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1. Introduction

Paul Levy's studies of the Gaussiani process {t(a), a e Rd} defined by
E(t(a)) 0O, anid

(].1) 1E( (a) (b)) = (!aI-+ a -b1), a, b e Ri,
= f (a, b) say,

are well knownl, for examlple, [12], [13], [14]. He calls this process Brownian
motion of several parameters.

L6vy has also studied [15] a Gaussian process {&(a), a E Sd} (Sd = the unit
sphere in Rd+l) defined by E(&(a)) = 0, and

(1.2) E( (a) (b)) = w(d(a, o) + d(b, o) - d(a, b))
= f (a, b) say,

where a, b E S", o is any poinit (fixed once and for all) of Sd, aiid d(x, y) stands
for the geodesic distance between x, y e Sd, taken along the sphere. This
motioni may be called Browiniani motioni with parameter runniing on Sd [15].
The functions f(a, b) described by (1.1) and (1.2) are both real-valued, sym-

metric and positive-definite; that is, givenai,a , , a,, R, al, * , an e Rd
(or Sd), we have

n n

(1.,3) E E aiaaf (ai, a1) > 0.
i=l j=l

For (1.1) this fact is due to a theorem of Schoenberg [19], and Levy used this
fact to establish the existence of the process t. On the other hand, for (1.2), no
direct proof of the positive-definiteness is klnowvni. Tlle process {f(a), a c Sd} is
coinstructed by Levy by means of white noise integrals, and then it is checked by
explicit evaluation that its covariance is (1.2). It follows that (1.2) is positive-
definite. Here Levy was adopting an idea of Chentsov [3], where a white noise
integral for (&(a), a c Rd) is described.
The processes descril)ed above have several interesting properties, and there

seems to be several, as yet not conmpletely clear, connlectionis betweeln their study
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14 FIFTH BERKELEY SYM1POSIUM: GANGOLLI

anid sex eral problems in lharmoniic anialysis anid differenitial equations. Indicatiolns
of this may be found in McKean's paper [16]. It is therefore natural to ask for a
description of kerniels like (1.1) and (1.2) on spaces within the domain of har-
monic analysis, and to seek to develop a theory for the corresponding Gaussian
process.
A question of this sort was raised by L6vy ([13], p. :309) but there matters

have stood, largely because of the ad hoc nature of the proofs of the positive-
definiiteness property of (1.1) and (1.2).

It is the purpose of this note to report some progress in this directioni. That is,
a class of kernels embodying the main features of (1.1) and (1.2) w-ill be studied
on a fair variety of spaces, and a more or less complete descriptionl of these kernels
will be obtained. It turns out that the problem has a natural formulation in the
context of abstract harmonic analysis.
Having obtained the description of kernels "like" (1.1) and (1.2) above, tlle

problem of studying the corresponding Gaussian process arises natturally. Some
partial results of this kind will also be described below.

'The presenit note is confinied to a descriptioni of the notionls, methods, and
results obtained so far by the methods. l'roofs, along with results of further
investigation, will be presenited elsewhere in the future.

2. Levy-Schoenberg kernels

Given a topological space S, a k1ernel defined on S is a conltinluous real-valued
function f on S X S. A kernel is to be called positive-definite if it is symmetric,
that is, f(a, b) = f(b, a), and if giveni a1, , an c R, a,, an E $, we have

n n

(2.1) E a aejf (ai, ai) > 0.
i=l j=l

Let G be a locally compact topological gr-oup satisfying the seconld axiom of
countability and K be a closed subg;roup of G. Tlheni M = G/K will denote the
space of cosets xK, x E G, with the quotient topology. The group G acts on G/K
by left translationi as follows: x(yK) = (xy)K.

DEFINITION 2.1. A kernel f on G/K is said to bc a L&vy-Schocnberg kernel if
it has the following properties:

(i) f (a, b) = f (b, a), a,bh cG/K;
(ii) there exists a point o e G/K such that

(2.2) f(a, o) = 0, a c G/K;
(iii) if r(a, b) = f (a, a) + f (b, b) -'>f(a, b), then the kernel r is invariant under

G, namely
(2.3) r(xa, xb) = r(a, b), a, b e G/K, x e G;

(iv) f is positive-definite.
It is to be nioted that (1.1) and (1.2) are LUvy-Schoenberg kernlels. Indeed, Rd

may be viewed as the homogeneouis space of the groUp G of all proper rigid
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motionis of Rfd, imodulo t,he subgroup K = SO(d) of all proper rotations about the
origin. The kernel f of (1.1) thus lives on G/K and (i), (ii) are easily checked, the
origin in Rd serving as the point 0 envisaged in (ii). As to (iii), the kernel r(a, b)
is just la - bI in this case, and this is certainly invariant under all rigid motions
of Rfd. Condition (iv) is just Schoenberg's theorem. As for (1.2), here SI' may be
viewed as the homogenieous space of G = SO(d + 1) modulo the subgroul) K
consisting of those rotations which leave the poinlt o fixed. K SO(d). In this
case r(a, b) =(d(a, b) anid clearly fulfills (iii) since rotationis are isometries of Sd.
Note that r is just the "polarization" of f, and indeed, r determinesf, because

in viewl of (ii),
(2.4) f (a, b) =(r(a, o) + r (b, o) - r(a, b)).
It followi-s that all properties of f have e(quivalents in properties of r. Our theory
steps off with the following observationi.
LEMMA 2.2. Suppose r is a synmnetric kernel on a topological space S, and sup-

pose o G S. Next, suppose r(o, o) = 0, and let f be the kernel defined in terms o.f
r by (2.4); then f is positive-definite if and only if for each t > 0, the kernel 6S
defined by at(a, b) = exp -tr(a, b) is positive-definite.

T'he proof is elementary. Oiie half of it is similar to Levy's proof [12].
COROLLARY 2.3. If f is a L&vy-Schoenberg kernel on G/K, thcn the kernel r

defined by

(2.5) r (a, b) = .f (a, a) + f (b, b) - 2f (a, b)
has the follouing properties:
(2.6) r (a, b) = r (b, a),
(2.7) r (a, a) = 0,
(2.8) r(xa, xb) = r(a, b), x E G.
(2.9) For each t > 0, at = exp (- tr) is positive-definite.

Conversely, if r is any kernel on G/K satisfying (2.6)-(2.9) and .for any poinit
o E G/K, we define f by
(2.10) f (a, b) = (r (a, o) + r(b, o) - r(a, b)), a, b E G/K.
Then f is a Levy-Schoenberg kernel on G/K.
The point o might as well be taken to be the coset eK, wlhere e is the identity

of G.
W1hat keernels r have properties (2.6)-(2.9)? It is clear that a satisfactory

answer to this question would lead to a classification of all Levy-Schoenberg ker-
nels. Suppose r is a kernel satisfying (2.6)-(2.9), and let 0(a, b) = exp - r(a, b).
Then O(xa, xb) = #(a, b) for x E G. This enables us to lift 6 to a function
on G. Namely, if a = yK, b = zK w-ith y, z G G, then 0(a, b) = 0(yK, zK) =

6(z-'yK, K); hence if the functioni b is defined on G by b(x) = 6(xK, K), w-e see
that 0(yK, zK) = 1D(z-ly). The function '1 is K-spherical, that is, 4)(k1xk2) = 4'(x)
for all x E G, kI1, k2 e K. It is trivial to check that the properties (2.6)-(2.9) of
r imply the following properties of b:
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(2.11) 4)(x-1) - 4(x), and 4) is continuous;

(2.12) )(k1xk2) = 4)(x), x e G, ki, k2 E K;

(2.13) 4'(e) = 1;

for each t > 0, (DI is positive-definite on G in the sense: given any al, * , a,, E C
xi, - - -, xn E7G, we have

(2.14) E a&j4)(x7-xi) > 0;
'4

(2.15) Vt(x)-1 as t-0, x eG.

Coinversely, if a function 4) on G has these properties, then, provided its
logarithm is well defined, it can be shown very easily that the function r(a, b)
defined on GIK by

(2.16) r(a, b) =-log 4)(z-'y), a = yK, b = zK,

enjoys properties (2.6)-(2.9). One must therefore look for functions 4 on G
satisfying (2.11)-(2.15). We shall initially ignore the requirement 4)(x-1) = 4(x)
which, in the class of positive-definite functions, merely means that 4) is real-
valued.
A continuous complex-valued function 4) on G is said to be (a) K-spherical if

4)(klxk2) = 4)(X) for all x E G, ki, k2 G K; (b) normalized if 4)(e) = 1; and
(c) imbeddable if Vtis positive-definite for each t > 0 and -V -*t 1 as t 0. This
last terminology comes about from the fact that 4) can then be imbedded in a
continuous one-parameter semigroup (under pointwise multiplication), namely
{ft, t > 0}, of positive-definite functions.
Apart from the question of existence of the logarithm of 4), we have thus re-

duced the problem of describing all Levy-Schoenberg kernels to the problem of
finding real-valued, normalized, K-spherical, continuous, imbeddable, positive-
definite functions on G.
A closely related notion to that of imbeddability is the notion of infinite

divisibility. Apositive-definite function 4) on G is said to be infinitely divisible if for
each positive integer n, there exists a continuous positive-definite function 4)n on
G such that_V) = 4).
A continuous imbeddable 4) is clearly infinitely divisible. At this point we may

therefore study the class of complex-valued, continuous, K-spherical, normalized,
infinitely divisible, positive-definite functions on G. Let D denote this class.
In the next section some results obtained in this connection are described, for

the following four cases.
Case I: G = A coinected locally compact Abelian group.

K = Any closed subgroup of G.
Case II: G = The group of all proper (that is, orientation preserving) mo-

tions of Euclidean space Rd.
K = The subgroup of G consisting of rotations about 0.

= SO(d).



TIARMONIC ANALYSTS 17

Case III: G = Any compact connected semisimple Lie group.
K = A closed subgroup of G such that G/K is a (compact) sym-

metric space.
Case IV: G= A noncompact, connected, semisimple Lie group with finite

center.
K = A maximal compact subgroup of G.

In this case G/K is a symmetric space of the nonicompact type.
It turns out that in each of these cases, if b e OD, then 4+ is necessarily i1m-

beddable and b never vanishes. Indeed, one cani get more or less explicit represen-
tation formulas for tJ as 4F(x) = exp - *(x), and 'I can be described precisely.
Further, it is possible also to isolate those ' for which 4 is real-valued. It follows
that if r(a, b) = *(z-'y), a = yK, b = zK, for such ', then r enjoys properties
(2.7)-(2.10). Thus one gets a complete description of all Levy-Schoenberg ker-
nels, in the cases described above.
We might point out that cases I and II may be regarded as essentially known.

Our results are new in cases III and 1V. Equation (1.2) is a special case of results
of III, and onie gets in this way a new proof, independenit of white noise integrals,
of the fact that (1.2) is positive-definite. In case IV, so far as we know, no
analogues of our results have been hitherto found. When properly interpreted,
they give rise to Gaussian processes -{t(a); a G G/K} where G/K is a noncompact
symmetric space. In each of these situations (1.1) and (1.2) have analogues which
will be pointed out below.

3. The class D

Case I. Here G is a connlected, locally compact, separable Abelian group and
K a closed subgroup. A function cJ on G is K-spherical if and only if P is constant
on each K-coset, and thus c1 can be lifted to a functioni q* on the factor group
H = G/K, by setting D*(xK) = 4(x). It is trivial to check that b c O on G if
and only if 4* e sD on H. (The class O*was defined in the context of a homogene-
ous space G/K. Here we are thinking of H as the homogeneous space H/{e}, and
the class ND on H means the class aD for this homogeneous space.) By Bochner's
theorem, the problem of describing the class D on H is equivalent to characteriz-
ing probability measures on IH (= the character group of H) w-hich are infinitely
divisible under convolutioin. The results of Parthasarathy, Itanga Rao, and
Varadhan [18] may now be applied more or less directly to ouI situation to yield
the following results.
THEOREM 3.1. A function -"* on H is in the class O and is real-valued if and

only if 4D* has a representation

(3.1) 4D*(a) = exp - {((a) + fh- [e (1 - x(a)) dL (x)}
where g is a continuous nonnegative solution of

(3.2) (g(al + a2) + g(al - a2)) = g(ai) + g(a2),
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and where L is a nonnegative measure on 11 such that L(-A) = L(A), and such
that L gives finite mass to the complement of any neighborhood of e, and

(3.3) JH- e) (1 - Rex(a)) dL (x) < oX, a e H.

Further, g, L are uniquely determined by 4)*.
The proof uses the connectedness of G in an essential way. -Note that as a

conse(luence of theorem 3.1, if 4) e D, then 4b is imbeddable.
THEOREM 3.2. A kernel f on H = G/K is a L6vy-Schoenberg kernel if and only

if
(3.4) f(a, b) = (I(a) + *I(b) - (a - b)), a, b E H,

where

(3.5) '(a) = g(a) + I( e
(1 x(a)) dL (x),

the function g and measure L having the meanings described above.
(When H is a vector group Rd, the solutions of (3.2) are the positive semi-

definite quadratic forms g(a) = (Ga, a) where G is any positive semidefinite
linear operator on Rd and (, ) is an inner product on Rd. The classical
Gauss kernel arises from this point of view when g(a) = |aJ2, namely when
G = Identity.)

It is worthwhile to point out how (1.1) and its analogues can be airrived at now.
Theorem 3.1 guarantees that for each t > 0 the function a -- exp - tg(a) is also
in the class D. It can be shown easily that the class of positive-definite conitinuous
functions is closed under the operations of taking pointwise products and uni-
form limits. Thus if (D E OD, then so does the function a -* exp (4)(a) - 1). It
follows that for each t> 0 the function a -* exp (-(1- exp - tg(a))) is in D,
and that for any nonnegative measure v on [0, oc) such that

(3.6) lo (1- exp - tg(a)) dv (t) < oc, a E H,
we have that the function 4) defined by

(3.7) 4)(a) = exp - {f0 (1 - exp - tg(a)) dv (t)}

is again in D. Thus for such v, if we write

(3.8) '(a) f (1 - exp - tg(a)) dv (t),

then

(3.9) f (a, b) = l ('(a) + *(b) -(a - b))
is a Levy-Schoenberg kernel.

Various choices for v may now be made. For example it is well known that
for each 0 < a < 2, there exists a nonnegative measure Va on [0, ox) such that

(3.10) f '

(1 - exp -tt2) dvp (t) = t>c 2O.
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Using these measures vLa in (3.8), we see that
(3.11) f(a, b) =(g(a)a12 + g(b)a2- g(a - b)a12)
is a Levy-Schoenberg kernel on H. In particular, if G = Rd, K = {O}, and if
a= 1 and g(a) = lal2, one recovers (1.1). The idea behind this approach is
essentially due to Bochner [2], who calls this procedure subordination.

Case II. Now let G be the group of all proper rigid motions of Rd, (d > 2),
and let K be the subgroup consisting of rotations about 0 E Rd. Then G is a
connected Lie group and K is a compact normal subgroup of G. Indeed, K =
SO(d), the proper orthogonal group, and G/K is topologically isomorphic to Rd.
If 4) is a function on G which is constant on right K-cosets, then one may lift 4)
to a function 4* on Rd = GIK, by letting V*(a) = 4)(x) where a = xK, x E G.
4) e D) iff 4* has the properties (i) 4* is continuous, (ii) c*(0) = 1, (iii) c* is
positive-definite on Rd in the usual sense, (iv) 4* is infinitely divisible in the
obvious sense, and (v) 4* is invariant under the left action of K on Rd. This
means that 4* is a radial function on Rd.

Leaving aside (v) for the moment, such functions V are characterized by the
classical formula of L6vy-Khinchine for fourier transforms of infinitely divisible
probability measures on Rd. If one then takes into account the condition (v), the
high degree of transitivity of SO(d) on the unit sphere of Rd implies that 4)* is
necessarily real-valued, and indeed, one gets the following theorem.
THEOREM 3.3. A function c) on G is in D if and only if

(3.12) V*(a) = exp - {cIal2 + Jo: (1 - Yd(Xlaj)) dL (A)},

with a E Rd = G/K where d > 2 and where c > 0, lal is the Euclidean length of
a, and Yd is the Bessel function defined by

r d

(3.13) Yd(t) = (2) eit Cos G sind 2 d@.
F (d 1)

= r (d) (2t-) (d-2)2J(d-2),2(t),

and L is a nonnegative measure on [0, oo) such that f0 (X2/1 + X2) dL (X) <co.
The constant c and the measure L are determined uniquely by )*.
Note in particular that if 4) E D, then 4) is imbeddable.
THEOREM 3.4. A kernel f on Rd, d > 2 (identified with G/K here) is a Levy-

Schoenberg kernel if and only if
(3.14) f (a, b) = ('(a) + *(b) - (a - b)), a, b E Rd,
where

(3.15) *(a) - cfaJ2 + fo+ (1- Yd(XJaJ)) dL (X),
and c, L have the meanings described above.
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By choosing c = 0 and dL(X) = dX/X±+l with 0 < a < 2, one is led back
+(a) = la[c, and

(3.16) f(a, b) = (lala + bla- la - bla), a, b E N4,
of which (1.1) is again a special case with a 1.
That these kernels (3.16) are Levy-Schoenberg kernlels is probably knlowii to

many people, though we have not seen explicit proof of it in the literature. It
wvould be of interest to study the Gaussian process {f(a), a C Rdl which have
(3.16) as their covariance, with 0 < a < 2. For a = 1, this is done in McKean's
work [16]. Of course, a proof of the fact that (3.16) are LUvy-Schoenberg kernels
could have also been based on the method of subordination described in case I,
instead of on explicit computation.
The restriction d > 2 can of course be dropped. A formula similar to (3.12)

then results, the function Yd being replaced by the cosine function. We do not
bother with this detail.

Case III. Here G is to be a coninected, compact semisimple Lie gl-oup, a'ld
K a closed subgroup such that G/K is a symmetric space of compact type.
ilie Cartan's famous classification of such pairs G, K is well known (see, for
example, Helgason [9]).
Our problem is to describe the class D in this situation. The tools necessary

pertain to harmonic analysis on compact groups, especially the Peter-Weyl
theorem, and the theory of spherical functions, as outlined for example in [9].

If T is an irreducible unitary representation of G, T is said to be of class 1
with respect to K, if the reduction of the restriction of T to K contains the
trivial representation k -+ 1 of K. Let XT be the character of T, that is, XT is
the function on G defined by XT(X) = Trace T,. Then the function

(:3.17) OT(X) = IK X(r-I'k) dk, x c G

is called the elementary K-spherical functioni associated uwith T. It is nonzero if aii(
only if T is of class 1. The functioni qT satisfies the followvinig three relationis:

(:3.18) fK| T(xky) dk = fT(X) -T()T x, y E G;

(3.19) (PT(e) = 1;

(3.20) OT iS positive-definite as a function on G.

Given a continuous positive-definite function on G, there is a well-knowli
construction, due to Gelfand and Raikov, which associates with such a function,
a continuous unitary representation of G (cf. Naimark [17]). It can be shown
that wAhen this construction is applied to (T, the representation produced is
eqjuivalent to the representation T (provided, of course, q5T 3 0). Indeed, any
function q5 on G satisfying (3.18)-(3.20) gives rise by that construction to exactly
one equivalence class of irreducible representations of G. We may therefore
identify the set of all equivalence classes of (class 1) irreducible unitary repre-
sentations of G with the set of solutionls of (3.18)-(3.20), which set shall be
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denoted by 9R. It is countable, and will be equipped with the discrete topology,
and the elements of 9W will be labelled +o, i, *, , where tacitly,
+0(x) 1, x e G.
The simplest members of the class D are the functions

(3.21) 7r,(.r) = exp (,O (X) - 1).
This may be seen as follows. It is clear by (:3. lS) or even (3. 17) that

¢>Q('xk2) = 0.(x), x G G, kA, /2 e K. Thus 7r,, is K-sphelical, iiornmalized, and
continiuous. That 7r, is positive-definite followvs from (3.20) upoIn observing that
the class of positive-definite conitinuous functionis oni G is closed under the oper-
ations of (i) multiplication by a nonnegative real constant, (ii) forming sums,
(iii) pointwise multiplication, and (iv) taking limits of uniformly convergent
sequences. Since exp 0,(x) = ,_j>o 0,(x)i/j! and the convergence is uniform, it
follows that exp f0(x), and hence also 7r,,(x) is positive-definite. Finally, 7rn is
clearly infinitely divisible, for, given anly integer j > 0, we have rn = (7r,j)
vhere 7r1j(x) = exp ((0,(x) -I)/j), anid tlis last functioll is positive-definite for
reasons outlined above.

It follows that if a_ > 0, then the funietionis 7r of the form

(3.22) r(x) = exp a.(0,(x)- 1))X finite

are also in the class O.
Finally, since D is closed under uniform limits, it follows that uniform limits

of such 'r also belong to the class D.
T'he main theorem in case IV asserts that these fuiietioins exhatust the class D.

Indeed, one can say more.
THEOREM 3.5. A fiinction (1 on G belongs to the class O if anid only if

(3.23) D(xr) = exp __ a. (0,(x)- l))

where a. > 0 and Yn=o an < cc. The numbers an are determined uniquely by 4F.
The proof of theorem 3.5 proceeds first by showiing that if D is infinitely

divisible, it cannot vanish anywhere on G. T'his uses the connectedness of G.
One then shows that the logarithm of 4 has the form Zn>o an(0n(x) - 1), with
an > 0 and F'=i a, < C. Note that by virtue of (3.23), if ( G D, then ( is
imbeddable.

It can be shownv- that theorem 3.5 is e(quivalenit to saying that 4 G D if and
only if there exists a continiuous K-spherical positive-definite fulictioln ' oin G
such that b(x) = exp ('(x) - -y(e)).

It is not hard to isolate those functionls in D which arc real-valued. To do this,
note that there is on 9SDan inivolution wvhich sends an element of 9)? into its
complex conjugate. Thus for each n we may define the integer n* by On* = di
Clearly 0* = 0. In a variety of situations (which can be described fully, but will
not be described here) it is actually true that n* = n for all n. (This will, for
example, be true whenever the Weyl grouip of the symmetric space GIK contailns
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-I.) The real-valued elements in D arise precisely from those sequences
{an, n > 0} such that an > 0, En>o an < °° and an* = an for each n. Equiva-
lently, 4) E OD and is real-valued if and only if 4)(x) = exp (-y(x) - y(e)) where y
is a real-valued, continuous, K-spherical, positive-definite function on G.
THEOREM 3.6. A kernel f on G/K is a Levy-Schoenberg kernel if and only if

(3.24) f (a, b) = (r(a, o) + r(b, o) - r(a, b)), a, b E G/K
where o is the point eK e G/K, and r(xK, yK) = T(y-1x) where I is a function on
G of the form

(3.25) (x) = a,(1 - (x))
n >O

with
(3.26) an > 0, a* =an for each n > 0 and E a <oo.

n >O

We thus have in case III, a complete classification of Levy-Schoenberg kernels.
It is of some interest to specialize the above to various particular cases. For

example, let G = SO(d + 1) and K = SO(d). Then G/K = Sd, the unit sphere
in Rd+'. We may choose K to be the subgroup of G which consists of rotations
about the point o = (0, 0, . .. , 1), to be called the north pole. Let a E Sd and
let 0 be the colatitude of a; that is, a is defined by 0 < 7r, cos 0 = a * o = the
scalar product of a and o regarded as unit vectors in Rd+l. It can be shown very
easily that a function on Sd, when regarded as a function on G, is spherical if and
only if it is a function of the colatitude only. The elementary spherical functions
can now be identified. They turn out to be the ultraspherical polynomials. Indeed
for x E G, on(x) = p(d- 1/2) (cos 0), where a is the colatitude of the point xK E Sd.
A function 4' on G is of class D if and only if

d-1

(3.27) 4)(x) = exp E a'(PI,2 (cos 0) -1),
n >O

with an > 0, _ >o a. < °°, and is the colatitude of a xK c Sd.
In this special case all the O,n are real-valued automatically, and therefore

n* = n for each n > 0.
L6vy's kernel (1.2) arises from this point of view as follows. Let I(x) = 0

where 0 is the colatitude of xK G Sd. It can be shown after some computation
that

d-I

(3.28) 0 a,, (I - PI> (Cos 0)),
n >0

with an > 0 and n,, >o an < °°. Thus by theorem 3.6, this choice gives rise to a
Levy-Schoenberg kernel. This kernel is in fact (1.2), since the geodesic distance
between a and the north pole is exactly the colatitude of a.

Other choices for G and K lead to other classical polynomials. Details will not
be given here, but see [5], [9].
We remark in conclusion, that the class 5D arises in other connections also. As

is clear from the work of it. Cartan, there is a duality between compact sym-
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metric spaces and certain lattices of points with nonnegative integral coordinates
in Euclidean space. Functions of class 1) can be regarded as Fourier transforms
of measures on these lattices, which are infinitely divisible in an appropriate
sense. Indeed, it follows from theorem 3.5 that one gets, from each function in
the class 5D, a Markov process on the corresponding lattice. A very special case of
this duality was studied by Kennedy [11], where the case G = SO(d + 1),
K = SO(d) is considered. [The existence of this paper was brought to our notice
by H. P. McKean, Jr. who, during the symposium, also raised the question of
giving the group theoretic meaning of this paper.] Kennedy's methods involve
the use of special formulas for the ultraspherical polynomials and do not rely on
harmonic analysis explicitly. We shall study these processes in a separate paper
in the future.

Case IV. To begin with, let G be a noncompact connected semisimple Lie
group with a finite center and let K be a maximal compact subgroup of G. In
this case G/K is a symmetric space of the noncompact type [9]. We are, of
course, interested in describing functions of the class XD in this case. The tools
necessary for doing this involve the theory of spherical functions developed by
Gelfand, Godement, and Harish-Chandra. A K-spherical function 0 on G is said
to be an elementary positive-definite spherical function if

(3.29) fK qS(xky) dk =O(x)g(y),
(3.30) 4(e) = 1,
(3.31) 0 is positive definite.
Denote by 9) the set of elementary positive-definite spherical functions on G.

We denote by 1 the function constantly 1 on G. Clearly 1 c 9W.
The set 9)? forms the dual object for the harmonic analysis of spherical func-

tions on G (see, for example, Godement [7]). Just as in the case when G is com-
pact, the construction of Gelfand and Raikov again in this case gives an ir-
reducible continuous unitary representation of G, starting from a continuous
positive-definite function on G. The representation so obtained is of class one if
and only if r is in 9). Of course, the representation is now infinite dimensional
(except when =- 1). Conversely, given an irreducible continuous unitary repre-
sentation T of G of class one, there exists a unique unit vector q in its represen-
tation space such that 7Tkt = 7 for all k G K. Then the function OT(X) = (Tx, n)
is an elementary positive-definite spherical function on G, and if one constructs
the representation associated with OT, one gets back to the representation
(equivalent to) T. Thus 9) is really the set of equivalence classes of irreducible
unitary representations of G which are of class one. It can be topologized by the
topology of uniform convergence on compact subsets of G; namely, g,, -* 4 in
9) if and only if 0 -n quniformly on every compact subset of G. In this topology,
9? is a locally compact Hausdorff space. Let us also note that there is a natural
involution on 9) which sends a function + in 9) into its complex conjugate i.

The class of continuous positive definiite functions on G is closed under the
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operations of (i) multiplication by a real nonlniegative niumber, (ii) folrmilng
sums, (iii) pointwise multiplication, and (iv) uniform passages to limits.
Utilizing these facts, one sees easily that the simplest members of the class iD
are of the form

(3.32) .7r(x) = e.xp (0(x)-) 9)E?D
h'lhe argumenit leadinig to this is idenitical wN-itlh that in case III. It follows- that

functionis of the form

(3.33) 7r(x) = exp ai((x)-1) ), ai > 0, C )1V

are also in the class D, and therefore, so are iuniiformli limits of such functions.
Note that 7r may be written as

(3.34) 7rLN(x) = exp fgt (0 (x) - ]) (ILs (+)

wi-here L.N is the noiiinegative measure which ascrihes the masses a; to the poinits
X, s9W,i= 1, --- , .\-
One can niext show that if CF E a, theni CF never vaniislhes (this uses the fact

that G is conniected), and that CF is a limit, uniifornmly oni compacts, of a sequence
of funietionis of the form (3.34). If 7ri is a se(luenlce,
(3.35)) ri(x) = exp (j,,, (0(x) - 1) dL1 (f))

whliere Li ale nionnlegative finite measures on 9), and if 7ri -+ CF, then onie caln
characterize CF completely by obtaining for it a representation formula of the
I vy-Khinchine type. In this note, we do iiot w^anit to burden the reader with
the description of all functions in the class D, but content ourselves with thle
descriptioin of the real-valued members of 0 oinly, which are the oilly olnes
relevanit for the description of LUvy-Schoenberg kerniels. The description of all
memLers of D will be forthcoming in the detailed expositioni of this niote.
THEOREM 3.7. A real-valued function CF on G is in the class D if and only if

(3.36) CF(x) = exp - {g(x) J (1 -(- (x)) dL (g)'}

where the function g and the measure L are subject to the following three requirem.enlts
(a), (b), (c):

(a) L is a m';n negative measu-re on 9W1 - '1 sich that if T is the inmage of a BoIrl
s(t A (C9)i - '1 ) nd(ler the involution 0 - of 9)1, then

(8-,.3J7) ,L (A) = I (A);
(b) if dx is the Haar measure of G and U is any cc-nmpact neighborhood of e in G,

then

uh3,e3(8) f - Q1(e0) dL (;) <

ich'r' Q(O) = ,. (I - lleo(.) l;
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(c) g(x) is a funiction on G of the follouing form

(3.39) g(x) = l hm (1 -ReO(x)) dLj (d);

uhere {Uj}lj=1 is a sequence of compact neighborhoods of I in 9I sutch that UTi+1 C ('
and ni Uj = {]}, and Lj is a finite measure supported by Uj.

Further, the correspondence (3.36) between real-valued functions 4) E D and pairs
(g, L) satisfying (a), (b), (c) is one-to-one.
Note that theorem 3.7 implies if 4) c O, theni 4 is imbeddable.
Several comments on this theorem are nowv in order. The theorem shows that

real-valued elements 4) in Df are in one-to-one correspondence with pairs (g, L)
where g is a function described by (a), and L is a measure described by (b). Thus
it is a sort of Levy-Khinchine formula. A function g(x) of this type is to be called
the Gaussian function determined by 4), and L is called the Lvy measure de-
termined by 4). The result as formulated here is dual to the main result of the
paper [5] of the author. There spherical probability measures on G/K which are
infiniitely divisible under convolution are discussed, arid a representatioln of l,6vy-
Khinchine type for their Fourier transforms is obtained. The class of nonnega-
tive, finite, spherical measures under conivolution is, in a way, dual to the class
positive-definite, spherical functions under pointwise multiplication. It is in this
sense that the present result is the 'dual' of theorem 6.2 of [5]. Actually, each
continuous noirmalized positive-definite spherical fuiiction on G gives rise to a
unique probability measure on 9t, and a convolution of measures on 9i can be
defined in such a way that unider this correspoindence, pointwise multiplicatioll
of functions on G of the type described corresponds to convolution of the corre-
sponiding measures on St. From this point of view, the functions in the class O
give rise to probability measures on St which are infiniitely divisible unider this
convolution. A more detailed descriptioii will not be attempted here.
The reader will realize that theorem 3.7 is somew-hat less satisfactory than the

classical Levy-Khinchine formula, insofar as the description of the Gaussian
functions g is not very explicit. This is due to the present state of the art in
representation theory of the semisimple groups. It turns out that for a fuller
description of the functions g, one has to know the finie structure of M near the
point I e R. It is the absence of this infornmation in the case of general semi-
simple groups that prevents a more explicit descriptioni of g(x). To be morc
specific, it can be shownl under the hypotheses in the present section that g(x)
is always a continiious nonnegative solution of the following functionial equation:

(:>.40) f (g(xAky)) dk = g(x) + g(y).

This funietional equation is analogous to (3.2). Similar functiorial e(quations arise
in other contexts as wvell (see, for example, Furstenberg [4]).
However, in the absence of further informationi about the topology of 9St near

the point 1 e 9), we are not able to show that each noniiegative solution of (3.40)
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is a Gaussian function g(x) as envisaged in theorem 3.7. There are reasons to
believe that proving this last assertion would involve the knowledge of the con-
tinuous supplementary series of representations of G.
However, in special cases, we have been able to identify the Gaussian parts

g(x) with nonnegative continuous solutions of (3.40). This is the case, for ex-
ample, if G is a complex classical simple Lie group. We can also do the same
thing for the group SL(2, R) = the group of all 2 X 2 real matrices with de-
terminant 1. The proofs of these assertions must make use of the results of
Gelfand and Naimark [6], and Bargmann [1], respectively.
The case G = SL(2, R) can be studied in more detail. In this case G/K is just

the Lobachevsky plane. See Helgason [9] for details. If we use the unit disc with
the hyperbolic metric as a model for this plane, the function g(x) can be described
explicitly as follows: let the point 0 E {z, lzl < 1} be taken as the identity coset
eK of G/K. Then K _ 80(2) = the group of all rotations around 0. For x E G,
let xK be the point z into which x sends 0. Let v be the hyperbolic distance of xK
from eK(=0). Then,
(3.41) g(x) = c log cosh¢/2, c > 0

are all the Gaussian functions that arise.
Theorem 3.7 leads at once to the description of Levy-Schoenberg kernels on

the spaces G/K of case IV.
THEOREM 3.8. A kernel f on G/K is a Levy-Schoenberg kernel if and only if

(3.42) f(a, b) = 2(r(a, o) + r(b, o) - r(a, b)), a, b G G/K
where
(3.43) r(xK, yK) = T(y-'x), x, y G G

with
(3.44) T(x) = 9(x) + f (1(I x)) dL ()
for a pair (g, L) as described in theorem 3.7.
The process of subordination described in earlier cases leads in this case to the

conclusion, among others, that if 0 < a < 2, then the kernels

(3.45) f(xK, yK) = 2(g(x)aI2 + g(y)a12-

are all L6vy-Schoenberg kernels, whenever g is as in theorem 3.7. The case a = 1
would lead to the analogues of (1.1) in this case.
For the Lobachevsky plane, therefore, the analogue of (1.1) is

(3.46) f (a, b) = 2(V'1og cosh ((a, 0)/2 + olog cosh t(b, 0)/2

-a/log cosh &(a, b)/2
where r(a, b) means the hyperbolic distance between a and b E G/K =
{z, lzl < 1}. This answers the question raised by Levy in [15]. It goes without
saying that the connections between the functions of class D described by
(3.47) 4',(x) = exp - g(X)aI2, 0 < a < 2,
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and the fractional Riesz potential and "stable" processes to which they must give
rise is a subject which is left fascinatingly open for study.

4. A discussion of the corresponding process

The positive definiteness of a Levy-Schoenberg kernel f enables us to construct
a Gaussian process {4(a), a e G/K} such that E(4(a)) = 0 and E(t(a), 4(b)) =

f (a, b); a, b G G/K. For a E G/K, 4(a) is a random variable in L2(0, 8, P), where
(Q, 8, P) is some probability space, and E is the expectation. It is natural to seek
a unified treatment of this class of processes. W""e have at present no such exten-
sive theory of all the processes which arise. This section will be devoted to a brief
description of some of the directions which can be pursued. Details of such results
as have been obtained will be included in a fuller account of the subject of this
note which is now under preparation.

Fix a Levy-Schoenberg kernel f and let {t(a), a E G/K} be the corresponding
centered Gaussian process. One of the first problems that arises is the discussion
of the sample functions of these processes. While something can always be said
in general, that is, applicable to all four cases I-IV, results that are interesting to
us can be obtained only when the underlying space G/K has some differential
structure. We shall therefore exclude case I from the considerations of this
section.

In each of the cases II-IV, let f be a Levy-Schoenberg kernel, and let E be the
corresponding function on G as envisaged in theorems 3.2, 3.4, and 3.6. It is
possible to give a very simple condition on E which guarantees that the Gaussian
process which arises from f has almost surely continuous sample functions. The
condition is on the behavior of I near e e G. It is enough, for example, that in
a sufficiently small neighborhood of e in G, one has 1I(x)l < Clxl for some
3> 0, where ixH stands for the distance of xK from eK in the natural Riemannian
metric on G/K. Actually, an even weaker condition already suffices.

In cases II and IV, *(x) will satisfy this condition whenever *(x) = g(x)-
0 < a < 2. It will also satisfy this condition if the measure L in its representation
decreases rapidly enough at infinity. For example, in case II, if we have
fo+ X2 dL(X) <0, then 'I will satisfy the above H6lder condition. In case IV, if A
is the Laplace operator of G/K and if X(+) is the eigenvalue of the eigenfunction 0
of A, that is, AO = X(O)O, 0 e 9), then the condition fi-i1i lJX(+)1 dL (O) <0 on
L can be shown to imply that P satisfies the above mentioned Holder condition.

Finally, in case III, one can similarly show that if the sequence a,, of theorem
3.4 decreases rapidly enough as n -c0o, then the corresponding * will have the
described behavior J*(x)l < Clxl near e E G. For example, if A is the Laplace
operator of G/K in case III and if X. is the eigenvalue of 0,, namely, AOn =
then it is enough if ,n JX,,a. < oo, to have samnple function continuity for the
corresponding process.

Another problem is to obtain representations of 4 in terms of white noise
integrals, and to attempt to develop a theory of "canonical" representations.
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Let 03 be the cr-field of Boiwel subsets of G/K. Given a nionnlegative measure ,
on 6(, which assigns finite mass to any compact subset, the uhite noise associated
with Iu is a map W which associates with each ,-finite subset B E as a ranidom
variable W(B) oIn Q, such that the following conditions hold: (i) the distribution
of W(B) is Gaussian; (ii) Eh(W(B)) = 0; (iii) E(TV(B)2) = ,u(B); (iv) if A and
B are compact subsets in 03, and if A n B = 0, then IJ7(A) and W(B) ale
indepeildenit; and (v) if A1, A2, * * is a mutually disjoint countable collection of
Borel sets, and Uj%I Ai has finite ,u-measure, thenl IF(U= 1 A j) = Z.1I(A j),
the sum being, say, in L2.

Giveii such a white noise, one call, by usinig stanidaid technli(ues, definie
stochastic integrals fA h(u) dW (u) for A e 03 and h c L2(HA). Such integrals are
called white noise integrals. T'he problem is to see if the process t can be repre-
senited as the integral of a kerniel with respect to whllite noise associated with onie
or more measures ,u, anid to decide if a particular one of these represenltationis is
"'canoniical" in terms of being the onily one with "iiatulal" properties. Ilor anl
elegant accounit of this idea formllulated by 1L6vy, the reader is refelred to Hida
[10].
Some progress call be made oni this problem. Denote by H tile smallest closed

subspace of L2(0, S, P) contaiiuiig -'(a), a e G/K>. For B e (03, let S,H be the
smallest sub-a-field of S genierated by -{t(a), a c B}, anid let HB be the smallest
closed subspace of H conitaininig {t(a), a c B. Let 7rB be the projectioll on HB.
Pecause t is Gaussian, 7rB((a)) = E(4(a)j8B). Onie call now study the von
Neumannl algebra geiierated by the projectiolls -IrB, B E C3, by usinig tile well-
kinown decomposition theory of these algebras. rfthis theory, coupled with tile
fact that there is a natural unitary equivaleince betwveeni the space H and the
reproducinig keriiel, Hilbert space Hf, wliose reproducinig kernsel is f(a, b), oughit
to eniable us to get a generalized canoniical represeiltatioll for (, much in the same
way as in Hida's paper [10]. We are able to do this in some favorable cases, b)lt.
inot in general.
The other class of problems whicll arises is the discussioll of Markov propelties

of the process t as envisaged by Levy [13] anid iIclKeain [16]. To be specific,
suppose we are in case IV described above. If I= {Ca} is a family of smooth
surfaces in G/K, each of which disconniects G/K ilto aii interior I, (conitaining
the point eK), with compact closure Ia U CG anid all exterior a, theni t is said
to have the Markov property relative to C if for each a, the a-fields Sj. alnd
are ilidependenlt conditionial on the c-field Sc.. 1L6vy defined this Ilotioll havinig
in mind the family of concelltric sp,lers in RX', aild AIcKean poiinted out the
geileral formulatioin as well as the conllectioin between tile MIarkov property alild
certain Dirichlet problems, for the special kernlels (1.1).
We have been able to make some progress o01 these questions also. To keep

things simple, let us confine attention to those cases where G/K is two-point
homogeneous, (see [9]) and a process t w8hose sample functions are continuous.
In that case, a poillt a E G/K coiresponids to a pair (lal, 0) where jai is the dis-
tance of a from o, aild 0 is a point of the unit sphere in G/K. The distance lal
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rainges over a finiite or infinite interval according to whether or not GIK is
compact. We can now imitate McKean's procedure in [16] and obtain an ex-
pansion
(4.1) 4(a) =E 4tn(Ial)xln(o), a - (jai, 0)

n,'

for the process 4. This expansion converges in L2(Q). Here, t4(-) are certain
Gaussian processes, and xt are the spherical harmonics for the natural action of
K on the unit sphere in G/K. One can express the covariance of 4I in terms of the
covariance of 4. It is then also possible to relate the Markov property (relative
to spheres) for 4 to the Markov properties of the sequence 4n of one-parameter
processes. The details of these results and the illustrations of their applicability
must await the fuller exposition of this paper mentioned above.
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