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1. Introduction and summary

Toss a fair coin independently n times and let S, be the number of heads
minus the number of tails. Khinichine [26] proved the law of the iterated
logarithm

¢)) lim sup (2n log log n)~1728, = 1, a.8.

Thus if the supremum of an empty set of natural numbers is understood to be 0,
then

2 T: = sup {n: (2nloglog n)~12S, > ¢}

is a random variable for ¢ > 1 representing the speed of the upper half of
the law of the iterated logarithm.

In the first part of this paper we will be mainly concerned with the distribution
of T and of similar random variables. Our research has been initiated by a
remark of Professor Alfred Rényi to the effect that ET = «. Here is a simple
proof:

3) ET > I (number of times n such that (2n log log n)=1/2S, > ¢)

=3 Pr{2nloglogn)-128, > ¢} = =

by normal approximation.

Unfortunately, this argument seems 1o have a very limited scope. Replace, for
instance, (2n log log n)~(/® in the definition of 7' by (2n(log n + log log n))~('»
and put ¢ = 1. Then ET = « (as will follow from corollary 4.7 of this paper),
but

4) > Pr {(2n(log n + log log n))=12S, > 1} < =.
n

Morcover, the argument (3) fails if applied to moments other than the mean.
In order to state our first result in a more suggestive way, let us introduce a
Habilitationsschrift zur Irlangung der venia legendi fiir Mathematik an der Universitiit

Erlangen-Nurnberg. This paper was prepared while the author was Habilitandenstipendiat
of the Deutsche Forschungsgemeinschaft.
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new motion of lim sup for random variables. Given a sequence 6y, 6,, - - - of ran-
dom variables (such as 6, = a,S, with positive constants a,), put for any real c
(5) T. = sup {n: 6, > ct.

The statement
(6) “lim sup 0, = z, a.s.,”

where z € (—», 4o) (we identify an almost constant measurable function with
its almost sure value) may be expressed by means of the T', in the following way :

“Po< o as if ¢ >z,

T.=was. if ¢<z.”

@)

We define by analogy
(8) “lim sup 0, = y (r-quickly),”
where y € (—x, +») and r > 0, to mean
“ETr <o if ¢ >y,
ET:=w if ¢ <y

Thus y is the largest element of {(—, +) such that any neighborhood of y will
still be visited by 6, with n so late that the time of the last visit has infinite
r-th moment. Note that y always exists and is uniquely determined and that
z < y if z exists.

TueoreEM 1.1. Let Xi, X,, --- be a sequence of independent identically dis-

tributed random variables such that EX; = 0 and EX3 = 1. Letr > 0,2 > 2(r 4+ 1),
and E|X1|* < . Then if Sa = Xi<aXs,

(10) lim sup (2n log n)~-128, = Vr (r-quickly).

This result follows from corollary 4.7 of the present paper in the same way as
Khintchine’s law of the iterated logarithm follows from the Kolmogorov-
Petrovski-Erdds criterion (that is, the general law of the iterated logarithm (see
Erdés [20] and 1t6-McKean [25], pp. 161-164)).

Having answered the question about the existence of moments of random
variables like 7', we may ask for a more detailed description of the distribution
of such random variables. To simplify matters, let us first replace the coin-
tossing process (or the more general random walks considered in the above
theorem) by a standard Brownian motion £ For any positive function ¢ on
R* (= the set of positive real numbers) such that i~/ () increases with ¢, put

(11) T, = sup {t: £(t) 2 ()}

A well-known zero-one law assures that T, is either a random variable or T, = o,
a.8. Because in the second case we know the distribution of T', perfectly, only the
first case is of interest. The Kolmogorov-Petrovski-Erdés test tells us when this
case happens,

(12) Pr{l, <=} =1

9)
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if and only if
(13) [7 tomplt)ee gt < .

It is natural to expect some information about the distribution of 7', from
the known proofs of this criterion. P. Lévy ([33], pp. 271-276) discusses this
question and obtains upper bounds for the probabilities of the tails of T,, bounds
which come out of the proof of the ‘if’ part. A special case of Lévy’s results has
been rediscovered recently by Baum and Katz (theorem 6 in [2], see [33], p. 275,
(59)); we remark that P. Lévy gets the ‘if’ part and his upper bounds for a large
class of martingales with individually bounded differences, and Baum and Katz
prove their result for random walks satisfying Feller’s condition). In their elegant
proof of the ‘if’ part for Brownian motion, Ité6 and McKean [25] derive the

following inequality:
— 8 2
(14) Pr {T >t}<2j”@iMd
PTEE Ts T Vams

which is valid under the slight additional assumption that ¢~1¢(¢) decreases as ¢
increases. Formula (14) contains P. Lévy’s results (for Brownian motion).

Getting lower bounds seems to be more delicate, and the proofs (including
Motoo’s [36]) of the difficult ‘only if’ part of Kolmogorov-Petrovski-Erdss’
criterion apparently do not help. The main result of the first part of this paper
is the following.

THEOREM 1.2. (Compare with theorem 3.6.) Let ¢ be a positive function on
R* with a continuous derivative and such that t=2¢(t) increases in t for some § > 0.
Assume that

’
(15) :’((3_)1 as t—>oo,%—)1
and that T, < o, a.s. Then T, has a continuous density D, (except possibly for
some mass at 0) and

(16) D, (t) ~ ¢'(t)(2xt)—1/2¢ —e®/2t as t—o,
Thus if, for example,

17) o(t) = [2t(loget + §logst + logat + --- + (1 + ¢) log £)]V2

where k > 3, ¢ > 0, and log;,, t = log (log; t), then

(18) D,(t) ~ [VArtlogtlogst - -- (logi_i t)1+<],
or if
(19) <p(t) = {{1/2)+a

where a > 0, then
~ e {2,
(20) D) Voo fo—! exp{ 5
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The slightly more general theorem 3.6 of this paper applies also to

(1) p(t) = e
with b > 0, giving

(22) Do(t) ~ b(2rt) 2 exp {—”’;5 i m}-

We remark that if ¢ is concave in an interval {r, =) (as the ¢ in (17), and (19)
for a < 3), then ¢ (1)(2xt)= 12 exp {—o(t)2/2t} overestimates D,(f) in {r, =);
if ¢ 1s convex in {r, =) (as in (19) for a > 1, and (21)), then it underestimates
D,(t) in {r, ). The above theorem not only gives us information about the
distribution of T, it also leads to a better understanding of the IKolmogorov-
Petrovski-Erdds criterion. It is not hard to see that the assumptions of theorem
1.2 about ¢ imply that for { — <, ¢'(f) has the same order of magnitude as
i~1p(), so that for such functions the integrand of (13) has by (16) the same
order of magnitude as the density of 7',. Thus (13) simply states that this density
is integrable. The restriction (15) on ¢ being ecasily removed (see theorem
3.6 and corollary 3.7) this actually leads to a proof of the ‘only if’ part of the
Kolmogorov-Petrovski-Erdéds eriterion.

In the second part of this paper we extend the previous results to more general
stochastic processes by means of almost sure invariance principles, which have
been introduced in [42] in analogy with Donsker’s distribution type invariance
principle (see Donsker [13], Prohorov [39], Billingsley [4], Krickeberg [30]). As
in [42], our method here is based on Skorohod’s representation of sums of inde-
pendent random variables by means of stopping times for the Brownian motion
(Skorohod [40], p. 180; sece also IKKnight [28]). This representation may be gen-
eralized to diserete parameter martingales in a straightforward manner (for a
generalization to continuous parameter martingales with continuous sample
paths, see Dubins-Schwarz [18], [17] and Dambis [9]).

We prove three almost sure invariance prineiples, the first of which applies to
martingales. Lester Dubins and David Ireedman also obtained an almost sure
invariance principle for martingales Y ; <, X; with uniformly bounded X[, and
they informed me in a letter about their result and its proof while the present
paper was being written.

TuEorEM 1.3. (Compare with theorem 4.4.) Let S, = Y i<, X be a martin-
gale with finite second moments. Assume that
(23) V=2 EXiXy, -+, Xiy) - =, a.s.

1<n

as n — »x and that

Q) T v f A Pr (N, <alXy o, Xo) < o, as.,
n>1 x

1511
where f 1s a positive nondecreasing funclion on R+, which increases slower than t.
Then, if the underlying probability space is rich enough, there is a Brownian motion
£ such that
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(25) S = &) + o((f ()" log 1), as.as t—x,

where S s oblained by linearly interpolating S, at V.

One consequence (corollary 4.5) of theorem 1.3 is the extension of the
IKolmogorov-Petrovski-Erdos criterion 1o martingales satisfying a condition
which for sums of independent random variables is almost as weak as Ieller’s
condition ([22], p. 399). In the same way Chung’s criterion [7] may also be
generalized to martingales.

Our second invariance principle (theorem 4.6) applies to random walks under
conditions on the moments and yields theorem 1.1 and the more general corollary
4.7. The assumptions for this invariance principle have been reduced to a
minimum with the help of recent results of Baum and Katz [1], [2].

To extend as much of theorem 1.2 as possible to other random walks we have
{o assume the existence of a moment generating funetion (compare Baum-Iatz-
Read [3], theorem 1). Doing this we get by a third invariance principle (theorem
4.8) the following theorem.

Tureorem 1.4, (Compare with theorem 4.9.) Let X, Xy, - - - be independent,
tdentically distributed with mean 0, variance 1, and a finite moment generating
Junction in a neighborhood of 0, and let ¢ be as in theorem 1.2 with § = 3 and
the additional restriction that ¢(t) < t* for all t and some h < 2. Then

5

. - Hn dt
26 Pr {8, > o(m) forsome m > n} ~ f (1) ex {— o —
(26) L > o(m) > ny . ¢ (1) exp 2 m
as n— .
Thus, for instance, if

(27) o) = Ctloglogt + § logs t + loget + --- + (1 + € logs )72,
then

(28) Pr (S, > o(m) forsome m > n} ~ \—/E;(ltg k_m)_g.

We conclude with some remarks and problems. It is natural to ask for an r-
quick analogue of theorem 2 of [42]. Under the assumptions of theorem 1.1 of
the present paper, the following scems likely. If », is obtained by linearly
interpolating (2n log n)="'28; at 7/n, (1 < ¢ < n), then the sequence (n,),>2 is
r-quickly relatively norm compact (in €(0, 1)), and the set of its r-quick norm
limit points is {x: 2 € (X0, 1), 2(0) = 0, = is absolutely continuous, and
2 fol 22 dt < rj. Here we have used the following definitions: (n,), >2 is r-quickly
relatively norm compact iff for any € > 0 there is a finite union U of e-spheres in
({0, 1) such that

(29) Esup (n:n, g Ul)r < %
and z is an r-quick norm limit point of (9.).>2 iff for any open U > z,
(30) E(sup {n:n, € U}) = <.

The results of Dvoretzky-1rdds [19], Spitzer [41], Takeuchi [44], Takeuchi-
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Watanabe [45] and Wiener-It6-McKean (see Lamperti [32], Ito-McKean [25],
pPp. 255-257) give rise to a series of straightforward conjectures of the type (16)
up to an order of magnitude. Most of these, however, seem to be hard to verify
(see also Ciesielski-Taylor [8]).

Theorem 1.3 (4.4) may be sharpened by repeating its proof using corollary
4.5 in place of lemma 4.1. Then, however, 4-th conditional moments will appear
in the assumptions as well as in the conclusion. For random walks it is easy to
get the following.

THEOREM 1.5. Let Xy, X, - - - be independent identically distributed such that

(31) EX, =0, EXi =1, EX1 < .

Then if the underlying probability space is rich enough, there is a Brownian motion
£ such that

(32) S» = &(n) + O((n log log n)¥*(log n)'/?) a.s.a8 n— o,

It would be interesting to know whether (32) with o instead of O implies
that X, is Gaussian, and also whether (32) and the assumptions of theorem 1.5,
except (31), imply (31) (by [43], this is true for the first two statements of (31)).

Blackwell’s paper [5] suggests that theorems 4.6 and 4.8 also hold for certain
martingales.

I am grateful to Professor Konrad Jacobs for his constant and generous sup-
port. It is also a pleasure to thank Professor Aryeh Dvoretzky for his valuable
criticism and Mrs. Ada Augustin and Dr. Clifford Brown for their help.

2. Notation and conventions

The following definitions are used throughout the paper:

(a) R* = {t: t real and positive},

(b) II = {¢: ¥ is a positive real function on R*},

() T = {¢: ¢ is a nondecreasing real function on R+},

(d) | = {¢: ¢ is a nonincreasing real function on R*},

(e) r = identity function on R*,

() (u,0) = {r: u <r <} foranyrealu < v ((u,v), (i, v), and (u, v) are de-
fined similarly),

(g) Gy = (exp {—y2/27} \/ﬂ;) € I for any real function y on R+,

If f and ¢ are real-valued functions on any set, then f vV g and f A ¢ denote the
pointwise maximum and minimum respectively of f and g.

The process ¢ is always a standard Brownian motion (Doob [14], Krickeberg
[31], It6-McKean [25]), but need not denote the same individual copy through-
out the paper. We treat £ as a continuous function on {0} U R+ which depends
in a Borel measurable way on the points w of the underlying probability space.
This dependence on «, however, will not be expressed explicitly. We will use the
strong Markov property of £ without mentioning it (sec Hunt [24], It6-McIKean
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[25], p. 22). Measurability arguments are skipped because only standard ones are
needed (It6-McKean [25], pp. 12-17, Nelson [37]). The underlying probability
space is always assumed to be complete. The abbreviation ‘a.s.” means ‘almost
surely’. If £ is given and if ¢ is a piecewise continuous real function on R+, then
we define

(h) Sy = inf {s: s > 0 and £(s) > ¥(s)},
which is assumed to be « if the set on the right is empty;
() Ty =sup {s: s > 0and &(s) > ¥(s)},

which is assumed to be 0 if the set on the right is empty. Both Sy and T are
measurable functions on the underlying probability space which take values in
Rt U {0, +=}. A standard zero-one law (It6-McKean [25], p. 25, problem 2,
together with p. 18, problem 3; Hewitt-Savage [23]) assures that either T is a
random variable (namely, Ty < «, a.s.) or Ty = «, a.s. Also, either Sy = 0, a.s.
or Sy > 0, a.s. By Fy we will denote the (sub)distribution function of Sy. Thus,

(k) Fu(t) = Pr {£(u) > ¢(u) for some u € (0, )}

if ¢ is right-continuous at ¢ > 0. Generalizing, if 0 < s < ¢, z real, and ¥ again
right-continuous at ¢, we define

() Fyir==(t) = Pr {¢(w) > ¥(u) for some u & (5, O¢(s) = 2}
= Fu(t - 9),

where ¢, = ¢(s + 7) — z.

Finally, we remark that in the last part of the paper random variables T, and
8. = Xi<n X: will oceur, which have nothing to do with 7, Sy. Possible con-
fusion will be prevented by the context.

3. Brownian motion

LeEmmMa 3.1. Let a and b be piecewise continuous real functions on Rt and
t> 0 such thata < bin (0,t) and a > b in {{, t + &), where § > 0, a and b are
differentiable at t. Then

[F.,(t + k) — Ft —h)  Fy(t + k) — Folt — h)] <o.

(33) lim sup
h,k—0+0

h 4k h+k

Proor. (A correct proof of this lemma was first given by Professor A. Dvo-
retzky.) Let both 2 > 0 and 0 < k < & be so small that a and b are continuous
in{t —h,t+ k), and for 0 < ¢ < h, put

(34) el =sup bw):t—e<u<Lt} —alt—e.
Then ¢(e) = O(e) as e > 0. We have
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(35)  Fut+ k) — F(t—h) — (Fo(t + k) — Fu(t — h))
=Pr{S.e(t—ht+k); —Pr{Sse({t—hit+hk)
<Pr{S.e(t—ht,&<bin (0, )}

Pr (£ < bin (s, O)|£(s) = a(s)} dF.(s)

<
= JUu—=ht)

Pr it <clt—s)in (0, — s)} dF,(s)

<
— Ji—=ht)

= f“_h ) Pr {|&(t — s)| < et — 5)} dF.(s) (by lemma 3.2, (37) below)

< sup r -flg(l)] < ?_(f__) -Pr{S,e (t — h, t)}
L Ve
= 0(h'2) Pri{S, € (t — h, 1)}.
We have to show that Pr {S, € (t — &, )} = o(h2). Let & > 0, L the straight line
through the point (¢, a(t)) with slope a’(t) — & (so that L > a in a left neighbor-
hood of ¢, say in (¢t — H,t)). Then if z < a(t — H) and h < H,
(36) Pr{S.e t—nhdlt<ain(0,t—H), &t — H) =z}
= Pr Soti——2 € (I — 1, )}
< Pr ‘{SL(r-}—t—I])—x e (11 — h, I[)J
+ Pr{Sectt-my-c € H — I, ), § < L+t —H) — x
in (I — h, I} .
The first summand here is O(/) uniformly in x, because by lemma 3.2, (38) below
withl = L{(r +t — H) — z, SL.¢+1—1m - has a density in (0, H), bounded uni-
formly for ®* < a(t — H) < L(t — H). The second summand in (36) is <
suppeur-nm Pr < Lir+u+t —H) —alu+t — H) in 0,H —u)} <
4602 for small h, using lemma 3.2, (37) below and L(») — a(v) < 25(t — v) for
small ¢ — v. Thus the left side of (36) is < 56h'2 for small A uniformly in «. Inte-
gration yields Pr {S, € (¢ — h, §)} < 56h!/2 for small &, so that the lemma follows
because § is arbitrary.
The following lemma is well known (Lévy [34], p. 211, (6) together with
Cameron-Martin [6]; a simple direct proof may be found in Dinges [12]).
LEMMA 3.2, Lett > 0,m > 0, greal, | = m + gr and x < I(t). Then
37) Pr{t <lin (0,0, &) < x}
= Pr{tt) <a} — e Pr ) <o — 2mj.
Thus (by Pr {S; > s} = Pr {£ < lin (0, s)}),

m CXP {-—;—8 (m + qs)?} m
(38) Fi(s) = . Vo = Gi(s) for any s> 0-

Also
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(39) Pr {mg,x |£(s)| > m} < 4 Pr {£() > m}.
s <t

LeEmMA 3.3.  Let ¢ be a piecewise continuous real function on R* with continuous
derivative in (u, v) where 0 < u < v. Then Fy has a continuous derivative in (u, v).

Proor. Denote by Fy, the lower, and by F the upper derivative of F, (thus,
for example,

L) = Tim Fw(t-l-k)—Fw(t*h)),
) Wo = Imint (M

Then if the lemma is wrong, there are sequences {,, 7., in (u, v) converging to the
same { € (u, v) such that

(41) lim inf (F(t,) — Fy(r,)) > ¢ >0

n—ow

for some e. Let 6 > Obesosmallthat u <{— 8 <t+ 8 <vanda — 8 < ¢/4,
where

(42)

a = sup {y/(s): |[s — 1| <8},
B =inf {Y'(s): |s — ¢ < &}.
Let y, (resp. y2) be such that the linear function with slope a (resp. 8) and with
value ¥, (resp. y.) at ¢ — & takes the value ¢(¢ + 8) at ¢t 4 6. It is clear that
n < Yt — 8) < y2 and that
(4«%) y2_y1=\l’(t+6)_yl_d’(t'i‘a)—y‘l____ €.

) 26 26 26 4
It is also clear that any linear function on (¢t — 4, ¢ + 8) which is . at { — § and
¥(s) at some s € (¢ — 4, ¢ + &) lies above y in (¢ — &, s) and below ¢ in (s, { + 5).
Thus, if we call b, the function which coincides with ¢ on (0, ¢ — 8) and which is
linear on (¢ — 8, ), and such that b, — 8) = y, and b.(¢.) = ¢¥(t.) where n is
large enough to ensure |t, — {| < §, then we may apply lemma 3.1 to ¢ in place
of a, b, in place of b, and ¢, in place of ¢ to get

@) R <[ LR

1

a— <

8 = ln

W(t) — x)?
= /m Yo — I exp{—m
—o b= (E—=08)  Vor(t,— (t — )

d:Pr {§(t —8) <2, 8 <yin (0.t — 5

by (38). Thus
(45) lim sup Fy(t.)
W) — x)°

" exp {———————
Yyo— 20 fers . .
< ,/_,o ) V25 d:Pr (gt —8) <, £ <Y in (0,1 —5))

i _
=/ L ; T aH (),
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where H is a subdistribution funetion (limy—~» H(z) < 1). Similarly,
n _ ¥ _
(46)  lim inf F(r,) > f -?/‘—ax dH (z) > f yla—”dH(z)

3 /’ Y2 — ¥ y1 dH(z) > lim sup Fj(t.) —

by (45) and (43). But this contradicts (41).

Now lemma 3.1 may be formulated in a neater way.

LemMma 3.4.  Let a and b be piecewise continuous functions on R+, both of which
have a continuous derivative in a neighborhood of some t > 0. Assume a < b in
0,8 and a > b in (t, t + &) for some § > 0. Then F, and Fy have a continuous
derivative in a neighborhood of t and Fi(t) < Fi(t).

Proor. The proof is immediate from lemmas 3.1 and 3.3.

TaEOREM 3.5. Let 0 < a < 1,y € I such that ¢ has a continuous derivative
and

(47) reyel.

Assume

(48) Sy > 0, a.s.

Then

(49) VY(t) — oo as t—0.

Also Fy has a continuous derivative fy such that if 0 < e < 1 — a and

20 - o=t 1) 25

for t > 0 small enough to ensure top()~2¢ < 1 by (49), then

(50)

(51) Jim sup £,(0) (119 Gm))'l <1
t—0

and

(52) lim inf £, (1) (’l(ti) (,w))_l > 1.
t—0

Notice that geometrically, A(t) and A(¢) are the lowest and highest point of
intersection of the tangents of ¢ in the interval ({(1 — t90(f)=2¢), {) with the
vertical coordinate axis. Note also that A(¢) > 0, because ¢’ < af/7 by (47), and
therefore,

(563) - 2 (1 — .

Proor. Inequality (48) alone implies t~1/2)(f) —  as ¢t — 0, for otherwise,
AMyY(t) < A < « for suitable arbitrarily small ¢ > 0, so that for such ¢,

(54) Pr {8y, <& > Pr {&(t) > At12} = Pr {£(1) > A} > 0,
contradicting (48). Lemma 3.3 asserts that Fy has a continuous derivative fj.
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To prove (51), we apply lemma, 3.4 to ¢ in place of a and ¢, in place of b, where
1 is defined as follows. Let ¢t > 0, A; > A(f) be a real number and ! be the linear
function with 1(0) = Ay, I(t) = ¢(f), and let s = (1 — i9p(t)~2¢). Then it is easy to
see that | > ¢ in (s, t) and I < ¢ in a right neighborhood of ¢, say in (¢, ¢ + 8),
where 6 > 0; 1 is now defined to coincide with y on (0, s) U {t + 8, «) and with
lon (s, t + §). Lemma 3.4 yields

(55 fold) = Fy®) < Fu(®
= [*7 i =20 d: Pr (£ < ¥ in (0, 9), ) < )

8) —_ )2 2
< ﬁ( l(s) L 2r(t — 8)2ws)~12 exp —%:—5)— ;s dz

by lemma 3.2, (38). Substltutmg y =z — (s/t)¥(t) and using

s

(56) =0
t—s t

(definition of ), we get

6N fuld)

<ga [ (1= g ts) (e 0 ) e {- g o

< %‘G,,,(t) (1 + Ail [) i P (27r(t — 4 %)_"2 exp {—2“?_-——8)8} dy>

<%0 (1 + Ix/t_t—T“Q
Using the definition of s and the fact that
(58) A> AR 2@ — W) 2 1 — ()
by (63), we get
(89) fo) < A/HGBU + (1/1 — ) (V¥ ()9,

which implies (51) by (49) and the fact that A, was arbitrary greater than A(f).
To prove (52), we again apply lemma 3.4, but we need a little preparation.

We have o + € < 1, so there is a 8 such that

(60) at+e<26—1<B<I1.

Let s = t(1 — t4(t)~2¢) be as above and r be any function of s (and thus of ¢) for
which (see (49)).
ﬁ_
(61) v (1 ( )2 — o as s—0
s \s
and

(62) ¥(e)? (g)ﬂ —0 as s—0.
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Using (49), we see that for small ¢ (to which we will restrict ourselves) we have
0 < 7 < s < t. In the rest of the proof all asymptotic statements are understood
to hold as t — 0 (and therefore as s — 0, r — 0).

Notice that

(63) s~t

and

(64) r = o(s).

Now let g be the linear function with

(65) o) =) (1) and g = w0

(more rigorously we should write g,, because g depends via r and s, on the pa-
rameter f). We have g < ¢ on (r, s) (this is easily seen using an auxiliary function
7 = Y(s)(v/8)*; in fact, » < ¥ on {r, s) by (47), and g < 9 on (r, s) because 3 is
concave). Next let h be the linear function with

(66) h(0) = »-A(t) and h(t) = ¢(1)

where » = »(t) will be chosen below such that » < 1 and v — 1 as{ — 0. From the
definition of \(t), it follows easily that A < ¢ in (s, t) and h > ¢ in {, ¢ + &) for
some & > 0. Now we define ¥, to be y on (0, 7), g on (r, s), hon (s, ¢t + 8), and

Yyon (t 4 8, ). We apply lemma 3.4 to ¢ in place of b and ¢ in place of a and
get

. k()
(67) 10 2 Fo) 2 [ Fiew - 01 @) dz
for any k, where

(68) I(x) = —‘i Pr{f<yin(0,r),t<gin,s), fs) < z}.

We choose k = n//(s) (r/s)'fi and estimate I(x) for x € (k, h(s)), using lemma 3.2,
37):

69) I@) = / d%Pr E<gin(r,s), &s) < z2l(0r) =y}
d, Pr {s <yin (0,7r), &r) < y}

- /(—«o () @r(s = )" e‘{p{ 2(8 - r)

( (v (5 = 9)})

dy Pr{& <¢in 0,1), &) < yj

_ & + k)?
> 172 -
- ‘K—k,k) (279) exP{ 2(s — 1)

(1 — exp{=2 ) — 1) (v (5 —#)})

dy Pr{& <y in (0,1), &(r) <y},
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by first replacing (—=, g(r)) by (—k, k) and then estimating the integrand using
E<y(s) (r/s)* = g(r) and k < z < h(s) < ¢(s). Now

(70) exp gaés_‘-_]‘ ) 2} exp { }

uniformly in z € {k, i(s)), by (64) and (62) and A(s) < ¢(s).
Furthermore,

(71) 0 < (s) — his) = 9(s) — = TuA()) — ‘1/'()

so that in particular, because v < 1 is still arbltrary (t — s/ONL) < Y(s) —
(s/t)¥(t), and therefore,

T2 W) = ) = ¥ = A0 = e 2 (1 =) (w) = v,
Now (47) implies that
. t\*
(73) w0 < (Y v
for any u < t, so that
@ v =z = (1= (5)7) 2 a - v L

for small ¢ by (63) and ¢ < 1 — @, and therefore, using the definition of s,

(75) Y(s) — h(s) > (1 = »)g(s)ey()
On the other hand,

- r\« o K @ ) L 28 -1 § €

(76) 2 (v (2) = 1) 290 (0) 200 (5)" (%)

for small ¢ by (64) and the definition of k and 8. Now by (62), (73), and (63),
- )z (M) 5 (M)

o () z2(t) = (%

for small ¢, so that

(78) 2 (w(s) <§>a - ](‘) > ¥(s) (g)gﬂ-l (?{’,(Tt)‘fy.

This {ogether with (75) yields

(79) exp {-— 2 (¥(s) — h(s)) <‘»”(s) <7>->“ - k),}

< e\p{ a1 - (S) <s> }—»0

by (61) and a proper choice of » < 1, v — 1. Finally, according to (48), one has
Pr{E<y¢in (0,7), |¢0)] <k —1and

(80) k2 _ () <§>”" e

r S

=
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(see (61)). Putting this together with (70) and (69) we get

wl g
(81) I(x) > Vo "

where 7 < 1, but 7 — 1 uniformly for z € (%, h(s)). From (67) we get, using (38)
and (66)

82) S > f_h(s) P oe() e 28 eXp{ }

21rs
k
- f_ F)’ne(s)-z(t) (27s)~12 exp {_:_0_2} dz
k \ \
> F;.(t)ﬂ — /_a h(S) (2 (t _ s)21rs) —1/2 exp{ (11’2(8 __:)) ;s dx
= Fi()yn — J (say).

Now h(s) = (¢t — s/OvA(t) + (s/O¢¥ @) = (s/)¥ (1), so that (h(s) — )Y () — ) >
t —s for ¢ < 0 and small ¢ because (Y(t)2/t) — . But this implies that
(h(s) — x) exp {— (Y() — x)2/2(t — s)} increases with = for z < 0. Thus

) 7<) @e - ) exp { - L =10,
Because

K ¥(s)? r 2,5_)
(84) s s (s) 0,
we have by (49) and (63)
(85) k= o( Vs) = o(¥(1)),
so that

W) — k)* v

0 o= 5=y ) <o {-ai s
for small . Also by (53) and (73),
(87) W) € T2 W) — w @)
for small ¢ and u € (s, t), so that
(88) W) < 720,
Thus,

(89) M) = E2Ea0 + 290 < 20
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Therefore, we may continue (83) using (86), (89), and (63) and (49),

0] N C1rs  N—ai [ ¥®* ) _ (\N®
90) T < TP~ @)t — o) exp |~y = ( Gw))

From (82) we get by lemma 3.2 using » — 1, n — 1 and the definition of 4,
Fo®) = @) /DGy (t)(1 4 o(1)), which proves (52).

THROREM 3.6. Let0 < & < 1, ¢ € II such that ¢ has a continuous derivative and
% & 1. Assume that

91) T, < x©, a.s.
Then
(92) 1712p(8) — as t— o,

Except perhaps for some mass at 0, T, has a continuous density D, (so that
j;” Dty dt = Pr{T,> 0} <1), and if 0 < § < & and

v(@) _ inf 'y 8
(93) I(t)  sup ‘D(S)'tssst(1+< (t)>>}
then
(94) lirp sup D, () (T'())G, (1)) < 1,
(95) 1i§n inf Dy () (v(1)G, ()1 > 1.
Thus, if
(96) 1< ‘—: <1+ <;(%2)9 implies  ¢'(s) ~ ¢'(f) as §—w,{— o,

then D,(t) ~ o' (t)G,(t) as t — .
Proor. Let

O7) a=1-5 cc@1—a), ‘b:"""G)’ g=,.g<1>.

T

The process £ is again a standard Brownian motion (Lévy [34], p. 246 or It-
McKean, p. 18, problem 3). We apply theorem 3.5 to £ instead of £. With the help
of Sy = 1/T,, all the assumptions are easily verified. Usingy — 7-¢' = ¢’(1/7)
and e > 8, one gets y(£) < N1/f) < A(1/t) < T'(¢) for large ¢&. This together with
o = m¢(1/7) and D, = (1/72)f,(1/7) allows one to conclude (94) and (95) from
(51) and (52). The rest is trivial.

1t should be noticed that the assumptions ¢ > 0 and 7%p € T of the theorem
may be weakened to ¢(f) > 0 eventually as { — « and {~%¢(¢) increases eventually
as t — o, because one may then replace ¢ on a finite interval appropriately. By
(92) (the proof of (92) depends only on (91)!) this can always be done, and it
does not affect the distribution of 7, outside that finite interval.

CoroLLARY 3.7. Let ¢ € Il and 6 > 0 such that

(98) e 1.
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Then

(99) Pr{&(t) < o(t) eventually as t —» =} =
implies
(100) [1 * Fe(D)GL() dt < .

Proor. We may assume that
(101) e <,

because if ¢ satisfies (98) and (99), then so does ¢ A + (by the law of large
numbers), and if ¢ A 7 satisfies (100), then so does ¢. We also may assume that
6 < 1. The proof proceeds by regularization.

Let o be a nonnegative continuously differentiable function on R! such that
a(t) = 0, except if ¢t € (3,1) and such that ffw o(t) dt = 1. Put ¢t) =
f;’ e(s)a(s — t) ds. Then ¢, has a continuous derivative satisfying, for ¢ > 0,

(102) A0 = = [ els)o’ts — 1) ds

il

= A“ (s — 1) do(s)

= °°( — ¥)sid (8) +5 o'( t) ! “’(S)
0

Here the first integral on the right side is >0 and the integrand of the second
vanishes for s > ¢ + 1. Thus if £ > 1,

(103) w0 2 -1 el > 220,

or equivalently,

(104) 1=%24(t) increases in ¢ for ¢ > 1.
Obviously,

(105) ¢ < oo < o(r + 1).

By the left inequality,

(106) Pr {£(1) < @(t) eventually ast — =} =1,

so that theorem 3.6, (95) applied to ¢, and §,/2 yiclds flw y()G, () dt < o, be-
cause D, is integrable. Now

(107) v(t) = inf {50(,)(8)1 1<s< t<1 + "P_og)~w>} 2 Zﬁspot(t)

for large t by (103), (104), and (92). Therefore we get

(108) [1 * ()G (t) dt < oo
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Because z exp {—(22/2t)} is decreasing in z for z > \/Z, this together with (92)
(applied to ¢p) and (105) implies

(109) ﬁ =320(t + 1) exp {—‘ﬁ(—‘—j 1)2} t < oc,

and by substitution, using (101), we get (100).
CoroLLARY 3.8. Let ¢ € I1 such that ¢ € 1 and 7 9% € | for some
0<e<qgandletr > 0. Then

(110) ET, < =
implies
(111) fl * 110G, (1) dt < .

Conversely, if € = %, then (111) implies (110).

Proor. We may again assume (101), because the validity of the assumptions
of the present corollary and the truth values of both (110) and (111) are
not affected by the passage from ¢ to ¢ A 7 (for example, (110) implies ET7, ,, =
E(T, Vv T;) < =, because ET; < = by (94)).

The first part of the present corollary follows now in the same way as corollary
3.7 and may be left to the reader.

The second part is proved similarly. Put ¢, = @o(r — 1) (remember that ¢
was defined not only on R* but on R?). Inequality (103) with § = } yields
o) > (1/20)¢1(t), or equivalently, 1=/, () increases in ¢ for ¢ > 2. Formula
(102) for 6 = q and the remark that the first integral on its right side is now <0,
and the integrand of the sccond vanishes for s < ¢, yiclds ¢o(f) < (g/8)eo(t) or

(112) Gt < 2 0

for ¢t > 2. Inequality (105) becomes ¢; < ¢ < ¢i(7 + 1). Applying the right
inequality herce to (111) we see by a time substitution using (101) that

(113) fl ® e (DG () dt < .

Now the easy half of the law of the iterated logarithm (Erdés {20], theorem 1;
Teller [22], pp. 197-198, problems 7 and 8; It6-McIkean [25], p. 34, under an
additional restriction, or pp. 161-164) allows us to conclude that 7', < =, a.s.,
so that we may apply theorem 3.6, (94) to ¢1. The inequality ¢; < ¢ implies
ET, < ET,. In order to prove (110), it is therefore sufficient to show that

(114) ]l TG () dE < %,
where for large {,
()
(115) () < sup {pi(9): ¢ < s < 20 < T n(20)

by (112). But (112) also implies ¢;(2f) < 229,(t), so that (114) follows from (113),
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4. Almost sure-invariance principles

The first two lemmas below and their proofs are routine.

LemMma 4.1, Let Ty, T, - - - be nonnegative random variables, let Wy = {, Q}
where Q is the underlying probability space, let Ay, Az, - - - be a nondecreasing se-
quence of o-algebras of events such that T, is A,-measurable and such that E(Tz|¥,—1)
18 defined (that s, the measure on A, which is obtained by integrating T2 with the
basic probability measure Pr remains o-finite if restricted to N,—.; this is the case,
for example, if Tz < U, a.s., where U is any A,_,-measurable random variable).
We do not assume, however, that E(T2) < «. Put

(116) W, = ; E(T{%;-)

and let 0 < Vy < Vo < --- be random variables such that V, 1s N._1-measurable.

Finally, let g € I N T be such that g(t) — » as t — . Assume that

(117) ngl g(V.)E(T7|¥ny) € Lt

or equivalently,

(118) EIE(Q(VU”E(T?J%_:)) = nZ;l E(g(V.)*'T7) < =,

and

(119) Weo—Ve=00gV,) as n—o o, as.on {V,—>w}.
Then a.8. on {V, — o},

(120) .-;n T:— V.= o(g(V,)) as n—w.

Proor. If T, = g(V.)"Y(T» — E(T.|%.—1)), then T, is 9.-measurable,
E(Ty|%1) = 0, a.s. and

(121) n};lE(T,'}) < n‘; E(g(V.)2E(T3|¥nn)) <

consequently (sée, for example, Lo&ve [35], p. 387),

(122) nzz:l Tr < , a.s.
Thus by Kronecker’s lemma (Logve [35], p. 238),

(123) gV T (T~ B(T %)) 0, as.on {V,— o}

By (119) this implies (120).
LemMa 4.2. Let f € T such that

(124) fet, Vel
and put

(125)
Then

g = (/) logr,
h = (zf)V4 log 7.



RANDOM VARIABLES AND MARTINGALES 333

(126) Pr {¢(t.) — &(sa) = o(h(t:)) as n — = for any sequences I, s,
such that t, — ©, 5, —©, t, — s,'= o(g(t,)) asn - o} = 1.
Proor. Let e > 0. Lemma 3.2, (38) yields -
(127) % Pri max [K) = &n— g@)| > V8(n)

t —n| <eg(n)
<4 T Pr{i(n + () — £n — q(n) > VBeh(n)}
=4 % PriE1) > 2Viog n} < o,
n2>1
so that with probability one, eventually

(128)  max {J&(t) — £6)|: |t — n| < eg(n), [s — n| < eg(n)} < 4V2eh(n).

If i oo, s> o, and & — s = o(g(ty)) as k— «, and if n; is such that
N — 1< tk S Nk, then

(129) [te — m] < eg(ma), lsx — nu| < eg(ma)

for sufficiently large k. Outside the set of measure zero where (128) fails we have,
therefore,

(130) |£(te) — £(se)| < 4V2eh(m) < 8V eh(t)

for large k by (124). Because ¢ > 0 was arbitrary, the lemma follows.

The next theorem is a generalization to martingales of a result of A. B.
Skorohod ([40], p. 180) on sums of independent random variables. The proof
(which we omit) follows similar lines as Skorohod’s and will be presented by
F. Jonas, at Erlangen, in his Diplomarbeit (see also Dambis [9], theorem 7, and
Dubins-Sehwarz [18]). The phrase ‘without loss of generality’ in the next
theorem is used in a specific sense, namely: there is a new probability space on
which random variables

(131) vy, ¥y o

are defined such that the sequence (132) and the sequence (131) have the same
distribution, and such that theorem 4.3 (where now ‘without loss of generality’
is to be omitted) holds for the ¥, (¢ and the T, are of course defined on the new
space). This interpretation is valid for the rest of the paper.

TureoreMm 4.3. Let

(132) Yy, Yo, -

be random variables such that for all n, E(Y;|Yy, -+, Ya1) is defined and
E(Y,|Yy «++, Yau) = 0, a.s. Then, without loss of generality, there is a Brownian
motion £ together with a sequence of nonnegative random variables Th, Ty, - - - such
that A . ,

(133) ' T Yi=HZ T, a.s.

for all n. Moreover, if N, is generated by Y1, + -+ , Y,and @) for 0 <t < Y i<a T,
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then T, is Wp-measurable, £ i< Ti + 8) — §(XLi<n 1) ts tndependent of U, for
any s > 0, E(T,|%,-.) is defined and

(134) I;(Tynli)["-]> = ]f«‘()/%ls\)ln-l) = 144'(”3"’1) t )’71—1)7 a.s.

If k is a real number >1 and I(Y¥| Y, - -+, Y,1) is defined, then E(TEN,—y) s
also defined and

(135) E(THA) < Lei(Y3HAy) = Lili(Y3F

where Ly, are constants which depend only on k.

If the Y, are mutually independent, then the T, are mulually independent. If in
addition the Y, are identically distributed or have a moment generating function in a
neighborhood of 0, then the same holds for the T, (with the same neighborhood).

TureoreM 4.4. Let Xy, X, - - - be random variables such that E(X?| X1, - - -, Xna)
1s defined and E(X.| Xy, ---,X.1) =0, as. for all n. Put S, = Y i<n X and

Yy, -, Yoo, a.s.,

Vo= 2i<n E(X3X,y, -+, Xi1y), where, in order to avoid trivial complications,

we assume V, = EX3 > 0. Let f € 11 such that

(136) fe1, ife |.

Assume that

(137) V.,—>=», a.s.

asn— % and

138) X (V) [ 2 Pr (X, < alXy, o, Xad < o, a.s.
n>1 x2>f(Vya)

Let S be the (random) function on RT \J {0} oblained by interpolating S, at V,
in such a way that S(0) = 0 and S s constant in each {V,, V1) (or alternatively,
1s linear in each (V,, V.y1)). Then withowt loss of generality there is a Brownian
motion £ such that

(139) S(t) = &(t) 4+ o(log t(1f ()17, a.s.as t— oo,

Proor. Let r >0 and p(x) = 2rt2 — ¢/ for o > r@®?. Then p, maps
(r/»  «) topologically onto (r/») 2r1/2) such that always

(140) p(x) < x,

and p,(z) is jointly Borel measurable in r, x for 0 < »@» < x. Now let
~ 1’" 1 er < 711 y

(141) . (X it X2 < F(V)

N, =<, . 5
‘ LSlg“ (Xn)P/(V,.)(IXnD it Xi> f(Va),

and Y, = X, — E(X,[€..1), where £, is the o-algebra generated by Xy, - -+, X,
Then the properties of p, imply that £, is generated also by Xy, ---, X, and is
therefore also the o-algebra generated by Y, -+ -, V.. Moreover, E(X3|€,-1)
and E(Y3|£,_,) are defined for any k, because

(142) 1% < 2(V)2 and |V.| < 4F (V)"

and V, is £,_,-measurable. Also

(143) E(Y,|£.) =0, a.s.
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and
(144)  E(Yi|€u) = E(X|€0r) — 4E(X]|Lacn) E(X | L0a)

+ 6E(X3| e, )E(X,|€.,-)? — 3E(X,|€.0)*

< 4/ (V)EE 2,2,

again using [(X.| <27 (V)2 which is €, -measurable. With the help of
X2 < X2, one gets for n > 1,

(1"1‘:'-)) ]L’()':lcen—]) S 44‘/'(‘71:)(‘['/’-11 - I’Yll—l)~
Here V, = 0. Because I/(X,|£.1) = 0, a.s., we have

(146) EX,|€.)? = E(X, — X,|€,.)?

< (2};2 o |old Pr {X, < 2]€.1))?

<4 f e Pr X, < e,
r2>f (V)
thus

(147) (Y€ ) — E(XN3e )|
[E(X3eim) — E(N]em)? — E(XG|ei)]
< E(Xe ) + [EX - Nileo)

(’)/ Cad Pr (X, < xle).
x>V

IA

Summing up and using the fact that f(V;) is nondecreasing in 7, we get

(148) w, — V., <641(V.), a.s.,
where
(149) W, =% E(Y3e),

1<n

and A is the random variable represented by the series in (138). Now let

g= (N)"log (r V2) and h = («f)*log (+ V 2). Then by (148), (136) and
(137),

(150) W, — V.=0(gV.), a.8. a8 n— <.
Inequality (138) implies
(151) 7Z>:1 Pr (¥, = X,|le.) < ”Z>1 Pr (X2 > (V)€ <=, a.s.

Thus by P. 1.évy’s conditional form of the Borel-Cantelli lemma (Lévy ([33],
p. 249); Dubins-Freedman [15]; it also follows easily from (122) in the proof of
Jemma 4.1 above, letting 7', be the indicator of {X, = X,} and g = 7, verifying
(117) in a similar way as (156) below),

(152) Pr (X, # X, infinitely often} = 0,
in particular, by (137),
(153) T X = 3 X =oh(V.), a.s.

i<n i<n
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Moreover,
(154) ]Z Y.— 2 th =2 E(Xi[eﬁi_l)[
i<n i<n i<n
= IZ E(Xo - Xi[oBi—l)l

i<n
<2% f oy 1710 Pr (X < 2l2i}
-1/ ) o
<2 LI [y 2P {X < a2}
S 2f(Va)'2A = o(R(V4)), a.s.
by (136) and (137). Together with (153) we have, therefore,
(155) |‘2<j Y, — 2<; X = o(h(V.), a.s.
We now apply theorem 4.3 to Yy, Vs, - - . Equality (143) and the remarks

preceding it show that the assumptions of the theorem are satisfied, and moreover
that E(T%|%n—) is defined for any k, and (135) holds. Remember that the phrase
‘without loss of generality’ in theorem 4.3 represents the passage to a new proba-
bility space, and that only random variables (defined on the original space)
which are Borel functions of Y3, Vs, - - - have an immediate meaning in the new
space. Fortunately the X,, and therefore also the other random variables which
have occurred thus far in this proof, are Borel functions of the 1’; (the somewhat
clumsy kind of truncation in the definition of X, has been used just to achieve
this aim).

Next we are going to apply lemma 4.1 to the 7', and 9, provided by theorem
4.3 and to the V, and ¢ of the present proof. All assumptions of the lemma
except (117) are easily checked, if one notices that by (134) the definition of W,
in the lemma and its definition (149) in the present proof are equivalent, so that
(150) takes care of (119). To prove (117), use (133) and the definition of g, and
then (145) to get

(156) T gV B(THN)
_ < T (T (V) llog (Vo v 2) LB, -+, Vo)

< const. Y (V. — Vo) Vi '(log (V. V 2))72
n>1

< const. ((log (Viv2)—?+4 - ﬁ/Q—))?) a.s.,
which is a finite constant. This proves (117). Now the conclusion (120) of the
lemma together with (137) yields
(157) 5;7; T:— V.= o0(g(V,), a.s.;
thus by lemma 4.2,

(158) EZ T — EVa) = o(R(Va)), a.s.

1<n
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Together with (133) and (155), we obtain

(159) Sn — £V, = o(h(V,)), a.5.88 n— o,
Now by (134) and (156),

(160) (W, — Wa1)? = (E(TW|N2)? < E(T7|Wm) = o(g(V)?), a.s.,
so that by (150),

(161) Vi — Vi = o(g(V.,)), a.s.,

using that ¢(V,) is a.s. nondecreasing in n. We are now ready to prove (139).
Given ¢ > 0, let n = n(t) be the largest integer such that V,_; <t < V,. Then
(159) implies

(162) S, — &V.) = o(h(t)), a.s.as [ — «©,
and (161) and lemma 4.2 together imply

(163) E(V.) — E(Vas)) = o(h(t)), a.s.
and

(164) §(V,) — £@) = o(h(D)), a.s.

Bearing this and the definition of S(¢) in mind, we get

(165) S — £@)] < 1SW) — Sul + [S. — VI + [E(V.) — EOD)]
< |8u1 — Sal + o(h(1))
< 18 — E(Vod)| + [E(Vamr) — (VD] + [E(V.) = Su| + o(R(1)
= o(h(t)) a.s. as t — .

This proves the theorem.
CoRrOLLARY 4.5. Let Xy, Xa, - - - be random variables such that

EX Xy -, Xusr)

is defined and E(X.|X1, -+, Xu1) = 0, as. for all n. Put S, = 2Zi<a Xi and
Ve = Ti<a E(X3X,y, -+, Xiy), and assume Vi = EXT > 0 and V, — =, as.
and

(166) Y Vi'(log V.re)s f
n>1 x

Let ¢ € 1T such that

-2 o ' 1
2dPr'X, <alXy -0, X -
2> Va(log Vare) s < = i 1 y N\ p—1y < y €

(167) T2 e T.
Then
(168) Pr {S, < ¢(V,) cventually asn — =} = 1or 0

according to
(169) ]1 ® F1e(D)Gae(t) dt < % or = .

Proor. The easy half of the law of the iterated logarithm for Brownian
motion states that convergence in (169) implies
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(170) Pr {£(t) < ¢(t) eventually ast — <} =1

(see the end of the proof of corollary 3.8). Apply now theorem 4.4 with f =
r(log (r V €)~5 ve to get (without loss of generality) a Brownian motion ¢ such
that

(171) S@) = &) + o(@"2(log t)~1/4), a.s.

as t— o, where we choose S to be constant in each (V,, V,). It is
casy to see that (167) and convergence in (169) remain true for ¢; = ¢ A
72 (log (v V €))% and also for ¢, = o1 — 7D (log (7 V €))~/9, Thus by
the remark at the beginning of the proof,

(172) Pr {£(t) < @u(f) — VD (log )~/ eventually as t — o} = 1.
Using (171), we get

(173) Pr {S(t) < ¢(t) eventually ast > 2} =1,

and hence the corresponding case in (168).

Conversely, assume Pr {S, < ¢(V,) eventually} > 0. Because ¢ € 7, this
implies

(174) Pr {S(t) < o(t) eventually as t — <} > 0,

and by (171) and a zero-one law for ¢

(175) Pr {£1t) < o(t) + t'2(log t)~1"* eventually as t — =} = 1.
From the remark at the beginning of the proof, it follows that

(176) Pr {¢@) < t'?(log t)!/* eventually as t —» <} = 1.
Thus,

(177) Pr {£(t) < @3(t) eventually ast— =} = 1,
where

(178) o = @1 + r12(log (r V )11

2 (¢ + r2(0g (1 V 9)74) A r(log (¢ V )"

Now 7 g3 € T, so that corollary 3.7 yields [1 N o3 ()G, (1) dt < o, which
implies convergence in (169).

TuEOREM 4.6. Let Xy, Xy, -+ be a sequence of independent identically dis-
tributed random variables such that EX, = 0 and EXi = 1. Let r > 0 and z >
2(r + 1) and E|X,|f < =. Then, without loss of generality, there s a Brownian
motion & such that if S takes the constant value S, = X_i<n Xi tn the interval
(n, n + 1) for each n, then

(179) E(sup {t: [S(t) — &) = t"27%) <=
for some 0 < § < 3. ’

Proor. Apply theorem 4.3 to the X,. Then by (135) and (134), E(T7?) < «
and ET, = 1. We may assume that z < 4(r 4+ 1). Apply theorem 3 of L. E.
Baum and M. Katz [2] to get
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(180) £ weth {3‘;‘,’" L T 7=l 1} <
for some 0 < ¢ < 1. Now if § < ¢'/2, we have
(181) Pr {{S(t) — &(t)] > t12% for some ¢ > m}
< Pr {|S(t) — £@)| > /2% for some ¢ > m,
Ii% T: — n| <n'=%¥forall n > m}

1 1 .
= .o | — 1 2
+ Pr {Slg)n e I’iZSn T, —nl > lf Py + P (say).

Using (133) and the definition of S(t), we obtain

1/2—38
(182) P,< X Pr{ sup |&(f) — g(n — nt—¥)| > 7—17)—
nzm [t —n] <nt-¥ 2z
< t _ n2e
< const. "gm n=e exp {—1—6

by lemma 3.2, (39), where we put e = (§'/2) — & > 0. Thus, X m>1 m—P < =.
By (180) we have Y ,>1 m—1P5 < =, s0 that > a1 m1Pr {4 > m} < «,
where A = sup {¢: |S(f) — £(#)| > tV/2-8}. But this implies EA™ < «.

CoROLLARY 4.7. Let the assumptions of theorem 4.6 be satisfied. Put S, =
>i<n X, and let ¢ € TI be such that

(183) e T,

(184) e |

for some g > L. Moreover, let T = sup {n: S, > o(n)}. Then
(185) ET < «

if and only if

(186) f1 ® r1o(8)G,(f) dt < .

Proor. Let ¢ be such that (179) holds, and put for any continuous function
Y on Rt

Ty = sup {n: 8. > ¢(n)},
Ty = sup {t: S@t) > ¢(®)}.

The following considerations are somewhat analogous to those used in the proof
of corollary 4.5. If ET" = ET, < «, then ET, < «, which by (179) implies

(188) ET, s < .

This together with the second part of corollary 3.8 applied to /2 log (r V 2)
yields

(189) EYV%+,-1/2-—5 < o,

where ¢, = ¢ A 712log (r V 2). The first part of corollary 3.8 with e = 3 — 8
now gives

(187)
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(190) fl " =Upo(l) + 028Gy ra(t) db < o,

which implies (186).

Conversely, if (186) holds, then one may replace ¢ by ¢, and then by
oo — 7978 50 that by the second part of corollary 3.8,
(191) ETq _rns < .
Here we have used the remark after the proof of theorem 3.6. Inequality (191)
implies
(192) ET, 2 < .,
Thus by (179), ET’, < «, which implies (185).

THEOREM 4.8. Let Xy, X, - -+ be independent identically distributed random
variables such that

EX[ = 0,
(193) EX? =1,

Eev¥r <o for |ul <e

where € > 0. Then without loss of generality there s a Brownian motion ¢ such that
if S s obtained as in theorem 4.6, and if 1 < b < 3, 0 < 3a < 4b — 1, then
(194) Pr {|S(t) — &(t)| > t* for some t > s} = o(e™*).

Proor. Apply theorem 4.3 to the X,. Then Ty, 7%, --- are independent,
identically distributed, and one has
(195) ET, =1,
(196) B(u) = Eexp (w(T, — 1)} <= for |u| <e
Determine o’ and ¢ such that a < a’, 1 + a’ < 2¢, ¢ < 26 — a. For u > 0 we
have

(197) Pr {; (1',‘ - 1) > n‘} < Eexp {u 2 (Ti — ])}c—uu’ = B(u)nc-unﬂ.
1sn

1<n

Now by (195) there is a d > 0 such that for u sufficiently small 8(u) < 1 + du®.
The inequalities 1 + a’ < 2cand ¢ < 2b < 1 imply &’ < ¢; thus for large n and
for u = no' ¢,

, d n2(c—a’) Jn1-2(c-a’)
(198) B ) = [(1 + 77:“)) ]

< exp {2dnt —2€ =)},

Hence by 1+ a’ < 2¢, B(n¥~—¢)» exp {—n* ~n¢} < exp {—3n®} for large n.
Together with (197) and a similar consideration for Pr {3 i<n (T's — 1) < —nc},
we get

(199) Pr {|; T: — n| > n} < 2exp {—3n*}

for large n. Because a < 1, it is sufficient to prove (194) for integers s = m:
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(200)  Pr {|S(®) — £@t)] > t* for some t > m}
< Pr {|S(t) — £(t)| > t* for some t > m, |Z<: T: — n| < neforalln > m}
+ > Pr{{X T:— n| > n%} -
n'Sm i<n
= P + Ph  (say).
By (199), PP = o(e~™). By the definition of S(f), we get

.
(201) PL< ¥ Pr{ sup [60) — &) > 5}

n?b—c
< ¥ const. n~¥+e/2 exp {—— }
n>m 16

using lemma 3.2, (39). Thus, because a < 2b — ¢, P), = o(e~™), proving (194).
CoOROLLARY 4.9. Let the assumptions of theorem 4.8 be satisfied, and let ¢ be a
positive function on BT with a continuous derivative such that

(202) 2 1 and o < 7

for some h < . Assume that ¢'(s) ~ ¢'(t) ast— o, s/t—1. Put 8, = 3 i< X
and T, = sup {n: S, > ¢(n)}. Then Pr {T, < o} = 1 implies

(203) Pr (T, > n) ~ f T 0G0 d a8 n—>w.

Proor. Let S and £ be as in theorem 4.8 and Ty, T as in the proof of corollary
47. Wemayassume 3 < h < 2. let1 <b < %a>2h—1,3a < 4b — 1. Then

(204) Pr{T,>n} =Pr{T,>n}
<Pr{T,—»>n;+ Pr{St — &¢)] > t* for some ¢t > n}.
= Pr {(Ty—p > n} + o(e—™).
Thus by theorem 3.6 applied to ¢ — 7t ((91) for ¢ — 7° follows from Pr {T', <
©} = 1 and, say, corollary 4.5 together with ¢ < 7%, h < %, b < %) we have

(205) Pr {T, > n} < (1 + o(1)) L” (&' (1) = b1G,_n(t) dt + ole=)
= (14 o(1)) f: ¢ ()GQ) dt 4 o(e ™)

= (14 0(0) [ G 0) d

using first ¢ < 7%, A < 2, b < 2 and then ¢ > ¢/2, o < 7 and a > 2h — 1.
Conversely,

(206) Pr {T,>n} = Pr{T, > n)
> Pr {Torn 2 n, [SEt) — £@)] < it forall t > n)
> (1 — o(1)) f " (@) + b)Go_n(t) dt — ofe—)
= (1= o) [ &' OG ) at

as ahove.
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