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1. Introduction and summary

As we pointed out in the Fourtlh Berkeley Symposium [4], an infinite diment-
sional version of the complex measure in the k-space Ek,

(1) Fk(dx) = Xk(dx)/(V27rh)k, Xk = Lebesgue measure

is useful for a mathematical formulation of the Feynman integral [1]; h is a
positive constanit which is supposed to indicate the Planek constant in its
application to quantum mechanics and Vz, (z #4 0) denotes the branch for wvhich
-7r/2 < arg Vz < 7r/2 throughout this paper. Since neither Xk nlor ( 2irhi)k
has aniy meaninig wheni k = oc, we canniot directly extenid this measure to the
infiilite dimensionial space El+' (Hilbert space). Therefore, Awe shall consider a
linear funietional Fk(f) iniduced by the imeasure Fk in (1):

(2) Fk t2) I x
X(x

J;k. (v12ihi)k
and extetid this by putting convergenit fact.ors as

(3) Fk(f) IJi f(x) CXI)
I (V I(x - a), (-r - a))] Xk(dx)

JE- k IJ (X2rhi)
where a is any clement of Ek and V is a strictly )ositive-defihlite symmetric
operator. The domain a)(Fk) of definitioni of Fk is the space of all Borel meas-
urable functions for which the limit in (3) exists for every (a, V) and has a
finite value independent of (a, V). We shall rewrite (3) as

k nv
(3') Fk(f) = 11liIn ' f(r)N(dx: a, n'),
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where {v,} are the eigenivalues of V and N(dx: a, V) denotes the Gauss measure
with the mean vector a and the covariance operator V. Since the Gauss meas-
ure N(dx: a, V) can be defined in the real Hilbert space E,, if V is positive-
definite symmetric operator with the sum of eigenvalues < oc [3], [7], we can
definie Fx by puttinig k = x in (3); niotice that the inifiniite product in (3') is
conivergent by virtue of _E v < xc.

Followinig an importanit suggestioni of L. Cross wve shall modify (3') to make
the approximatiiig measures more uniiform and definie Fk as follows. We introduce
a directed semiorder in the class OC of all strictly positive-definite symmetric
operators of finite trace by

(4) V1 < V2 if and only if V2- V1,EO.
DEFINITION. Denoting with limv the limit along this directed system 'U, we

shall define Fk(f) as follows:

(5) Fk(f) = lim I 1 + 1. f(x-)N(dx: a, V),

where the domain 5 (Fk) of definition of Fk is the class of all Borel measurable func-
tions for which this limit exists for every a and has a finite value independent of a.

In order to discuss this functional we shall introduce some notions.
Let A be a bounded positive-definite symmetric operator. Then En (Ae, en,),

{en} being an orthonormal basis, is independent of the special choice of the
basis {e,,} and is called the trace of A, in symbol Tr A. If Tr A < co, then A is
completely continuous and Tr A is equal to the sum of all eigenvalues of A.

Let A be a bounded operator. We shall definie the trace norm of class a (> 0)
of A by

(6) IlAII,a = [Tr ((A*A)al2)]lia.
If A is symmetric, then IIA Hla = [Tr (IA Ia]/a. The uniform norm of A is defined
by IA 11 = sup[lx <1 lAxi. It is easy to see that

(7.a) I!Aa<JXa > LA I' < if a <(3

and
(7.b) L!AHa <x I= A'A <cx.

We shall call A a trace operator if liAlI, < cc and call it a Hilbert-Schmidt
operator if IIA 12 < x. Because of (7.a) we can see that if IIA I" < co for some
a < 1, then A is a trace operator, but not vice versa.

If IIAg1 < c, then , (Ae, e,) is also convergenit for every orthonormal basis
fe,,} and has a value independent of fe,,. This is also called the trace of A, in
symbol Tr A.
A bounded operator is called nearly ort hogonal if A is one-to-onle and if

II(A*A)h/2- IllI, < cc for some a < 1. The first conditioni is e(luivalent to the
condition that (A*A) /I is strictly l)ositive-definite.
A one-to-one tranisformation from Ek olntO itself is called nearly isometric if

C is expressed as Cx = a + A * x, where A is nearly orthogonal.
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Writiilg the eigenvalues of (A*A)/2 - I as -'a,a, we shall define J(C) by

(8) 1(C) = II (1 + au).

This is well-defined and does inot vaniish because A is niearly ortlhogonial. It is
needless to say that every isometric tranisformationi from EkA> onlto EX is nearly
isometric. In case k < oo, every one-to-one linear tranlsformation C from Ek OnItO
Ekis nearly isometric and J(C) turnis out to he the absolute value of the Jacobian
of C.
We are now in a l)osition to state the mais p)roperties of Fk.
THEOREM 1. The linear space D(Fk) is invariant under nearly isometric

transformations, and we have

(i) f = aifi + a2f2= > Fk(f) = alFk(fl) + a2Fk(f' );
(ii) if g5(x) = f(Cx) and C is nearly isometric, then Fk(g) = J(C)-'Fk(f).
The functional Fk is not trivial. In other words D(Fk) is a fairly large class of

functions, as the following theorem shows.
THEOREM 2. If f(x) is of the form

(9) f(x) = eXI) [2 |x12] |I e(xY),(dy)

where ,u is a comnplex measure of bounded absolute variation defined for all Borel
subsets of Ek, then

(10) f E D(Fk) aind Fk(f) = f exp [h IYI2] A(dy).

Combininlg this with theoremi 1, w-e cani see that all functiolns f(Cx), f beilng
of the form (9) and C being nearly isometric, and their linlear combinatiolns
belonig to a(Fk)-

In view of these facts, we shall call the funtetionial Fk a generalized uniform
complex measure aiid write it as

(11) Fk(f) = f(x)Fk(dx).

In case k < oo, every Borel measurable function f that is Xk-sulnmable onl Ek
belongs to 5)(Fk), anid we have (1). Therefore, we call Fk, (k = 1, 2, *,x) a

genteralized uniiform measure with index V/27rhi.
We shall write Flk for the class of all functionis f of the form in theoremii 2. It

is easy to see that 8k is a linear space invariant under isometric transformations.
The space Ek+e, (k, t = 1, 2, . * *, c) is considered as the Cartesian product

of Ek and Et. Any point x of Ek+t is written as the pair (y, z), y E Ek, z G E1.
Then we can easily prove the following theorem.
THEOREM 3. S'uppose that f e &k+1. Then f(x) = f(y, z) belongs to 8k as a

function of y for c(ach z and( J J(y, z)F.(dy) belongs to 8t as a function of z. Further-
'r101'(',
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(12) | ,J [fJf(x)Fk+t(dx) [ f(y z)Fk(dy)] Ft(dz).

Similar ly, wve have

(13) f|k+f'x)Fk+td =Jd [, f (y, z)Et(dz)] Fk(dZ).

If g C 8k anid h c gt, thein J(y, z) g(y)h(z) belonigs to &k+t and

(14) |, J(x)Fk+t(dx) fJz(y)F(dy) f h(z)Ft(dz).
A metric space 111k is called Hilbertian with dimeinsioil k if there exists ani

isometric nmapp)iig 4 from M,k onto EA. If there are two such mappinigs ¢i anid
D2, thenl 4241 wwill be ain isometric mapping from AEk OlntO itself. Because of this
fact, all nlotionis in Ek inivarianit under isomiietric tranlsformatiolns can be tranis-
)laIlted inito the Hilbertiani metric space -lk: for example, Gaussiani measure,
niearly isometlic tranisformnatioins, J(C), the funcetioni class 8k, the genieralized
uniforml- compleximeasure Fk, anid so oni.

Theoremiis 1, 2, and 3 can be restated in terimis of the Hilbertiail metric space.
The statemenit does niot chanige for theoremii 1. Trheorcili 2 should be stated as
followN-s.
THEO1REM 2'. If f(x) is of the form

(9') f(X) f )x
2['2h xy] v(dy), Xy = distanice (x, y),

then we have
(10') J G )(F',k) and Fk(f) = P(Ek).

In order to state tlhoremei 3 for 31k we need some notionis. The concept of a
linear mappiing with a tranislat ioni fromEl.'kt+ OltO10E iS invariant under' isometrlic
tranisformationis, so that we can definie such a imapinlg fr'om Ik+±e OlntO 11k,
which we shall call a lincar mapping from M1k+t OlntO AIk. Let C be such
a mapp)i1ig. Then

(1O) d(y1, Y2) = illf X1X2: X1 E C1(YI), X2 E C-'(y2))
defines a new metric oii Mt', so that there exists a linlear map))illg T' fromii Mt
onto itself such that

(16) d(y1, Y2) = (OTY)(ITY-2).
We shall call C normnal, or nearly normal, according to whet her 7' is isometric
or nearly isometric. If C is nearly normal, theii we shall definie J(C) to be J(7').
There are maniy Y"s for a single C, but these iiotionis are indepenldenit of the
choice of T. Now we shall state theorem 3 for the Hilbertian metric space,
omitting the statements about the domain of definition.
THEOREM 3'. Let C be a niormal linear nwapping from -lk+t OhtO MI,. Then

C-l(y) is a k-dimen. ional IHilbertilai metric .8h)space of M1k+t, and wve have, Jfor
J E k-k+t
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(17) fM f(x)Fk+t(dx) = f| IC 10 f(x)Fk(dx)Ft(dY).
Combining theorem 3' with theorem 2, we shall obtain a slight generalization

of theorem 3'.
THEOREM 3". Let C be nearly normal from Mk+e onto Mt. Then we have

(18) lk+ )Fk+t(d) = J(C) fM, f ) Fk(dx)Ft(dy).
Let us ilow formulate the Feyiiman integral in terms of Fo.
Consider a classical mechanical system of a particle of mass m moving on the

real line -oo < q < X where the field of force is given by a potential u(q). The
Lagrangian of this system is

(19) L(q, d) =2 mu(q)

and its action integral G(iy) along a motion -y = -y(T), S < r < t, is given by

(20) (-LY)= | L(,y(), 'y'(T)) d, = I | my'(7)2 dr - | u(y(,r)) dr.

Let r = F(t, bis, a) be the space of all motions ry = 7y(), s < r < t, starting
at -y(s) = a and ending with -y(t) = b such that ihe velocity function 8'(T) is
square summable on s < r < t. The space F is a Hilbertian metric space 3M,x
with the metric
(21) y,2= | m(-yl(r) - Y2(r))2 dT.

Thus we can define the generalized measure on Fx on F. The Feynman prinlciple
of quantization of this mechanical system is that the function

(22) G(t, b[s, a) = ../(
-

s)fXP[j cQY)]I F.(dy)(22) o~~~~./2rhi(t- s) tr [h ]

is the Green function of the corresponding quanitum mechanical system, namely
that exp [(i/h)(i(-y)] belongs to O(Foo), and the function G(t, bls, a) defined above
is the elementary solution of the Schrodinger equation

(23) h ad h2 a2ep

for the quantum mechanical system; the right side of (22) is called the Feynman
integral. Wc shall prove this for the following cases.

Case 1: u is the Fourier transform of a complex measure of bounded absolute
variation oni (-oocox).

Case 2: u(q) cl- q, where cl is a real constant.
Case 3: u(q) C2q2 where c2 is a positive constanit.
Let us mention one word about the index c = h As a matter of fact,

we can carry out the same argument in the case where c $ 0 and Re c2 > 0 by
replacing hi in (5) with c2/27r, and the case where c = 7r turns out to be
in close connectioni with the WIiener measure.
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In the course of writing this paper we found a gap in our argumenit based oil
definition (3'). We also found that we were able to overcome the difficulty by
adopting definition (5) suggested by Professor L. Gross, and by using Kuroda's
theory on infinite determinants [5] to which Professor T. Kato drew our atten-
tion. We would like to express our hearty thaniks to them.

2. Properties of the generalized uniform complex measure Fk

We shall start with some preliminiary facts.
LEMMA 1. Suppose that V is a positive-definite symmetric trace operator with

the cigenvalues {v,} and the eigenvectors {ev}. Then {,(x) = (x, e,), P = 1, 2,
are independent random variables on the probability space (Ek, N(dx: a, V)), each
(x, e,) having a Gaussian distribution with the mean a, = (a, e>) and the variance v,.
PROOF. It is eniough to observe that

(24) f exp i Ez(x, e)] N(dx, a, V) = f exp [i(x, E ze1]jN(dx, a, V)

= exp fi(a, E z,e) - 1(V E z,e,, E z,e,)}
n

- exp [ (iz,a. - lv,z')] = H exp (iz,a, - 4v,z').

LEMMA 2. For-x < y < +x and Re a >0, one has

(25) f xe - ( d2)x'dx = e-82/2aNLa
PROOF. This is well knowri for a > 0. By analytic continuation we can see

t-hat it holds for Re a > 0.
LEMMA 3. Let H be a real or complex Hilbert space and suppose that V1 and V2

are bounded symmetric linear operators. If
(26) VixI2 . V2xI2' c c is a positive constanit,
then

(27) IV1lXI2 < cV.1x12. c11x12.
PROOF. It follows from the assumption that IV2VIIX|2 < Ix12, that is,

IIV2VI1H < 1, so that HIIV V211 = II(VI(V2)*l = IfIV2V(-I < 1. Thus we have
IV V2xj < x that is, IV1 Ixj < IV2-'xl. It is obvious that 1Vi1x2 . c-'x12.
LEMMA 4. For any bounded Borel measurable function f(x) defined on Ek, any

linear operator A: Ek -* Ek and any b e Ek, we have

(28) fE f(b + Ax)N(dx: a, V) = f(x)N(dx: b + Aa, AVA*).

PROOF. If f(x) is of the form ei(x,Y), y being aniy fixed element in Ek, then
this is true by virtue of

(29) ei(xY)N(dx: a, V) = exl) {i(a, y) -2(Vy, y)}.
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Takiing linear combinationis and limits, we can see that it is true in general.
In section 1 we defined Tr A, flAHa, and HAH for the real separable Hilbert

space Ek. We have analogous concepts for the complex separable Hilbert space
Hk of dimensionI k. Any linear operator A from Ek illtO itself induces an operator
A on Hk by A(x + iy) = Ax + iAy. It is easy to see Tir A = Tr A, ||Ala =
1iAII, and hJAil = HIIIJ. Therefore, we write A for A without any ambiguity.
We summarize some known facts about niorms and determinianits. Kuroda's paper
[5] is to be referred to conicerning the definitioni and the properties of the deter-
minanit of a linear operator A such that IIA - 1I < oo.
LEMMA 5. The following relations hold:

(30.a) IIAIH < HJAHI,
(30.b) IIABH1l = II(AA*)l/2(B * B)1/21j1 < IjAII JIBH1, < JIAIH1 l!BIH1,
(30.c) lTr Al = ||All1,
(30.d) det A = lim det (Ae,, e,)pe,q= 1,

n-O

where IA - Ilhi < 1 and {ep} is any orthonormal basis;
(30.e) det AB = det A det B if HIA - I1 < 1 and JIB - I1l < 1,

(30.f) det (I + D) = exi) [ E ( ) Tr (Dn)] if 111D1I' < 1.

With these facts in mind we shall discuss the properties of Fk.
Proof of theorem 1. It is clear by the definition that D(Fk) is a linear space

and Fk is a linear functional on aD(Fk).
ITsing lemma 4 and the fact that OVO* has the same eigeinvalues as V for

aniy orthogonal transformatioii 0, we can easily verify the inivariance of 5(Fk)
anid Fk under tranislations anid orthogonial transformationis.

Let C be nearly isometric. Then we have Cx = a + A -x, where A is nearly
orthogonial. Applying Neumann's decompositioni to A, we can write C as

(31) Cx = a + BOx
where 0 is orthogonal and B is a strictly positive definite symmetric operator
with
(32) JIB- I1. < for some a such that 0 < a <1.

Since we have already proved the inivariance under tranislationis and orthogonal
transformationis, it is eniough to discuss the case C = B in (31).

Let {Bv} be the eigenvalues of B - I. Then we have f3 > -1 anid F-, h,Ila < x.
The second inequality implies that 0 < y, < 1 + /3v < y* < c with -y* and y*
independeint of v. Thus we have

(33) JIB"ln- IlI. < JIB - Ill,, < oo for every n = 1, 2, .
and
(34) JIB21n IIll = E (1 + 0f)-21,- 11 < 1 for n sufficiently large.
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If we cain prove our theorem for C = B In, theii we cani verify it for C = B by
applying Bl"' n tinmes and noticillg J(B) II (1 + 0) (II (1 + 3)1%n =
J(BI/n)n. Therefore, ini order to prove that

(35) f c D(Fk) fB -f(Bx) e O(Fk) atid Fk (fB) = J(B)-1Fk(f),
we can assume, iii addition to (32), that

(36) JIB-2 - I < 1.

Let {vj, {y,}, anid -jw,} be the eigenvalues of V, B - I, anid BVB respectively.
By the definition of Fk, we cain derive (35) easily from the fact that

(37) lim ll[i W+ 1/2 (
(37)~ ~ l[ni V ](= I + fL) =det B).

[ ,v 1/2

To pirove this, we shall coiisider the complexified Hilbert space Hk = Ek + iLk
anid denote the complexification of V and that of B with the same notations as
we remarked before.

lFirst, we shall derive the ideintity

(;38) H [I + '=i]-det B exp J (-1)'1' (I)
+ tlr}2 1 ()1

wherc

(39) Dt(= + IV)1 (1-- I)

I'siiig lemma 7, for 0 < t < 1 we have

I (I + hw) det (I + tBVB) det B det (B-2 + tV) det B
(40)

h
i hi hi__

(I+(det(I+ ) det (I + tV)

= (det B)2 det I + /1) -( . +

= (det B)2 det [I + DI]

= (det B)2 exp {fj ( n1)" Tr(Dt)r
where we should notice

iv 11tV<l(41) ~ B2 + -II JIBB2-III,+ <1
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(42) ID,111 = I( + h-2 ) 1BB-2 - II ' by (30.b),

< II(i + thV) 1/211 IIB-2 - 11l by (30.b),

< JIBl-2 III, < 1,
anid so

(43) ITr (D)')I < IID1)|| < iID,IIl < JIB@-B Ifl'i by (30.b).
It follows from (40) that (38) holds with the sign + or - in front of det B.

By our conventioni for V"z (sectioin 1), the left side of (38) is continuous ini
t E [0, 1]. The right side of (38) is also continuous in t e [0, 1], because the
infinite series is convergent uiliformly oni 0 < t < 1 by virtue of (42) and (43).
Since the right side of (38) never vanishes, the L sign remains unchanged as t
moves from 0 to 1. But both sides of (38) are positive at t = 0 and so (38) holds
for every t e [0, 1].

Setting t = 1, we have

(44-[) * [ Ai]_ = det B exl) Tr (D(V)n)}

where D(V) = (I + V/hi)-'(B-2 - I).
Since we have, by (43),

(45' #(n) Tr (D(V),)l S E 11lD( )l
n1 nl n

< JID(V)fl1 Z IlB-2- jfl-n= 1

< IID(V)11H
-1-IB-2 -III

the proof will be completed, if we prove

(46) lim |ID(V)11, = 0.
V

IUsinig (30.b), we shall evaluate D(1') obtainiing

(47) I]D(V)HI1 = + IB2
. Ci(i +V2)1f2 - 2< C1 !|(I + hV2 1S- IlI (C1=- 1B2(B + I)[I < X)

< CiC2 (I + h B2) tK- (c-, = 11 IB -I1||1 = IB - Ill. < oo).
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Using the spectral decomposition of V and noticinig 2(1 + X2) > (1 + X)2, we
have
(48) |(I+ V2 ) < V (I + V)- x||
and so

(49) IID(V)111 < ClC2 (I + V) lB -II1a
Hence, it follows by lemma 3 that V > fIB - II implies that

(50) IID(V)lIj < \2 C1C2 (I + - lB - II) B - I1Ia-

Using the spectral decomposition of B, we have

(51) IID(V)|I1 < 2 CC2 SUp (1 + )-'I < 2C1C2(h)

Taking 4 = 4(E) large enough, we have IID(V) < e for V > f(E)IB - II, which
proves (46).
PROOF OF THEOREM 2. Settinig

(52) F(a, V) = rI 1 + exp (2 1xl2) f ei(xl.),i(dy)N(dx: a, V),

and changing the order of integration, we have

(53) F(a, V) = f I(y: a, V)A(dy),
where

(54) I (y: a, V) = rI + J exp Ilx12 + i(x, y)] N(dx: a, V)

=11 1+5h .jexp [ Ix + a12 + i(x + a, y)] N(dx: 0, V).
Let {e,} be the eigenvectors of V corresponding to {X,} and write x,, y, and a,
for (x, e,), (y, e,.), and (a, e,), respectively. Noticing that

(55) exp 2 |x + a12 + i(x + a, y)] = II exp [ (x,. + a, )2 + i(x, + a,)y.,

and using lemmas 1 and 2, we can get

(56) I(y: a, V) = exp h. 4 hi (Y. + a.) ] exlp [2hY2]
by usual computation. Therefore,

(57) IF(a, V) - exp (h lyl2) ju(dy)I

< exp h v hi + h) -1] lsl(dy),

where 1,M1 is the absolute variation of As.
Writing A (y: a, V) for the inside of the bracket, we have
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(58.a) Re A(y: a, V) < 0, and so IeA(u:aGv)-V 1 < 2,
and
(58.b) IA(y: a,V)| < h r h(Yv+ h)' (byv+ h <2IvI+hil),

< h (V + hI)-112 y+ -)

In order to prove our theorem, it is enough to find Vo = Vo(E) for every f > 0
such that the integral in (35) is less than E for every V > V0.

Since JAI is a measure with 11A(E.) <0, we have a compact subset K of E',O
such that

(59) AIy(E. - K) <
E

by a theorem due to Prohorov [6]. Take 5 > 0 such that e2h- 1 < E/2, or
find a finite set {y', y", * - *, y(-)} such that every y e K is withini the distance
h"/26 from some y(v), and choose Vo e V3 such that

(60) V6-'2 y(P) + a)<, v = 1, 2,***, n.

Such a Vo can be constructed easily.
If ly - y(j)I <5h, we have

(61) (Vo + hI)-1/2 y +
a

< (Vo + hI)-1/2 (.,) +
a

+ (Vo + hI)-1"2(y -y(,))l
< JV-112 (y(w) + a)j + h-/21y -y(0)j < 25.

Henice, we have

(62) (Vo + hI)-12 (y + a)l < 25 for y E K.

Therefore,

(63) (V + hI)-1/2 y + .)l< 26 for y E K and V > Vo

by lemma 3, observing that V > V0 implies
(Vx, x) + h(x, x) 2 (Vox, x) + h(x, x) 2 h(x, x),

(64) J(V + hI)112xI2 > i(Vo + hI)1"2x12 > hIx12.
Using (58.a) and (63), we have, for V > V0,

(65) f leA(va,v)- 11j(dy)

< + < (e258- 1)I(K) + 2A(E. -K) < (e2ih -1) + 2 <
KE,-K2

which completes the proof.
Sinice theorems 3, 3', and 3" can be easily proved, we shall omit. the proof.
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3. Application to the Feynman integral

In section 1 wve formllulated the lFeyinman initegral in termlis of our generalized
measure Fk. We shall niow carry out the comlputation in the three cases men-
tioned there.

Let Lg[s, t] be the space of all s(iuare sumimiiable fuicetionis x(T) on the inrterval
8 < T < t,_<_<t
(66) f x(T) (IT = 0.

L2[s, t] is a Hilbert space LE. with the usual inoim iii thle space L2[s, I]. lecalliiig,
the defiinitioil of the metric in r inl sectioii 1, w-e cani see that

4): r LoL-s, J,t,
(67) 1) a1

(4,-y)(T) = /M [-Y'(r) < T < l

definies ain isometric mnapping froli I' olto I [,L ]. I itirodlicilng ( E,,, 12Is, ] l)y

r t -_TeS < or < r < f,

t 8 <tT-8 6'~~< T < af<

for x c LU[s, t], wve lhave the followinig relationis:

(69.a) | x(a) du = (Cstjr 4

(69.b) y(r) = yo(r) + - 8, *l, yt(T) =
t

(69.c) J myI (T)2(IT I1x12 + - s

rrherefor.e

(69.d) a(y) = 42 X12 + I t( -_a) -/2 I It [YO(T) + (( ,t,Tx)] (IT.

Let on,,, deiiote the class of conl)lex measures of l)owid(led absolhte variation
oni Lo [s, t] aii( 5k t lie class of all ftinietionis

(70) Y(X) = -1(.?x) f- c(x/ (dY), i E ZflZ
where 5 deniotes the Fourier t raiisform. Thl1e following fact wvill be useful lere:

(71) g E ymt sO(y) e ;5oTh for every enitire functioni s¢;

in fact, if y = 5t anid p(t) = E a,n, then v = .an,*n, (M,*n = n times convolu-
tion of y) coniverges in the norm of total absolute variation anid 9(t) = 5- .

Case 1. Assumne that u(q) = vheiiQ(dc),where 0 is a complex measuae of
boutlded abolutc varliation Ot (-, ).
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First we slhall p)rove that

(72) exp (h G%) C 9,

According to theorem 2, it is sufficienit to prove that

(73) Cxp) {--$ f ? [-Y,J(T) + (\/- x)] dTr} e

By virttie of (71), it is also enough to show that

(74) j 1' ['Yn(T) + -(et,1)] (IT C i-g.,

The left si(le is

(75)) exi) [i J,-7 , .)X )l 0(1) T

anid so it. is the Fourier transfornm of the measure 4 e M,

(76) H*)=a (.* 8-= t7) CX"--(T')6(d|) dr,

6(., y) being the a-measture concentrated at y. Therefore, wve shall have (74).
U,sing theorem 2 -we cani see that

(77) G(t, a1) = x/2 A i -)| ex\) (h a(Y)) F.(dIy)

-\in inm(l)-a)21 I / --Qmn"r
1/27rh1i(t - s) h(-s) l! ). J

wvhere

(78) Q, = Q,,(T1,r2,T,2* t, b, .S, (1)

.-x. f vl expj( ± fi
12

dc}0(dti) ... 0(d(#).

If t - s is small, then

(79) G(t1, ils, a)

Nz/))?. r t??(1) -a)2 r in 1(a) + uz(b))
+/'>rlt(t-exp 2hi(t -s) 2 1h 2t 9+ o(t-)

where o does ntot depend on (a, b) as lonig as they stay in a compact set. Hence,
it followvs that if sn is a (72-fu1Ctionll With compact supp)ort, we have

(80) lim G--[ G(t, bls, a) p(a) da - =(b)"(b) -
t s II n
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We have a composition rule

(81) G(t, bls, a) = | G(t, blu, c)G(u, cls, a) dc

where the integral is to be understood in an improper sense, namely

(82) V| J G(t, blu, c)G(u, cls, a)F1(dc)
or

(8.3) lim | G(t, blu, c)G(u, cls, a)ec-2/2n dc.

The composition rule can be written in terms of F.,:

(81') J(tlb) exp (- (i(,)) F.(dry)(81') JP(t,b's,a) ex

= mn(t)-s8) |)J|ifr(t,blu,c) exp (- a((i)) F (d-yi):(u-- s)~(t-128u) E (Cbslu,) (h

xrucsa exp'( (Y2)) F.(d-Y2)Fl(dc),
which we can get by applying theorem 3" first to

/m(t - s)(84) C: IF- E; C(y) = (u); J(C) = (u -s)(t -u)
and then to

(85) Cl: rc -=- E r:-y(u) = c} -* r(u, cls, a);
Cl(y) = restriction of -y onto [s, u], J(CI) = 1.

Case 2. This case, u(q) = c * q, - oo < c < oo , is not included in the first case,
because u(q) is unbounded. By a simple computation, we have

(86) aQy) = 112 + - m(b- a) _ mc(a + b)(t - s) - 'V c(y, x),

where y(o) _ (1/2) (t + s) - o. Therefore, it is obvious that exp {(i/h)((-y)} e 8,
and we get

(87) G(t, bjs, a)

= |27rhi(- s fexp (-a((r)) F.(dy)

-\ { m [(b -a)' C2 (t )]V27ri(t s)exp (b a2- c(t - s)(a + b) - j(t-

observing that

(88) 11 =ft(t+s _Uf)2da=(t-



UNIFORM COMPLEX MEASURES 159

Case S. In the case where u(q) = cq2, c > 0, we can prove that

(89) J = f(Ax), e &x; A is nearly isometric,
and so this belongs to D(F.).
Applying (69.d) to our case, we have

(90) a(Qy) = |ixI2 + 1 m(b-) mc [y() + 1 (e.,e,T, x)l dT,

=IIx2 + 1 m(b -a)2 mcIi-2V cI2-cIa,

where

(91) I, = yto(T)2 dT = (t - s)(a2 + ab + b2),

(92) I2 = fJ yo() (e.,tj,7 x) dr = f IYo(r) fr x(a) da dr,

(93) I3 = ft (e.,g,,, x)2 d, = It (fr x(a) do)2 d.
Let us set

) 2= Cos n7r(T-8) n =, 1, 2,_*_*(94) C. (r) =

-sco t- s)

(95) Sn(r)- 2T sin ( s), n = 1, 2,

Then each of {Cn(r), n = 0, 1, 2, *} and {Sn(,), n = 1, 2, *} is a complete
orthonormal system in L2 [s, t] and {C,(r), n = 1, 2, * } is a complete ortho-
normal system in Lo[st]. Expanding x as

(96) X(T) = (X, Cn) -Cn(T),
n-1

we can express I2 and I3 as follows.

(97) I2 = (y,x), VC n-s)3,2(a + (1)n b).
n-1i r

(98) I3 = (Bx, x), Bx - E (I 2(X- Cn)-Cn
Thus we have

(99) (y) = aIx12 + 1 m(b- a)2 _ MC (t- )(a2 + ab + b2)

-2Vm c(y, x) - c(Bx, x) = IAx12 + m(b-a)2

c (t- s)(a2 + ab + b2) + c(z, Ax),
where

(100) Ax (I- 2cB)112X (1 2c(t- S)2)1/2 (X C
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(101) z = (I -2cB)-"2y

= n,1 (1 _ 2c(t- V1/(t -s)312(a + (- )n-lb) c

as far as t - s < 7r/2. Since we have
(102) (A - Illj), = Tr [A -Ill]

= I|( _ 2c(t-s) ) _ 1 a2c1 )2)-1I2 n-a

we get IA - Ill < oo for every a > 1/2. Therefore, it is obvious |IA - I112/ < ,
which shows that A is nearly isometric because A is a bounded symmetric
operator. By theorems 1 and 2 we have exp ((i/h)(i(-y) E D(F,)) and

(103) G(t, bls, a) = /M f exp (- Ct(-y)F.(d-y))

= mJ(A)-lV/2.rhi(t-s)

XcxP{~m(b - a)2 iMC( h ic 2 jX exp i2t -(l_a 3 (t -s)(a2 + ab) + b2) + h |i- IZ12}
Using

(104) Z I=n1( l27r )

we have

(105) J(A) = II (1 _ 2c(t - s)) 1/2 = sin [V'2(t - s)]
n n 2 V2'c(t - s)

Observing that

(106) IZ12= E (1_I 2c(t - s)2-12(t - s)3(a + (- 1)-b)2(106) lz!2 = i2i2-4
n-1n\r

C 1nE (n27r2-2c(t- s)2 - 2) (a2 + b2)

+ 2 n22 2c(t - )2 n22 ab

anid usinlg

(107) nil2 2 2 =2( cot x)

(108) ~~~~(-1))n =(1 i 1)(108) nEI n2r2 -x 2x (sin x x

(109) n .=( 1)i =-7r
,-i U1 6 n-1 n2 12
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we have

( 10) z12 = c c2t,(t -s) ( c(t - t)c-s)))- (a2 + b2)

c 8[2V(t s) (sil [2c(t -s)] - 2-c ))

Puttiing (105) anid (110) in (103), we get
(111) G(t, bls, a)

I___ _m __2 __ im /2c (a2 + V2) Cos [V/2c(t - s)] - 2ab'i=s1 -- -~expvf27rhi sini [v'2(t - s)] 2h Sill

for t - s < 7r/V9.
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