F, has a continuous derivative in (u, v).
PROOF. Denote by F,,, the lower, anid by F,,, the upper derivative of F4. (thus,

for example,

(40) F,,(t) = lim (FF(t + k) Fp (t - h)).

Thent if the lemma is wronig, there are se(luenices t,,, r., in (u, v) coniverging to the
same t E (u, v) such that

(41) lim inf (F'(tn)- F4(r,,)) > E > 0

for some e. Let 8 > 0 be so small that u < t - 8 < t + < v and a - < e/4,
where
(42) a = sup {#'(s): Is - t| < 68

(3 = inif {f"(s): Is - t <K}.
Let y, (resp. y2) be such that the linear function with slope a (resp. (3) and with
value yi (resp. Y2) at t - 8 takes the value #(t + 6) at t + 6. It is clear that
Yi < *(t-8) < Y2 and that

Y2 Yl = (+ ) Yl _ (t + ) -Y2
(43) ~~28 28 28 4

It is also clear that aniy linear functioni on (t - 6, t + 8) which is Y2 at t - 8 anld
P(s) at some s E (t - 6, t + 8) lies above 6' in (t - 6, s) and below 4' in (s, t + 8).
Thus, if we call b1) the funietion which coincides with 6' on (0, t -6) and which is
liinear oni (t - 6, oo), anid such that bn(t - 8) = Y2 and bn(tn) = 4,(tI) where n is
large eniough to ensure It, -lt< , theii we may apply lemma 3.1 to 41 in place
of a, bn in place of b, anid t,, in place of t to get,

(44) F (t,1) < [d Fb.(s)]

I8 Y2- exp ( 2(t,, -(t-8))l
_ tn - (t -) /7(t,, - (t - 6))

dx Pr t(t - 8) < x, t < 4 in (0. t - )
by (38). Thus

(4.5) lim sup F'(t14)

fin ~exp{-((t) - X)2}
< J 2 8- 25 dx Pr {t(t -8) < x, t < ' ini (0,- )

- fV'2 \dH( 7)
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where H is a subdistribution function (lim., H(x) < 1). Similarly,

(46) lim inf F,l(rn) 2 f Yl l dH(x) 2 f> Z dH(x)

2 X Y2-= j 82 a ZdH(x)- j Yi dH(x) > limsup F;(tn) -

by (45) and (43). But this contradicts (41).
Now lemma 3.1 may be formulated in a neater way.
LEMMA 3.4. Let a and b be piecewise continuous functions on R+, both of which

have a continuous derivative in a neighborhood of some t > 0. Assume a < b in
(0, t) and a > b in (t, t + 6) for some 6 > 0. Then Fa and Fb have a continuous
derivative in a neighborhood of t and F'(t) < Fb(t).

PROOF. The proof is immediate from lemmas 3.1 and 3.3.
THEOREM 3.5. Let 0 < a < 1, 4, E I such that 46 has a continuous derivative

and

(47) Ta, .

Assume
(48) Se > 0, a.s.
Then
(49) t-1/2s,(t) - as t 0.

Also F, has a continuous derivative f, such that if 0 < e < 1 - a andl

(50) ( (t) = su 1u) (u) t (1 t,E < u < t(50) X~A(t) suf{p (u) -"() ,ti(t)",) I
for t > 0 small enough to ensure t,4p(t)-2 < 1 by (49), then

(51) lim sup f (t) (A(t) G(t)) <

and

(52) lim inf fp (t) G,. (t)) > 1.

Notice that geometrically, X(t) and A(t) are the lowest and highest point of
intersection of the tangents of 4' in the interval (t(1 - t.4,(t)-2.), t) with the
vertical coordinate axis. Note also that X(t) > 0, because ,6' < a4/T by (47), and
therefore,
(53) { - T46 > (1 - a)46.
PROOF. Inequality (48) alone implies t-112,t(t) -o as t -* 0, for otherwise,

t-(1"2)4,(t) < A < co for suitable arbitrarily small t > 0, so that for such t,
(54) Pr {S4, < t} > Pr {f(t) > At112} = Pr {t(1) > A} > 0,
contradicting (48). Lemma 3.3 asserts that Fp has a conitnluous derivative fp.
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To prove (51), we apply lemma 3.4 to 4t in place of a and 4,1 in place of b, where
41 is defined as follows. Let t > 0, A1 > A(t) be a real number and 1 be the linear
function with 1(0) = A1, 1(t) = +(t), and let s = t(1 -tEV(t)2). Then it is easy to
see that 1 > 4t in (s, t) and 1 < y! in a right neighborhood of t, say in (t, t + 5),
where 5 > 0; 4'1 is now defined to coincide with q/ on (0, s) U (t + 6, Xo) and with
1 on (s, t + 5). Lemma 3.4 yields

(55) fp.t) = F'(t) < F¢,(t)
= J|_~a) F*,I() = r(t) d. Pr {f < ,6 in (0, s), k(s) < x}

< f -l(s)-x (27r(t s)27rg)-1/2 exp { (^)(t)y)2 - X2} d-

by lemma 3.2, (38). Substituting y = x - (s/t)o'(t) and using

(56) I(s)- +(t) Al
t-s t

(definition of 1), we get

(57) f4,(t)

A G)(t-Ai (1 - ty ) (27r(t - s) exp {-2(s } dy

<A Gj,(t) 2+ 7| t Y (2r(t -s) -) exp {2(t Ys)s} dy)

< Al G;(t) 1 + A1t -

Using the definition of s and the fact that

(58) Al > A(t) > +,(t) - t4'(t) > (1 -a),P(t)
by (53), we get

(59) f4,(t) < (Aj1t)G4,(t)(1 + (1/1- Y(//6t)-e
which implies (51) by (49) and the fact that A1 was arbitrary greater than A(t).
To prove (52), we again apply lemma 3.4, but we need a little preparation.

We have a + E < 1, so there is a ,B such that

(60) a + E < 2,B-1 <1 < 1.

Let s = t(l - t,#(t)-2e) be as above and r be any function of s (and thus of t) for
which (see (49)).

(61) 7 -+00 as sO

and

(62) (8)2 -0 as s O.
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UsiIg (49), we see that for small t (to which we will restrict ourselves) we have
0 < r < s < t. In the rest of the proof all asymptotic statemenits are understood
to hold as t -O0 (anid therefore as s -*0, r -O 0).

Notice that
(63) s t
anid
(64) r= o(s).
Now let g be the linlear function with

(65) q(r) (s) and g(s) = (s)
(more rigorously we should write gt, because g depenids via r anld s, onl the pa-
rameter t). We have g < ,6 oIn (r, s) (this is easily seen using ain auxiliary functioll
= {(s)&/s)a; in fact, I < ' on (r, s) by (47), and g < q on (r, s) because 7 is

conicave). Next let h be the linlear functioii with
(66) h(O) = v X(t) anid h(t) = 4(t)
where v = v(t) will be choseni below such that v < 1 and v -- 1 as t -O 0. From the
definitioni of X(t), it follows easily that h _< 4 in (s, t) anid h > 4' in (t, t + 6) for
some 6 > 0. Now we define 42 to be 4' oni (0, r), g on (r, s), h oni (s, t + 3), arnd
4& oni (t + 6, oo). We apply lemma 3.4 to ,6 in place of b anid 462 iIi place of a anid
get

(67) f (t) > F+,,(t) > |k Fj(,)- (t)I(x) dx
for any k, where

(68) I(x) = d Pr {f < 4' in (0, r), t < g in (r, s), i(s) < x}

We choose k = '(s)(r/s)f anld estimate 1(x) for x e (k, h(s)), usinig lemiimiia 3.2,
(37):

(69) I(x) = f dx Pr {j < g in (r, s), s(s) < xlt(r) = y}
dy Pr {f < 4' in (0, r), t(r) < y}

= I -oo,g(r) (2r(s - r))-112 exp ( y)2
gW()) 2(s -r)l

(1 - exp 2 _ (Op (s) - x) (0,(s) (r) _Y)- )
dy Pr {j < ,6 in (0, r), t(r) < yf

> f, (2irs)f1/2 exp { (x +k)2}

(1 - exp {-2 (sb(s) - h(s)) ((s) (r) - k)})
d4 Pr {t < ' iin (0, r), t(r) < y},
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by first replacinig (-x, g(r)) by (-k, k) and theni estimating thic integrand using
k < p(s) (r/s)a = g(r) anid k < x < h1(8) < i'(s). Now

(70) exp {x + k)2
exp} x2}

iniformllly in x E (k, h(s)), by (64) anid (62) anid h(s) < f'(s).
I'uirt hermore,

(71) 0 < ft(s) - h(s) = s6(s) - s vX(t) - 6(t),t I

so that in particular, because v < I is still arbitrary (t -s/t)X(t) < '(.s) -
(s/t)'(t), and therefore,

(72) #(s) -h(s) = p(s) t-s v (t) s 6(t > (1- I)-(6s)--t4(t)

Now (47) implies that

(73<) (t) _ (/(t (

for aniy it < t, so tlhat

(74) #(s) - h(s) > (1 - v)(((s) s) ) > (1 - t)()e-S
for small t by (63) anid < 1 - a, and therefore, using the definiition of s

(75) k(s) - h(s) > (1-
Oit the other haid,

(7(i) 2 (p(s) (r) - k) ( ) (S) (;)

for small t by (64) anid tlhe definiitioni of k and '.Now by (62), (73), anld (63),

(77) (S)' > 2 s()) >(>())

for small t, so lhat

(78) 2 k(s) 0 - 7) > 4'(s) ( ) (;(t)2)

This together with (75) yields

(79) exp{- s (4'(s) -h (s)) (k(S) () _ )
< exp-(1 - v-

by (61) anid a proper choice of v < 1, v -- 1. Fiiiallv, according to (48), one has
l'r -,t< 4' in (0, r), I(r)j < k- 1 anid

(80) = 6(s)2 (r)2S1
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(see (61)). Putting this together with (70) and (69) we get

exp
(81) I(x) 2 1V s

where1 < 1, butv -* 1 uniformly for x E (k, h(s)). From (67) we get, using (38)
and (66)

h(8) exp {-2(82) f (t) > j Fal(S)=Z(t) /s 77 dx

f hF(s) z(t)(27rs)1/2 exp dx

> F^(t)77 - 7 h(s)- x (27r(t - s)27rs)-1/2 exp { 2( _) 2s dx

= Fh(t)7- J (say).

Now h(s) = (t - s/t)vX(t) + (s/t)46(t) > (s/t)46(t), so that (h(s) - x)(#,(t) - x) >
t - s for x < 0 and small t because (4,(t)2/t) -. oo. But this implies that
(h(s) - x) exp {- (4,(t) - x)2/2(t - s)} increases with x for x < 0. Thus

(83) J < h(s) (27r(t - 8))-/2 exp {( (t)- k)2}

Because

(84) k = )2(r) 0,

we have by (49) and (63)
(85) k = o( Vs) =0(t)),
so that

(86) exp{ (k62j)_ } < exp{ 4(t-s)}

for small t. Also by (53) and (73),

(87) 4,(t) < 1 2 ( -6(u)-u46 M)

for small t and u E (s, t), so that

(88) 4t'(t) < 1 2 X(t).

Thus,

(89) h(s) = t s jvA(t) + -s6(t) < 12 _ (t).
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Therefore, we may continue (83) using (86), (89), and (63) and (49),

(90) J < x(t) 2t(1 -)-I(t -s)32 exp - o'(t)2) = o (X(t) G,(t))Yt ~~~~~4(t - s)f \t /

From (82) we get by lemma 3.2 using v 1, 7 -- 1 aiid the definiitioni of h,
fN(t) > (X(t)/t)Gp(t)(1 + o(l)), which proves (52 ).
THEOREM 3.6. Let 0 < 3 < 1, fp e H such that so has a continluous derivative and

T-a% e . Assume that
(91) T',< °o, a.s.

Then

(92) t-1/2o(t) x as t x.

Except perhaps for some mass at 0, Tf has a continuous density D, (so that

fo D,(t) dt = Pr {T, > O} < 1), and if0 < 0 <3 and

(93) -y(t) inf 4&'(s) t < s < t (1 + (t.Y )
17(t) sup) ,

then
(94) lim sup Df,(t) (Fr(t)G,(t))-1 < 1,

t-

(95) lim inf D(t) (-y(t)G,(t))-1 > 1.

Thus, if

(9.6) 1 <- < 1 + (t)2) implies &p'(s) p9'(t) as s o, t 00,

then l,p(t) '- i'(t)Gf,(t) as t oo*
PROOF. Let

(97) a =E1 a, f6(n1-), +=T*<() t=T*t()

The process t is again a standard Brownian motion (Levy [34], p. 246 or 1t6-
McKeain, p. 18, problem 3). We apply theorem 3.5 to i instead of t. With the help
of S^ = 1/T,, all the assumptions are easily verified. Using , -T-* 4/ = 0(1/Tr)
aiid E > 0, one gets y(t) < X(1/t) < A(1/t) < r(t) for large t. This together with
V = Tr(1/T) aind D, = (1/rT)fP(1lT) allows onie to coinclude (94) anid (95) from
(51) anid (52). The rest is trivial.

It should be noticed that the assumptionis sp > 0 and Tr-1 e T of the theorem
may be weakened to (o(t) > 0 eventually as t -- o and t-%<p(t) increases eventually
as t -a o, because one may then replace soon a finite interval appropriately. By
(92) (the proof of (92) depends only on (91)!) this can always be done, and it
does not affect the distribution of T, outside that finite interval.
COROLLARY 3.7. Let (p c H and 6 > 0 such that

(98) T, CP T.
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Then

(99) Pr lt(t) < 'p(t) evetitually as t I}= 1

inplic.s

(100) f t-ip(t)G,(t) (it < c.

PItooF. We mlay assumiie that
(101) 'p <

because if sp satisfies (98) anid (99), theni so does 'p A r (by the law of large
numbers), anid if 'p A T satisfies (100), theii so does 'p. We also may assume that
6 < 1. The proof proceeds by regularizationi.

Let o be a nonnlegative continiuously differenitiable funetioni oni RI such that
o-(t) = 0, except if t E (, 1) and such that fP o(t) dt = 1. Put 'Po(t) =
lo 'p(s)a(s - t) ds. Then 'po has a cointinuous derivative satisfying, for t > 0,

(102) 'Po(t) = -f 'p(s)o-'(s- t) ds

= f a(s-t) d'p(s)

(s - t)sMd ('(iS) + 6 o (S t) s)ds.

Here the first integral on the right side is >0 anid the iintegraind of the seconld
vanishes for s > t + 1. Thus if t > 1,

(103) p0 (t) > t-+-166o (t) > 'p0t0
or equivalenitly,
(104) t-6/2p(t) inicreases in t for t > 1.

Obviously,
(105) sp < po <.P(T + 1).
By the left iniequality,
(106) Pr {'(t) < 'p.(t) evenitually as t -+ = 1,'

so that theoremi 3.6, (95) applied to 'p, aiid 6/2 yields f y(t)Gaf(t) dt < x, be-
cause D,a is initegrable. Nov I

(107) -y(t) = inif _(_O(_) t < s < t 1 + >{'p~~~~) K~ p t)}16I- t_
for large t by (103), (104), and (92). Therefore we get

(108) f 0t 'p0(t)G(IP) (It <
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Because x exp {-(x2/2t)} is decreasing in x for x > VIt, this together with (92)
(applied to yo) and (105) implies

(109) f t-3/2 (t + 1) exp {_(t + 1)2 dt < x,

anid by substitut ioni, usinig (101), we get (100).
CORIOLLAIRY 3.8. Let f E II sutch that TEf e T anld T-p c , forsoItimc

0 < E < q and let r > 0. Y'hen

(110) SPY

iniplie(s

(111) | tr lsp(t)G,f(t) dt < x

Conversely, if e = 2, then (111) inmplies (110).
PROOF. We niay aga;in assUmIIe (101), because the validity of the assumptions

of the present corollary anid the truth values of both (110) and (111) are
not affected by the passage from P to <, A T (for example, (110) implies ET'AT =
E(Tf V Tr) < oc, because E " < x by (94)).
The first part of the presenit corollary follows now in the same way as corollary

3.7 and may be left to the reader.
The second part is proved similarly. Put s°1 = <O(r- 1) (remember that yo

was defined not only oni + bilt oni R'). Inequality (103) with = 2- yields
ypl(t) > (1/2t),pl(t), or equivalenitly, t-(112)01(t) iniereases in t for t > 2. Formula
(102) for 6 = q and the remark that the first integral on its right side is now < 0,
and the int.egranid of the second vanishes for s < t, yields '(t) < (q/t)yo(t) or

(112v y() < --- 7(t
for t > 2. Inieqliality (105) becomes YPl < y < y01(T + 1). Applying the right
inequiality here to (111) We see b)y a time substitution using (101) that

(11.3) ft tr-1fP(t)G,cs(t) dt < x.

Now the easy half of the law of the iterated logarithm (Erd6s [20], theorem 1;
Feller [22], pp. 197-198, problems 7 and 8; It6-M\cKean [25]. p. 34, under an
additional restrictioni, or pp. 161-164) allows us to conielude that Tf, < X, a.s.,
so that we may apply theorem 3.6, (94) to s°j. The iniequality fp < y implies
ET' <.ET'. lin order to prove (110), it is therefore sufficienit to show that

(114) f VF(t)G,f(t) (it < oc,

where for large t,

(115)) I'(t) < sup {yl(s): t < s < 2t' < 2qsa1(2t)
by (112). But (112) also implies soj(2t) < 22ql01(t), so that (114) follows from (113).
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4. Almost sure-invariance principles

The first two lemmas below and their proofs are routine.
LEMMA 4.1. Let T1, T2, * * * be nonnegative random variables, let ¶Uo = (0, Q}

where S2 is the underlying probability space, let Wl, W2, - - be a nondecreasing se-
quence of a-algebras of events such that Tn is Stn-measurable and such that E(Tn21Wn_)
is defined (that is, the measure on Wn which is obtained by integrating Tn with the
basic probability measure Pr remains -finite if restricted to 2L_.1; this is the case,
for example, if Tn -

U, a.s., where U is any 2I,_1-measurable random variable).
We do not assume, however, that E(Tn) < oo. Put

(116) Wn = F E(TjI?i_i)
i<n

and let 0 < V1 < V2 < ... be random variables such that Vn is n.-1-measurable.
Finally, let g E H f T be such that g(t) -* oo as t -x oo. Assume that

(117) g(V.)-2E(Tn2jWn[-1_) e D
n>1

or equivalently,
(118) Z E(g(Vn)-2E(Tn j -n1)) = F E(g(Vn)2Tn). 00,

n>1 n>1
and

(119) Wn - Vn = o(g(Vn)) as n-*, a.s. on {V.--oo}.
Then a.s. on {Vn 00},
(120) E Ti7 Vn = O(g(Vn)) as n-oo.

i<n

PROOF. If Tn = g(Vn)-1(Tn- E(Tnj2Tn1)), then T' is &f-measurable,
E(T'nl?n-1) = 0, a.s. and
(121) FI E(Tn2) < E E(g(Vn)-2E(Trj2n_1)) < 00;

n>1 n>1

consequently (see, for example, Loeve [35], p. 387),
(122) Z T' <00, a.s.

n>1

Thus by Kronecker's lemma (Loeve [35], p. 238),
(123) g(Vn)-1 5 (Ti - E(TjjWI_j)) - 0, a.s. on {V. - °}.i<n

By (119) this implies (120).
LEMMA 4.2. Let f E II such that

(124) f e -itT f 'E 1
and put

(125)
g = (rf)112 logrT
h (rf)114 log r.

Then
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(126) Pr {(t) -(s.) = o(h(t.)) as n --X for any sequences t, s,n
such that t -* oo, s3, --* oo, Sn- 0(g(t.)) as n oo} = 1.

PROOF. Let E> 0. Lemma 3.2, (38) yields

(127) _ Pr { max t(t) -(n- Eg(n))I > v'\eh(n)}
n>1 It-ni <eg(n)

< 4 ,2 Pr { (n + eg(n)) -(n - Eg(n)) > \V8eh(n)}
n>1

= 4 _ Pr {t(1) > 2\/logn} < x,
n>1

so that with probability one, eventually

(128) max {Ij(t) - (s): It - nI < eg(n), Is -n <.eg(n)} < 4\/2eh(n).
If tk -- 00, Sk -*oo, anid tk - sk = o(g(tk)) as k - oo, anid if nk is such that
nk - 1 < tk< nk, then

(129) Itk - nkI < eg(nk), Sk - nkl < eg(nk)
for sufficiently large k. Outside the set of measure zero where (128) fails we have,
therefore,

(130) It(tk) - t(sk) I < 4Vfh(nk) < 8\Veh(tk)
for large k by (124). Because f > 0 was arbitrary, the lemma follows.
The next theorem is a generalization to martingales of a result of A. B.

Skorohod ([40], p. 180) on sums of independent random variables. The proof
(which we omit) follows similar lines as Skorohod's and will be presented by
F. Jonas, at Erlangen, in his Diplomarbeit (see also Dambis [9], theorem 7, and
Dubins-Schwarz [18]). The phrase 'without loss of generality' in the next
theorem is used in a specific sense, namely: there is a new probability space on
which random variables
(131) Y1, P2, *--
are defined such that the sequence (132) and the sequence (131) have the same
distribution, and such that theorem 4.3 (where now 'without loss of generality'
is to be omitted) holds for the Yn (t and the Tn are of course defined on the new
space). This interpretation is valid for the rest of the paper.
THEOREM 4.3. Let

(132) Yl, Y2,

be random variables such that for, all n, E(Yn'IY, *--, Y.-,) is defined and
Et Y,I Y1, . .. , Y.-,) = 0, a.s. Then, without loss of generality, there is a Brownian
motion t together with a sequence of nonnegative random variables T1, T2, * such
that

(133) Y = ( Ti), a.s.
i<n i<n

for all n. Moreover, if An is generated by Y,, * * *, Y,,, and t(t) for 0 < t < F_j <n Ti,
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then T,, is A,,-n'easurable, t(Z_j < T'i + s) -t(Y <, Ti) is inidependlnt of a, for
any s > 0, E(7',,j'K _j) is defined and

(134) E((tn nn1)= J(Yr(,71) = (YrY1J Y,l- a.s.
If k is a real nutmtiber > 1 anfl (l 21131-1, ,Y_,) is delfnedl, then E(TKI'1) is
also defined and

(135) E(7lj12[,._I) < LkE(YnktEl) - Lkl( a.s.,
where Lk are constants which depend only on1k.

If the Yn, are mutually independent, then the T, are 'mdtually independent. If in
adldition the Y,, are identically distributed or have a momnent generating function in a
neighborhood of 0, then the same holds for the Tn (with the same neighborhood).
THEOIREM 4.4. Let Xl, X2, * be random variables such that n(X|X, * Xn-1)

is defined and ]E(X,X1, *, X,,1) = 0, a.s. for all n. Put S,, = <,i Xi and
Vn= i<,nlE(X , ,- Xi_) where, in order to avoi(d trivial complications,

we assume V1 =, X1 > 0. Let f e II such that
(136) fE , Tie t

Assume that

(1.37) IN,. aX.S.

as it (lit(l

(138) E f( 2f ai_ 2d Pr 1x,, .< x1Xi, . Xll 1} < a.s.

Let S be the (random) Junction ont Rl+ U {0Q- obtained l)y interpolating S,, at Vn
in such a way that S(O) = 0 antd S is constanit in each (V,1 V4.1) (or alternatively,
is linear in each (V,,, V,+,)). 7'hen without loss oJ gcn1eraltity there is a Brownian
motion t such that

(139) S(t) = t(t) + o(log t(tf(t))"'), a.s. as t -* o.

PIWtOF. Let r > 0 aiid Pr(x) = 2-`'2 - r/X for tX > 1'( 2). Tlheni Pr maps
(r(112), x) topologically oi1to (r(I/2), 2r(1/2)) stiChl tlhat always

(140) p,(-r) < x,
anid pr(X) is joinitly Borel measurable in r, x for 0 < r ( .r. NoN let

(141) N,, = fX~~~~~ if X2 .f(V
( 141) {Sigll (X,&)Pf(T_n)(IX? ) if X2 > f (V"),
anid Y,, = X - wlhere Z,, is the o-algebra geinerated by Xi, X_.
Theni the properties of pr imply that £n is genierated also by X1, *, X anld is
therefore also the a-algebra generated by F1, , Y,-. Moreover, E (n-Iz,_,)
and E(Yn'kj n_) are defined for any k, because

(142) 1XnI . 2f(V.)112 and 1Y.1 < 4f(V.)112
and V,, is z7-1-measurable. Also
(143) E(Y,4I42,-1) = 0, a.s.
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anid
(144) E(Y n =E1)= n(X4 -)-4E njCS_j)E(.tx_j)

+ 6E(nj2,,_1)E(X|t,e,_1)2 - 3E(it, 2e"_1)4
. 44f(J,)E(XI2 _,-1),

again usinlg 7,< 2f (1',) '12, whicll is £,Z1--measuirable. Wit h I lie help of
,;2 < X2, olle gets fo1 _I > 1,
(145,) EO(Yn4JlC_) < 44j(I',)(j- -

Here VO = 0. Because E(X7l,,_) = 0, a.s., we have
(146) _,(.f1)2 = ]E(.I-X- , _1)

< (2f .,>!| kl( Pl {XAT < 1.I,-V )-
(4 fX2 >ft (1', ) 1( I- ., . l -';

< 4f X2d Pr IXV < x. -

tlitis
(147) (4 - E(X2j1)

= E15(N -2.l)-11_(V-4i_I)2 - 1 (Xl421i)
.Ef U) kP _X ) 2~* E1 ~1,(\ilt;-_)2- + 1E(1 2 X21* , i_|,I)

* X,2f,,2(j Pl. -'Xi< -2-'

Stmminig up anid usinig the fact, that Jf(V7,) is nondecreasinlg in i, we get

(148) - V_ < ( V-f(,), a.s.,
where
(149) IV =E-Z (1(lLi-1),

i <n

anid A is the random variable represenited by the series in (138). -Now let
g = (rf) 1/2 log (T V 2) anid h = (Tf)14 log (T V 2). Theni by (148), (136) andl
(137),
(150) as-1, =(q(V,1)), a.s. as n -,

Iiie(Iuality (138) implies
(151)I Pr A,! X,,l < Z Pr {X2 > f(V,) 2,.,} < c, a.s.

77>1 77>1

Thus by 1P. 1.evy's conditiotial formi of the Borel-(Canitelli lemmiila (1L6vy ([33],
p. 249); Dubins-Freedman [15]; it also follows easily from (122) in the proof of
lemma 4.1 above, letting T/L be the indicator of f{R, #d X,.} anid g = r, verifyinig
(117) in a similar way as (156) below),
(152) Pr.X/ # X", ilnfinitely ofteln' = 0,
in particular, by (137),

(153) - Z X,! = o(h(J,J)), a.s.
i <7tl '<71
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Moreover,

(154) Yi- E Xjj= E(Xi|.C_1)I
i<n i<n i<n

= E E(Xi-XiI-i-)i<n

< 2i f2>f(Vi) fxjdPr {Xi < x|zLi_}

< 2 E f(Vi)-2 f x)2dPr {Xi< x i-i}
i<n ~~x' >f(vi)

* 2f (Vn)1/2A = o(h(V,,)), a.s.
by (136) and (137). Together with (153) we have, therefore,
(155) 1 Yi- Xil = o(h(V.)), a.s.

i<n i<n

We now apply theorem 4.3 to Y1, Y2, *-- . Equality (143) and the remarks
preceding it show that the assumptions of the theorem are satisfied, and moreover
that E(T7j.n-1) is definied for any k, and (135) holds. Remember that the phrase
'without loss of generality' in theorem 4.3 represents the passage to a new proba-
bility space, and that onily random variables (definied oni the origilnal space)
which are Borel funietions of Y1, Y2, * * have ani immiiediate meaninig in the niew
space. Fortunately the X,,, and therefore also the other raiidoiln variables which
have occurred thus far in this proof, are Borel functionts of the Ylj (the somewhat
clumsy kind of truncatioin il the definition of .9n has been used just to achieve
this aim).
Next we are goinig to apply lemma 4.1 to the T',, and & provided by theorem

4.3 and to the V,, and g of the presenit proof. All assumptionls of the lemma
except (117) are easily checked, if one notices that by (134) the definlitioln of W7
in the lemma and its definition (149) ill the presenit proof are equivalenit, so that
(150) takes care of (119). To prove (117), use (135) and the definiition of g, and
then (145) to get

(156) E g(V7)-tE(Tn|in_1)
n>1

. E (V,1f(V17))-1(log (V,, V 2) 2L2E(Yw4|i Yn_)
n>1

< const. E (V,, - lVn-l)Vn-'(log (TVn V 2))-2
n>1

. COIISt-((log (V1 V 2))-2 + l t(lo (t 2))2)'

which is a finite conistanit. This proves (117). Now the conclusioln (120) of the
lemma together with (137) yields
(157) E Ti - V., = o(g(V.)), a.s.;

i <n
thus by lemma 4.2,

(158) t( L Tj) - t(Vn) = o(h(VVn)), a.s.
i <t
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Together with (133) and (155), we obtain

(159) S. -(V.) = o(h(V.)) a.s. as n - oo.
Now by (134) and (156),

(160) (Wn- Tyn_)2 = (E(7',,jo(g,V))2 < =(T',,)'2) a.s.,

so that b)y (150),

(1(61) Vtl- V,_ = o(g(V,)), a.s.,

usinig that g(Vn) is a.s. nondecreasinig in n. We are now ready to prove (139).
Given t > 0, let n = n(t) be the largest integer such that Vt-, < t < Vn. Thet
(159) implies

(162) S, -(V,,) = o(h(t)), a.s. as t

and (161) and lemma 4.2 together imply

(163) t(V,,) -t(V,_) = o(h(t)), a.s.

and
(164) t(V,) - (t) = o(h(t)), a.s.

Ilearinig this and the definition of S(t) in minid we get

(165) IS(t) -t(t)j < IS(t) -Sn + 8S,, - t(V,,)I + V(V,,) - W)l
< Sn-1 - Snj + o(h(t))
< IS._-I (V-0_1) + 1t(Vt_1) - t(Tr,,)| + 1S(V,,) - S,,I + o(h(t))
= o(h(t)) a.s. as t x .

This proves the theorem.
COROLLARY 4.5. Let Xi, X2, be random var-iables suich that

E(X2X1, ,

is defined and E(XjX1, , X,,-1) = 0, a.s. for all n. Plutt S,, = _, Xi antd
V.= .E(X2IXi,* Xi-,), and assutme V, = EX >0 and T',, x , a.s.

and

(166) 1T7n1(log V,,re)5 | fx2dPr {X,, < xXlX, . X,-1} <ox, a.s.

Let p e 1I such that
(167) 1 2 I

Then

(168) Pr {S,, < sp(V,) evenltually as n - = 1 or 0

according to

(169) f t-h(t)G0,(t) dt < oc or = x.

PROOF. The easy half of the law of the iterated logarithm for Browiiian
motion states that convergence in (169) implies
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(170) Pr {t(t) < p(t) evenitually as t -* = 1

(see the end of the proof of corollary 3.8). Apply now theorem 4.4 with f
T(log (Tr V e)-5 ve to get (without loss of generality) a Brownian motion t such
that

(171) S(t) = t(t) + o(t"2(j0g t)-114), a.s.
as t -x c, where we choose S to be constant in each (V,_1, Vs). It is
easy to see that (167) and convergence in (169) remain true for i = po A
,(1/2) (log (T V e))("/4) and also for 9P2 = °i- T71/2) (log (r V e))-(14). Thus by
the remark at the beginning of the proof,

(172) Pr {t(t) < pl(t) - t(ll2)(log t)-("/4) eventually as t -} = 1.

Using (171), we get

(173) Pr {S(t) < p(t) eventually as t -* = 1,

and hence the corresponding case in (168).
Conversely, assume 1'r {S,n < p(T,) eventually} > 0. Because so C , this

implies

(174) Pr {S(t) < *p(t) evenitually as t - > 0,
and by (171) and a zero-one law for t

(175) Pr {f(t) < 9o(t) + ti/2(log t)- '4 evenitually as t -c = 1.

From the remark at the beginninig of the proof, it follows that

(176) Pr -{t(t) < t1'2(log t) 1/4 evenitually as t - '- 1.

Thus,
(177) Pr {t(t) < 903(t) eventually as tx = 1,

where

(178) 93 = 91 + Tl2(log (T V e))-1A'4
> (o + T"/2(log (r V e))-1/4) A Tr/2(log (T V ())"/.

Now T-1/4903 E T , so that corollary 3.7 yields 11 t- P3(t)G,3(t) dt < x, which
implies convergence in (169).
THEOREM 4.6. Let X1, X2, be a sequence of independlent identically dis-

tributed random variables such that EX, = 0 and EX'l = 1. Let r > 0 and z >
2(r + 1) and EiXiIZ < x. T'hen, without loss of geierality, there is a Brownian
motion t such that if S takes the constant value S, = Z'.<, Xi in the interval
(n, n + 1) for each n, then

(179) E(sup {t: |S(t) - t(t)j > t(' 2)5J )r <
for someO < 6 <K2.

PROOF. Apply theorem 4.3 to the X.. Theni by (1:35) aiid (1:34), E(T`"2) < x
and ET1 = 1. We may assume that z < 4(r + 1). Apply theorem 3 of L. E.
Baaum and M. Katz [2] to get
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(180) mrl Pr{sup 1n' 1} <
for some 0 < 3' < 1. Now if 6 < Y/2, we have

(181) Pr {lS(t) - t(t)| > tl!2-1 for some t > m}
< Pr {[S(t) - t(t)j > t112-6 for soImie t > m,

Ti - nj < n'-' for all n > m}
i <n

± Pr {suP n li<n 7'i- n 1} =I P + P2 (say).
Using (133) and the definitioni of S(t), we obtaiin

(182) Pm < Z Pr stup l(t) -(n - i'6) >
n>m It- <nl'" 2

< coiist. n>m exp {-y;}

by lemma 3.2, (39), where we put E = (6'/2) - 6 > 0. Thus, Ym>1 mr1-P1 < -c.
By (180) we have Zm.i mr-1pm < c, so that Zr>n mr- Pr {A > m} < oc,
where A = sup 't: JS(t) -t(t)I > tI12-6}. But this implies EAr < oo.
COROLLARY 4.7. Let the assumptions of theorem 4.6 be satisfied. Put Sn =

_j <n Xi, and let sp c H be such that

(183) T-1/2EP
(184) T-1 0 t

for some q > I. Moreover, let T = sup {n: Sn > so(n)}. Then

(185) ETr < x

if and only if

(186) f tr-W (t)G,(t) dt < cc*

PROOF. Let t be such that (179) holds, aud put for any conitiinuous function
on R+,

(187) Ts6 =
sup {n: S. > 4'(n)},

T(8 = sup {t: S(t) > Vl(t)}.
The followvinig conisiderationis are somewhat anialogous to those used in the proof
of corollary 4.5. If ETr = ET' < cc, theni ETf < oc, which by (179) implies

(188) E1rf+1/2-5 < C .

This together with the seconid part of corollary 3.8 applied to r(1/2) log (T V 2)
yields
(189) ET`,+,±12-3 < oc,
where (po = < A Ti/2 log (r V 2). The first part of corollary 3.8 with e = -2 3
niow gives
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(190) 1 t'(Qpo(t) + t11 6)GF,+t.i2-,(t) dt < c,

which implies (186).
Conversely, if (186) holds, then oine may rieplace so by o,, aiid theni by

w0- (1/2)8, so that by the second part of corollary 3.8,

(191) IT'ra2-a < x .

Here we have used the remark after the proof of tlheoremii 3.6. Inequality (.191)
imlplies
(192) ET7r -2-i < 0o
Thus by (179), E1r < oc, whiclh implies (185).
THEOREM 4.8. Let XI, X2, be independent idenitically distriibtted random

variables such that
EX1 = 0,

(193) EX'X = 1,

Eeu-Xl < oc for Iutf < E,

where E > 0. T'hen without loss of generality there is a Brownian motion t such that
if S is obtained as in theorem 4.6, and if 4 < b < 4, 0 < 3a < 4b - 1, then

(194) Pr {jSf(t) -((t)j > tb foi somiie t > s4 = o(e-).
PROOF. Apply theorem 4.3 to the X,. TleiL T,, T2', are indepenidenlt,

identically distributed, and one has

(195) E1T'= 1,

(196) j3(u) = E exp {u(7']-I) <K for Jul < E.

Determine a' and c such that a < a', 1 + a' < 2c, c < 2b - a. For u > 0 we
have
(197) Pr {f (TY - 1) > nc} < E exp {nt _ ( -1'i))( t = I(u)"c

i<n i<fl
Now by (195) there is a d > 0 such that for u sufficiently small ,B(u) < 1 + du2.
The inequalities 1 + a' < 2c and c < 2b < 1 imply a' < c; thus for large n alnd
for u = ?e'-c

(198) X(na'-c)n = [ + j2dca'))

< exp {f2dn1 -2(c -a')>
Hence by 1 + a' < 2c, ,3(na'-c), exp ',-a'-cflc} < exp '-'na'} for large n.
Together with (197) and a similar consideratioin for Pr Fj<n (Tj - 1) < -ncj,
we get
(199) Pr {I T1 - nI > nc} < 2 exp {I-na'}

i <n

for large n. Because a < 1, it is suifficientt to prove (194) for initegers s = m:
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(200) Pr {jS(t) -t(t)I > tP for some t > m}
< Pr {IS(t) -(t)I > t' for some t > m, T, - nf < nC for all n > m}

ti<n
+ _ Pr { Ti - nI > nel

n>m i<n

- Ptn + Pm (say).

By (199), P%2 = o(e-m). By the defilnition of S(t), we get

(201) Pt < _ Pr sup 1t(t) - >(n)>n2
n>m Ytt n! ne

n {1~~~~~~~6}c
< E const. nb-+/2 exp 16

using lemma 3.2, (39). Thus, because a < 2b - c, P. = o(e-m-), proving (194).
COROLLARY 4.9. Let the assumptions of theorem 4.8 be satisfied, and let so be a

positive ftnction on R+ with a continuouts derivative such that

(202) T c1/2p T anid so < Tr

for some h < 3. Assume that 'p'(s) pp'(t) as t o, s/t - 1. Put S. = Ei<nX
and T, = sup {n: Sn > sp(n)}. Then Pr {fP, <ox} = 1 implies

(203) Pr fP, > n)| f '(t)G, (t) dt as n xo.

PIROOF. Let S and t be as in theorem 4.8 and Tp, Ti as in the proof of corollary
4.7. We mayassume2 <h <3. Let4 <b < , a> 2h - 1, 3a <4b - 1. Then
(204) Pr {TP > n' = Pr >T> n}

< Pr {T<-rb > n} + Pr {jS(t) -t(t)j > t, for some t > 71}.
Pr 'TI-b > n} + o(e-n,).

Thus by theorem 3.6 applied to o- Tb ((91) for o - Tb follows from Pr {TP <
oo} = 1 and, say, corollary 4.5 together with *p < Th, h < 3, b <4) we have

(20.3) Pr { >> n} < (1 + o(l)) ('(t) - btbl)G,-,b(t) dt + o(cn)

= (1 + o(1)) f p'(t)G,(t) dt + o(c-"a)

= (1 + o(1)) fn p'(t)G<,(t) dt

using first p < ri, ht < ,3, b < 2 and then so' > so,/2, o < ihl anld a > 2h -1.
Conversely,

(206) Pr {f, > - Pr {T> n}
> Pr fT,+Tb > n, |S(t) -t(t)I < tb for all t > nV
. (1 - o(1)) | (w'(t) + btb- I)G,- (t) dt - o(e 11)

= (1 - o(l)) | s'(t)G,(t) dt
as above.
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