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1. Introduction
Paul Lévy’s studies of the Gaussian process {&(a), a € R4} defined by
FE(¢(a)) = 0,and
(1.1) EE@E) = 4(lal + o] — a — b)), ab € RY,
= f(a, b) say,
are well known, for example, [12], [13], [14]. He calls this process Brownian
motion of several parameters.
Lévy has also studied [15] a Gaussian process {£(a), a € 8¢} (S? = the unit
sphere in R**?) defined by E(£(a)) = 0, and
(1.2) E(E(a)E(b)) = 3(d(a, 0) + d(b, 0) — d(a, b))
= f(a, b) say,
where a, b € 8% 0 is any point (fixed once and for all) of §¢, and d(z, y) stands
for the geodesic distance between z, y € 89 taken along the sphere. This

motion may be called Brownian motion with parameter running on S¢ [15].
The functions f(a, b) described by (1.1) and (1.2) are both real-valued, sym-

metric and positive-definite; that is, given ay, -+ , 2, €R, a4, -+, a, € R?
(or 8%, we have
(1.3) Zl ,Zl aia;f (a;, a;) > 0.

i=1j=

Tor (1.1) this fact is due to a theorem of Schoenberg [19], and Lévy used this
fact to establish the existence of the process £ On the other hand, for (1.2), no
direct proof of the positive-definiteness is known. The process {£(a), a € S} is
constructed by Lévy by means of white noise integrals, and then it is checked by
explicit evaluation that its covariance is (1.2). It follows that (1.2) is positive-
definite. Here Lévy was adopting an idea of Chentsov [3], where a white noise
integral for (¢(a), ¢ € RY) is described.

The processes described above have several interesting properties, and there
seems to be several, as yet not completely clear, connections between their study
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and several problems in harmonic analysis and differential equations. Indications
of this may be found in McKean’s paper [16]. It is therefore natural to ask for a
description of kernels like (1.1) and (1.2) on spaces within the domain of har-
monic analysis, and to seek to develop a theory for the corresponding Gaussian
process.

A question of this sort was raised by Lévy ([15], p. 309) but there matters
have stood, largely because of the ad hoc nature of the proofs of the positive-
definiteness property of (1.1) and (1.2).

It is the purpose of this note to report some progress in this direction. That is,
a class of kernels embodying the main features of (1.1) and (1.2) will be studied
on a fair variety of spaces, and a more or less complete description of these kernels
will be obtained. It turns out that the problem has a natural formulation in the
context of abstract harmonic analysis.

Having obtained the description of kernels “like” (1.1) and (1.2) above, the
problem of studying the corresponding Gaussian process arises naturally. Some
partial results of this kind will also be deseribed below.

The present note is confined to a description of the notions, methods, and
results obtained so far by the methods. Proofs, along with results of further
investigation, will be presented elsewhere in the future.

2. Lévy-Schoenberg kernels

Given a topological space S, a kernel defined on S is a continuous real-valued
function f on S X S. A kernel is to be called positive-definite if it is symmetric,
that is, f(a, b) = f(b, @), and if given ay, - -+ , @, € R, a1, - -+, a, €S, we have

(2.1) 'i1 nl ae;f(ai, a;) 2 0.
i=1j=

Let G be a locally compact topological group satisfying the second axiom of
countability and K be a closed subgroup of . Then M = G/K will denote the
space of cosets zK, x € G, with the quotient topology. The group G acts on /K
by left translation as follows: 2 (yK) = (xy)K.

DeriniTION 2.1. A kernel f on G/K s said to be a Lévy-Schoenberg kernel if
it has the following properties:

(i) f(a,b) = f(b, a), a,be€G/K;
(it) there exists a point o € (¢/K such that ’
(2.2) f(a, 0) =0, a €G/K;

(iii) ofr(a, b) = f(a, a) + f(b, b) — 2f(a, b), then the kernel r is invariant under
@, namely
(2.3) r(za, zb) = r(a, b), a, b eG/K, z €@,

(iv) f is positive-definite.
It is to be noted that (1.1) and (1.2) are Lévy-Schoenberg kernels. Indeed, k¢
may be viewed as the homogeneous space of the group ¢ of all proper rigid
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motions of B¢, modulo the subgroup K = SO(d) of all proper rotations about the
origin. The kernel f of (1.1) thus lives on G/K and (i), (ii) are easily checked, the
origin in R4 serving as the point 0 envisaged in (ii). As to (iii), the kernel r(a, b)
is just |@ — b| in this case, and this is certainly invariant under all rigid motions
of R Condition (iv) is just Schoenberg’s theorem. As for (1.2), here S? may be
viewed as the homogeneous space of G = SO(d + 1) modulo the subgroup K
consisting of those rotations which leave the point o fixed. K = SO(d). In this
case 7(a, b) = d(a, b) and clearly fulfills (iii) since rotations are isometries of S

Note that r is just the “polarization” of f, and indeed, r determines f, becausc

in view of (ii),

(2.4) f(a, b) = 3(r(a, 0) + r(b, 0) — r(a, b)).

It follows that all properties of f have equivalents in properties of r. Our theory
steps off with the following observation.

Lemma 2.2, Suppose r is @ symmetric kernel on a topological space S, and sup-
pose 0 € S. Next, suppose r(0,0) = 0, and let f be the kernel defined in terms of
r by (2.4); then f s positive-definite if and only if for cach t > 0, the kernel 6,
defined by 6,(a, b) = exp — ir(a, b) is positive-definite.

The proof is elementary. One half of it is similar to Lévy’s proof [12].

CoroLLARY 2.3, If f is a Lévy-Schoenberg kernel on G/K, then the kernel v
defined by

(2.5) r(a, b) = f(a, a) + f(b, b) — 2f(a, b)

has the following properties:

(2.6) r(a, b) = r(b, a),

2.7 r(a, a) = 0,

(2.8) r(ra, 2b) = r(a, b), x eq.
(2.9) For each t 2> 0, 6, = exp (—1r) 1s positive-definite.

Conversely, if r is any kernel on G/K satisfying (2.6)—(2.9) and for any point
o € G/K, we define f by

(2.10) f(a, b) = 3(r(a, 0) + 7(b, 0) — r(a, b)), a,b €G/K.
Then f 1is a Lévy-Schoenberg kernel on G/K.

The point o might as well be taken to be the coset eK, where e is the identity
of .

What kernels » have properties (2.6)—(2.9)? It is clear that a satisfactory
answer to this question would lead to a classification of all Lévy-Schoenberg ker-
nels. Suppose 7 is a kernel satisfying (2.6)—(2.9), and let 8(a, b) = exp — r(a, b).
Then 8(xa, xb) = 6(a, b) for x € G. This enables us to lift # to a function
on . Namely, if a = yK, b = zK with y, 2z € G, then 6(a, b) = 0(yK, 2K) =
6(z"'yK, K); hence if the function & is defined on G by ®(z) = 8(zK, K), we sce
that 8(yK, zK) = &(z~'y). The function ® is K-spherical, that is, ®(kwwk,) = d(x)
forall x € G, ky, ks € K. 1t is trivial to check that the properties (2.6)—(2.9) of
r imply the following properties of &:
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(2.11) ®(z~1) = ®(z), and P is continuous;

(2.12) b(kyxks) = &(x), z €@, ky,k€K;
(2.13) de) = 1;

for each ¢ > 0, ®*is positive-definite on G in the sense: given any ay, -+ , @, € C
Zy, +++, Ts € G, we have

(2.14) ZJ a@;®(x; ') > 0;

(2.15) ®t(x) >1 as t—0, zeq.

Conversely, if a function ® on G has these properties, then, provided its
logarithm is well defined, it can be shown very easily that the function r(a, b)
defined on G/K by

(2.16) r(a, b) = — log ®(z~1y), a = ykK, b =:zK,

enjoys properties (2.6)—(2.9). One must therefore look for functions & on G
satisfying (2.11)—(2.15). We shall initially ignore the requirement ®(z~1) = ®(z)
which, in the class of positive-definite functions, merely means that & is real-
valued.

A continuous complex-valied function ® on G is said to be (a) K-spherical if
®(kixke) = ®(x) for all z €@, ki, k., € K; (b) normalized if ®(e) = 1; and
(c¢) imbeddable if ¢ is positive-definite for each ¢ > 0 and &' — 1 as ¢t — 0. This
last terminology comes about from the fact that ® can then be imbedded in a
continuous one-parameter semigroup (under pointwise multiplication), namely
{®*, t > 0}, of positive-definite functions.

Apart from the question of existence of the logarithm of ®, we have thus re-
duced the problem of describing all Lévy-Schoenberg kernels to the problem of
finding real-valued, normalized, K-spherical, continuous, imbeddable, positive-
definite functions on G.

A closely related notion to that of imbeddability is the notion of ¢nfinite
divisibility. A positive-definite funetion ® on G is said to be infinitely divisible if for
each positive integer n, there exists a continuous positive-definite function &, on
G such that % = &.

A continuous imbeddable & is clearly infinitely divisible. At this point we may
therefore study the class of complex-valued, continuous, K-spherical, normalized,
infinitely divisible, positive-definite functions on G. Let D denote this class.

In the next section some results obtained in this connection are described, for
the following four cases.

Case I: G = A connected locally compact Abelian group.

K = Any closed subgroup of G.
Case II: G = The group of all proper (that is, orientation preserving) mo-
tions of Euclidean space R°.
K = The subgroup of G consisting of rotations about 0.
= S0(d).
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Case III: ¢ = Any compact connected semisimple Lie group.

K = A closed subgroup of @ such that G/K is a (compact) sym-
metric space.

Case IV: G = A noncompact, connected, semisimple Lie group with finite

center.
K = A maximal compact subgroup of G.

In this case (/K is a symmetric space of the noncompact type.

It turns out that in each of these cases, if ® € D, then & is necessarily im-
beddable and ® never vanishes. Indeed, one can get more or less explicit represen-
tation formulas for ® as ®(x) = exp — ¥(z), and ¥ can be described precisely.
Further, it is possible also to isolate those ¥ for which & is real-valued. It follows
that if 7(a, b) = ¥(z7'y), a = yK, b = 2K, for such ¥, then r enjoys properties
(2.7)-(2.10). Thus one gets a complete description of all Lévy-Schoenberg ker-
nels, in the cases described above.

We might point out that cases I and II may be regarded as essentially known.
Our results are new in cases 11I and IV. Equation (1.2) is a special case of results
of ITI, and one gets in this way a new proof, independent of white noise integrals,
of the fact that (1.2) is positive-definite. In case IV, so far as we know, no
analogues of our results have been hitherto found. When properly interpreted,
they give rise to Gaussian processes {£(a); ¢ € G/K} where G/K is a noncompact
symmetric space. In each of these situations (1.1) and (1.2) have analogues which
will be pointed out below.

3. The class D

Case I. Here G is a connected, locally compact, separable Abelian group and
K a closed subgroup. A function ® on G is K-spherical if and only if & is constant
on each K-coset, and thus ® can be lifted to a function ®* on the factor group
H = G/K, by setting ®*(xK) = ®(x). It is trivial to check that ® € D on G if
and only if ®* € D on K. (The class D was defined in the context of a homogene-
ous space G/K. Here we are thinking of H as the homogeneous space H/{e}, and
the class D on H means the class D for this homogeneous space.) By Bochner’s
theorem, the problem of describing the class © on H is equivalent to characteriz-
ing probability measures on H (= the character group of H) which are infinitely
divisible under convolution. The results of Parthasarathy, Ranga Rao, and
Varadhan [18] may now be applied more or less directly to our situation to yield
the following results.

THEOREM 3.1. A function ®* on H 1s in the class D and is real-valued if and
only if ®* has a representation

(3.1) @) = exp = {g(a) + [, (1 = x(@) a1 W}

H—le}
where g 1s a conlinuous nonnegative solution of

(3.2) 2(g(ar + a2) + glas — aw)) = g(a)) + g(as),
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and where L is a nonnegative measure on H such that L(—A) = L(A), and such
that L gives finite mass to the complement of any neighborkood of e, and

(3.3) jﬁ_m (1 — Rex(@) dL (x) < =, acH.

Further, g, L are uniquely determined by *.

The proof uses the connectedness of ¢ in an essential way. Notc that as a
consequence of theorem 3.1, if ® € D, then & is imbeddable.

THEOREM 3.2. A kernel fon H = G/K s a Lévy-Schoenberg kernel if and only
of

(3.4) f(a,b) = $(¥(a) + ¥(b) — ¥(a — b)), a,beH,
where
(3.5) Y(a) = g(a) + [, (1 — x(a)dL (x),

H—{e}

the function g and measure L having the meanings described above.

(When H is a vector group R¢, the solutions of (3.2) are the positive semi-
definite quadratic forms g(a) = (Ga, a) where G is any positive semidefinite
linear operator on R¢ and ( , ) is an inner product on R The classical
Gauss kernel arises from this point of view when g(a) = |a|?, namely when
G = Identity.)

It is worthwhile to point out how (1.1) and its analogues can be arrived at now.
Theorem 3.1 guarantees that for each ¢t > 0 the function a — exp — tg(a) is also
in the class D. It can be shown easily that the class of positive-definite continuous
functions is closed under the operations of taking pointwise products and uni-
form limits. Thus if & € D, then so does the function @ — exp (®(a) — 1). It
follows that for each ¢ > 0 the function a — exp (— (1 — exp — tg(a))) is in D,
and that for any nonnegative measure » on [0, «) such that

(3.6) L T (- exp— tgl@) dv () < 0, acH,
we have that the function & defined by

3.7 ®(a) = exp — {ﬁ)w (1 — exp — ig(a)) dv (t)}

is again in ®. Thus for such », if we write

(3.8) ¥(a) = [,7 (1= exp — tg(@) dv ),

then

(3.9) f(a,b) = §(¥(a) + ¥(b) — ¥(a — b))

is a Lévy-Schoenberg kernel.
Various choices for » may now be made. For example it is well known that
for each 0 < a < 2, there exists a nonnegative measure », on [0, =) such that

(3.10) ﬁ) (1 — exp — 1) dva (1) = Lo, t>o0.
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Using these measures », in (3.8), we see that

(3.11) f(a,b) = 3(g(a)* + g(b)*/* — g(a — b)*?)

is a Lévy-Schoenberg kernel on H. In particular, if G = R4, K = {0}, and if
a =1 and g(a) = |a|?, one recovers (1.1). The idea behind this approach is
essentially due to Bochner [2], who calls this procedure subordination.

Case II. Now let G be the group of all proper rigid motions of B¢, (d > 2),
and let K be the subgroup consisting of rotations about 0 € R4 Then G is a
connected Lie group and K is a compact normal subgroup of G. Indeed, K =
SO(d), the proper orthogonal group, and G/K is topologically isomorphic to Re.
If  is a function on G which is constant on right K-cosets, then one may lift ®
to a function ®* on R¢ = G/K, by letting *(a) = ®(x) where ¢ = zK, z € G.
& € D iff &* has the properties (i) * is continuous, (ii) ®*(0) = 1, (iii) ®* is
positive-definite on R¢ in the usual sense, (iv) ®* is infinitely divisible in the
obvious sense, and (v) ®* is invariant under the left action of K on R¢ This
means that ®* is a radzal function on Re.

Leaving aside (v) for the moment, such functions ®* are characterized by the
classical formula of Lévy-Khinchine for fourier transforms of infinitely divisible
probability measures on R?. If one then takes into account the condition (v), the
high degree of transitivity of SO(d) on the unit sphere of R?¢ implies that ®*is
necessarily real-valued, and indeed, one gets the following theorem.

THEOREM 3.3. A function ® on G is in D if and only if

(3.12) ®*(a) = exp — {clal® + fo:— (1 = Ya(\|a])) dL ()\)},
with a € R = G/K where d > 2 and where ¢ > 0, |a| is the Euclidean length of
a, and Y4 vs the Bessel function defined by

d
'D

=T (g) D) EDRT g g (1),

and L is a nonnegative measure on [0, ) such that ﬁ) :_ A1+ A)dL (\) < oo,
The constant ¢ and the measure L are determined uniquely by &*.

Note in particular that if & € D, then ® is imbeddable.

THEOREM 3.4. A kernel f on R%, d > 2 (identified with G/K here) is a Lévy-
Schoenberg kernel <f and only <f

(3.13) Yi(t) = L e 080 gind=2 g df.

(3.14) f(a,b) = $(¥(a) + ¥() — ¥(a ~ b)), a,b € R,
where
(3.15) ¥(a) = clal + |7 (1~ Ya(Ma])) dL (),

and ¢, L have the meanings described above.
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By choosing ¢ = 0 and dL(\) = d\/A*t! with 0 < « < 2, one is led back
V¥(a) = |afe, and
(3.16) f(a,b) = §(lal* + [p|* — [a — bJ), a,b € R,
of which (1.1) is again a special case with o = 1.

That these kernels (3.16) are Lévy-Schoenberg kernels is probably known to
many people, though we have not seen explicit proof of it in the literature. It
would be of interest to study the Gaussian process {£(az), a € R% which have
(3.16) as their covariance, with 0 < a < 2. IFor a = 1, this is done in McKean’s
work [16]. Of course, a proof of the fact that (3.16) are Lévy-Schoenberg kernels
could have also been based on the method of subordination described in case T,
instead of on explicit computation.

The restriction d > 2 can of course be dropped. A formula similar to (3.12)
then results, the function Y, being replaced by the cosine function. We do not
bother with this detail.

Case III. Here G is to be a connected, compact semisimple Lie group, and
K a closed subgroup such that G/K is a symmetric space of compact type.
Elie Cartan’s famous classification of such pairs G, K is well known (see, for
example, Helgason [9]).

Our problem is to describe the class D in this situation. The tools necessary
pertain to harmonic analysis on compact groups, especially the Peter-Weyl
theorem, and the theory of spherical functions, as outlined for example in [9].

If T is an irreducible unitary representation of G, 7 is said to be of class 1
with respect to K, if the reduction of the restriction of T’ to K contains the
trivial representation & — 1 of K. Let xr be the character of T, that is, xr is
the function on G defined by xr(x) = Trace T.. Then the function

(3.17) or(r) = fK xr(=k) di, v e

is called the elementary K-spherical function assoctated with T. It is nonzero if and
only if T is of class 1. The function ¢r satisfies the following three relations:

(3.18) [ $r@ky) dle = $2(z)-91(0), 7y €0
(3.19) ér(e) = 1;
(3.20) ¢r is positive-definite as a function on G.

Given a continuous positive-definite function on @, there is a well-known
construction, due to Gelfand and Raikov, which associates with such a function,
a continuous unitary representation of G (cf. Naimark [17]). It can be shown
that when this construction is applied to ¢r, the representation produced is
equivalent to the representation 7' (provided, of course, ¢r # 0). Indeed, any
function ¢ on G satisfying (3.18)—(3.20) gives rise by that construction to exactly
one equivalence class of irreducible representations of G. We may therefore
identify the set of all equivalence classes of (class 1) irreducible unitary repre-
sentations of G with the set of solutions of (3.18)—(3.20), which set shall be
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denoted by M. It is countable, and will be equipped with the discrete topology,
and the elements of I will be labelled ¢, ¢1, - - -, ¢., - - -, where tacitly,
o) =1,z €G.

The simplest members of the class  are the functions
(3.21) m.(x) = exp (¢p.(a) — 1).

This may be scen as follows. It is clear by (3.18) or even (3.17) that
o (kixhs) = ¢u(x), v € G, Iy, by € K. Thus 7, is K-spherical, normalized, and
continuous. That m, is positive-definite follows from (3.20) upon observing that
the class of positive-definite continuous funetions on G is closed under the oper-
ations of (i) multiplication by a nonnegative real constant, (ii) forming sums,
(ili) pointwise multiplication, and (iv) taking limits of uniformly convergent
sequences. Since exp ¢,(x) = X ;>0 ¢.(x)?/j! and the convergence is uniform, it
follows that exp ¢.(x), and hence also =,(z) is positive-definite. Finally, =, is
clearly infinitely divisible, for, given any integer 7 > 0, we have r, = (7,;)’
where 7,;(x) = exp ((¢.(x) — 1)/7), and this last function is positive-definite for
reasons outlined above.

It follows that if a, > 0, then the functions 7 of the form

N
(3.22) w(2) = exp ( Zl a, (¢, () — 1)>: N finite

n=

are also in the class ©.

Finally, since © is closed under uniform limits, it follows that uniform limits
of such = also belong to the class D.

The main theorem in case IV asserts that these functions exhaust the class D.
Indeed, one can say more.

THEOREM 3.5. A function ® on G belongs to the class O if and only if

(3.23) ®(xr) = exp <n2::0 a, (p.(x) — 1))

where a, > 0 and 3 ;-0 a, < . The numbers a, are determined uniquely by .

The proof of theorem 3.5 proceeds first by showing that if & is infinitely
divisible, it cannot vanish anywhere on (. This uses the connectedness of G.
One then shows that the logarithm of ® has the form 3", >0 a.(¢.(x) — 1), with
a, > 0 and Y ».1a, < <. Note that by virtue of (3.23), if & € D, then ® is
imbeddable.

It can be shown that theorem 3.5 is equivalent to saying that & € D if and
only if there exists a continuous K-spherical positive-definite function v on (¢
such that ®(x) = exp (y(@) — v(e)).

It is not hard to isolate those functions in 9 which are real-valued. To do this,
note that there is on I an involution which sends an element of IN into its
complex conjugate. Thus for each n we may define the integer n* by ¢,x = &.,.
Clearly 0* = 0. In a variety of situations (which can be described fully, but will
not be described here) it is actually true that n* = n for all n. (This will, for
example, be true whenever the Weyl group of the symmetric space /K contains
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—1.) The real-valued elements in © arise precisely from those sequences
{a@s, n = 0} such that a, > 0, Xn>0a, < © and a,x = a, for each n. Equiva-
lently, ® € D and is real-valued if and only if ®(z) = exp (v(xr) — v(e)) where v
is a real-valued, continuous, K-spherical, positive-definite function on G.

THEOREM 3.6. A kernel f on G/K is a Lévy-Schoenberg kernel if and only if
(3.24) fla, b) = §(r(a, 0) + r(b, 0) — r(a, b)), a,b eG/K

where o s the point eK € G/K, and r(zK, yK) = V(y~'x) where ¥ is a function on
G of the form

(3.25) V() = };Oa,,(l — ¢.()),
with B
(3.26) a, > 0, ax =a, foreach >0 and 3 a, <o,

n>0

We thus have in case ITI, a complete classification of Lévy-Schoenberg kernels.

It is of some interest to specialize the above to various particular cases. For
example, let @ = SO(d + 1) and K = S80(d). Then G/K = 8¢, the unit sphere
in R*1. We may choose K to be the subgroup of G which consists of rotations
about the point 0 = (0,0, -- -, 1), to be called the north pole. Let a € S§% and
let 8 be the colatitude of a; that is, 8is defined by 0 < 0 < 7, cos 0 = a - 0 = the
scalar product of a and o regarded as unit vectors in R*. It can be shown very
easily that a function on S¢ when regarded as a function on G, is spherical if and
only if it is a function of the colatitude only. The elementary spherical functions
can now be identified. They turn out to be the ultraspherical polynomials. Indeed
forz € G, ¢.(x) = PG '/? (cos 6), where 6 is the colatitude of the point zK € S¢.
A function ® on ( is of class D if and only if

da-1

(3.27) 2@) = exp % an(Py? (cos6) — 1),

with @, > 0, >_n>00. < », and is the colatitude of a = 2K € S
In this special case all the ¢, are real-valued automatically, and therefore
n* = n for each n > 0.
Lévy’s kernel (1.2) arises from this point of view as follows. Let ¥(x) = 6
where 6 is the colatitude of xK &€ S It can be shown after some computation
that

d—1

(3.28) 0= ; a,(1 — Pﬁ; (cos 9)),

with @, > 0 and 3_,>0a, < . Thus by theorem 3.6, this choice gives rise to a
Lévy-Schoenberg kernel. This kernel is in fact (1.2), since the geodesic distance
between a and the north pole is exactly the colatitude of a.

Other choices for G and K lead to other classical polynomials. Details will not
be given here, but see [5], [9].

We remark in conclusion, that the class D arises in other connections also. As
is clear from the work of E. Cartan, there is a duality between compact sym-
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metric spaces and certain lattices of points with nonnegative integral coordinates
in Euclidean space. Functions of class © can be regarded as Fourier transforms
of measures on these lattices, which are infinitely divisible in an appropriate
sense. Indeed, it follows from theorem 3.5 that one gets, from each function in
the class D, a Markov process on the corresponding lattice. A very special case of
this duality was studied by Kennedy [11], where the case G = SO(d + 1),
K = 80(d) is considered. [The existence of this paper was brought to our notice
by H. P. McKean, Jr. who, during the symposium, also raised the question of
giving the group theoretic meaning of this paper.] Kennedy’s methods involve
the use of special formulas for the ultraspherical polynomials and do not rely on
harmonic analysis explicitly. We shall study these processes in a separate paper
in the future.

Case IV. To begin with, let G be a noncompact connected semisimple Lie
group with a finite center and let K be a maximal compact subgroup of G. In
this case G/K is a symmetric space of the noncompact type [9]. We are, of
course, interested in describing functions of the class ® in this case. The tools
necessary for doing this involve the theory of spherical functions developed by
Gelfand, Godement, and Harish-Chandra. A K-spherical function ¢ on G is said
to be an elementary positive-definite spherical function if

(3.20) [ $(ahy) dk = $@)(),
(3.30) #(e) = 1,
(3.31) ¢ is positive definite.

Denote by MM the set of elementary positive-definite spherical functions on G.
We denote by 1 the function constantly 1 on G. Clearly 1 € I.

The set M forms the dual object for the harmonic analysis of spherical func-
tions on G (see, for example, Godement [7]). Just as in the case when @ is com-
pact, the construction of Gelfand and Raikov again in this case gives an ir-
reducible continuous unitary representation of G, starting from a continuous
positive-definite function on G. The representation so obtained is of class one if
and only if ¢ is in M. Of course, the representation is now infinite dimensional
(except when ¢ = 1). Conversely, given an irreducible continuous unitary repre-
sentation 7' of G of class one, there exists a unique unit vector 5 in its represen-
tation space such that 7wn = nforallk € K. Then the function ¢r(x) = (T, n)
is an elementary positive-definite spherical function on (7, and if one constructs
the representation associated with ¢r, one gets back to the representation
(equivalent to) 7. Thus IR is really the set of equivalence classes of irreducible
unitary representations of ¢ which are of class one. It can be topologized by the
topology of uniform convergence on compact subsets of G; namely, ¢, — ¢ in
I if and only if ¢, — ¢ uniformly on every compact subset of G. In this topology,
M is a locally compact Hausdorff space. Let us also note that there is a natural
involution on N which sends a function ¢ in I into its complex conjugate .

The class of continuous positive definite functions on G is closed under the
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operations of (i) multiplication by a real nonnegative number, (ii) forming
sums, (iii) pointwise multiplication, and (iv) uniform passages to limits.
Utilizing these facts, one sees easily that the simplest members of the class ©
are of the form

(3.32) w(xr) = exp (¢(x) — 1), ¢ M

The argument leading to this is identical with that in case II1. It follows that
functions of the form

~
(3.33) - m(x) = exp (Zl a;(¢p:(x) — I)), a; > 0, ¢, €M

i=
are also in the class D, and therefore, so are uniform limits of such functions,
Note that = may be written as

(3.34) mia(e) = exp [ @@) = 1 dLy (9)

where Iy is the nonnegative measure which ascribes the masses a; to the points
o, €«PWMi=1,--- N,

One can next show that if & € D, then ® never vanishes (this uses the fact
that G is connected), and that & is a limit, uniformly on compacts, of a sequence
of functions of the form (3.34). If #; is a sequence,

(3.35) m(¥) = exp ( fm (p(x) — 1) dL; (¢>))

where L, are nonnegative finite measures on I, and if =, — &, then one can
characterize ® completely by obtaining for it a representation formula of the
Lévy-Khinchine type. In this note, we do not want to burden the reader with
the description of all functions in the class O, but content ourselves with the
description of the real-valued members of © only, which are the only ones
relevant for the description of Lévy-Schoenberg kernels. The description of all
memters of D will be forthcoming in the detailed exposition of this note.
TueEOREM 3.7. A real-valued function ® on G is in the class D if and only if

oy (1= 8(@) AL (4%

where the function g and the measure L are subject to the following three requirements

(a), (b), (©): ~
(a) L 7s a nonnegative measure on M — {1} such that if A 7s the image of a Borel
set A (CPH — {1}) under the involution ¢ — ¢ of MM, then

(3.37) L(4) = L(1);

(b) if dx is the Haar measure of G and U is any ccmpact neighborhood of ¢ in G,
then

(3.38) Joo, @@ L (9) < =

where Q(¢) = /{ (1 — Reg(x)) du;

(3.36) &(x) = exp — {glx) + -
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(c) g(x) is a function on G of the following form
(3.39) o) = lim [ (1~ Reg(a)) dL; (9);

where {U,} -1 ts a sequence of compact neighborhoods of 1 tn M such that U, C U;
and M; U; = {1}, and L; is a finite measure supported by U;.

Further, the correspondence (3.36) between real-valued functions ® € D and pazrs
(g9, L) satisfying (a), (b), (e) is one-to-one.

Note that theorem 3.7 implies if ® € D, then ® is imbeddable.

Several comments on this theorem are now in order. The theorem shows that
real-valued elements ® in 9 are in one-to-one correspondence with pairs (g, L)
where g is a function described by (a), and L is a measure described by (b). Thus
it is & sort of Lévy-Khinchine formula. A function ¢(x) of this type is to be called
the Gaussian function determined by ®, and L is called the Lévy measure de-
termined by ®. The result as formulated here is dual to the main result of the
paper [5] of the author. There spherical probability measures on G/K which are
infinitely divisible under convolution are discussed, and a representation of Lévy-
Khinchine type for their lfourier transforms is obtained. The class of nonnega-
tive, finite, spherical measures under convolution is, in a way, dual to the class
positive-definite, spherical funetions under pointwise multiplication. It is in this
sense that the present result is the ‘dual’ of theorem 6.2 of [5]. Actually, each
continuous normalized positive-definite spherical function on G gives rise to a
unique probability measure on I, and a convolution of measures on N can be
defined in such a way that under this correspondence, pointwise multiplication
of functions on G of the type described corresponds to convolution of the corre-
sponding measures on 9. From this point of view, the functions in the class D
give rise to probability measures on ¢ which are infinitely divisible under this
convolution. A more detailed description will not be attempted here.

The reader will realize that theorem 3.7 is somewhat less satisfactory than the
classical Lévy-Khinchine formula, insofar as the description of the Gaussian
functions g is not very explicit. This is due to the present state of the art in
representation theory of the semisimple groups. It turns out that for a fuller
description of the functions g, one has to know the fine structure of ¢ near the
point 1 € . It is the absence of this information in the case of general semi-
simple groups that prevents a more explicit deseription of g(x). To be more
specific, it can be shown under the hypotheses in the present section that g(x)
is always a continuous nonnegative solution of the following functional equation:

(3.40) L (g@ky)) dk = g(x) + g(y).

This functional equation is analogous to (3.2). Similar functional equations arise
in other contexts as well (see, for example, I'urstenberg [4]).

However, in the absence of further information about the topology of I near
the point 1 € IN, we are not able to show that cach nonnegative solution of (33.40)
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is a Gaussian function g(x) as envisaged in theorem 3.7. There are reasons to
believe that proving this last assertion would involve the knowledge of the con-
tinuous supplementary series of representations of G.

However, in special cases, we have been able to identify the Gaussian parts
g(x) with nonnegative continuous solutions of (3.40). This is the case, for ex-
ample, if G is a complex classical simple Lie group. We can also do the same
thing for the group SL(2, R) = the group of all 2 X 2 real matrices with de-
terminant 1. The proofs of these assertions must make use of the results of
Gelfand and Naimark [6], and Bargmann [1], respectively.

The case G = SL(2, R) can be studied in more detail. In this case G/K is just
the Lobachevsky plane. See Helgason [9] for details. If we use the unit disc with
the hyperbolic metric as a model for this plane, the function g(z) can be described
explicitly as follows: let the point 0 € {z, 2| < 1} be taken as the identity coset
eK of G/K. Then K =2 80(2) = the group of all rotations around 0. For z € G,
let 2K be the point z into which x sends 0. Let { be the hyperbolic distance of K
from eK(=0). Then,

(3.41) g(x) = clog cosh{/2, c>0
are all the Gaussian functions that arise.
Theorem 3.7 leads at once to the description of Lévy-Schoenberg kernels on

the spaces G/K of case 1V.
TueoreM 3.8. A kernel f on G/K is a Lévy-Schoenberg kernel if and only <f

(3.42) f(a, b) = %(r(a, 0) + r(b, 0) — r(a, b)), a,b € G/K
where

(3.43) r(zK, yK) = ¥(y ), z,y €G
with

(3.44) ¥(@) = 9@) + [p,_,, (1 — @) dL @),

Jor a pair (g, L) as described in theorem 3.7.

The process of subordination described in earlier cases leads in this case to the
conclusion, among others, that if 0 < o < 2, then the kernels
(3.45) f@K, yK) = 3(g@)** + g(y)** — g(y~'2)*'%)

are all Lévy-Schoenberg kernels, whenever g is as in theorem 3.7. The case a = 1
would lead to the analogues of (1.1) in this case.
For the Lobachevsky plane, therefore, the analogue of (1.1) is
(3.46) f(a, b) = 3(Vlog cosh ¢(a, 0)/2 + Viog cosh (b, 0)/2
— Viog cosh {(a, b)/2

where ¢(a, b)) means the hyperbolic distance between ¢ and b € G/K =
{z, |z2| < 1}. This answers the question raised by Lévy in [15]. It goes without
saying that the connections between the functions of class D described by

(3.47) &, () = exp — g(x)*/?, 0<a<?2
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and the fractional Riesz potential and “stable’” processes to which they must give
rise is a subject which is left fascinatingly open for study.

4. A discussion of the corresponding process

The positive definiteness of a Lévy-Schoenberg kernel f enables us to construct
a Gaussian process {£(a), a € G/K} such that E(¢(a)) = 0 and E(¢(a), £(b)) =
f(a,b);e,b € G/K.Fora € G/K, £(a) is a random variable in L(2, 8, P), where
(Q, 8, P) is some probability space, and E is the expectation. It is natural to seek
a unified treatment of this class of processes. We have at present no such exten-
sive theory of all the processes which arise. This section will be devoted to a brief
description of some of the directions which can be pursued. Details of such results
as have been obtained will be included in a fuller account of the subject of this
note which is now under preparation.

Fix a Lévy-Schoenberg kernel f and let {¢(a), a € G/K} be the corresponding
centered Gaussian process. One of the first problems that arises is the discussion
of the sample functions of these processes. While something can always be said
in general, that is, applicable to all four cases I-IV, results that are interesting to
us can be obtained only when the underlying space G/K has some differential
structure. We shall therefore exclude case I from the considerations of this
section.

In each of the cases II-IV, let f be a Lévy-Schoenberg kernel, and let ¥ be the
corresponding function on G as envisaged in theorems 3.2, 3.4, and 3.6. It is
possible to give a very simple condition on ¥ which guarantees that the Gaussian
process which arises from f has almost surely continuous sample functions. The
condition is on the behavior of ¥ near e € G. It is enough, for example, that in
a sufficiently small neighborhood of ¢ in G, one has |¥(x)| < C|z|? for some
B > 0, where |z| stands for the distance of 2K from eK in the natural Riemannian
metric on G/K. Actually, an even weaker condition already suffices.

In cases IT and IV, ¥(x) will satisfy this condition whenever ¥(z) = g(z)=
0 < a < 2. It will also satisfy this condition if the measure L in its representation
decreases rapidly enough at infinity. For example, in case II, if we have
f&: N dL(\) < 0, then ¥ will satisfy the above Holder condition. In case IV, if A
is the Laplace operator of G/K and if A(¢) is the eigenvalue of the eigenfunction ¢
of A, that is, Ap = N(¢)$, ¢ € M, then the condition [m— (1) [N¢)| dL (¢) < < on
L can be shown to imply that ¥ satisfies the above mentioned Hélder condition.

Finally, in case III, one can similarly show that if the sequence a, of theorem
3.4 decreases rapidly enough as n — c«, then the corresponding ¥ will have the
described behavior |¥(z)| < C|z|® near e € G. For example, if A is the Laplace
operator of G/K in case III and if A, is the eigenvalue of ¢,, namely, A¢, = Ao,
then it is enough if 3, |[\sja, < «, to have sample function continuity for the
corresponding process.

Another problem is to obtain representations of £ in terms of white noise
integrals, and to attempt to develop a theory of ‘“‘canonical”’ representations.



28 FIFTH FERKLELLEY SYVMFOSITM: GANCGOLLI

Let ® be the o-field of Borel subsets of (/K. Given a nonnegative measure u
on ®, which assigns finite mass to any compact subset, the white noise associated
with u is a map W which associates with each u-finite subset B € ® a random
variable W(B) on @, such that the following conditions hold: (i) the distribution
of W(B) is Gaussian; (ii) E(W(B)) = 0; (iii) E(W(B)?) = u(B); (iv) if A and
B are compact subsets in &, and if 4 N\ B = ¢, then W (4) and W(B) are
independent; and (v) if 4;, A, - - - is a mutually disjoint countable collection of
Borel sets, and 7. 4; has finite y-measure, then W (U1 4,) = 25 W(4)),
the sum being, say, in L..

Given such a white noise, one can, by using standard techniques, define
stochastic integrals fA h(u) dW (u) for A € ® and h € L.(u). Such integrals are
called white noise integrals. The problem is to see if the process £ can be repre-
sented as the integral of a kernel with respect to white noise associated with one
or more measures g, and to decide if a particular one of these representations is
‘“‘canonical”’ in terms of being the only one with “natural” properties. IFor an
clegant account of this idea formulated by Lévy, the reader is referred to Hida
[10].

Some progress can be made on this problem. Denote by H the smallest closed
subspace of Ly(Q, 8, I’) containing {¢(a), a € G/K}. I'or B € B, let Sy be the
smallest sub-o-field of 8 generated by {¢(a), a € B}, and let Hg be the smallest
closed subspace of H containing {¢(a), a € B}. Let 75 be the projection on Hy.
Because ¢ is Gaussian, mz(&(e)) = E(£(a)|8s). One can now study the von
Neumann algebra generated by the projections {rg, B € &}, by using the well-
known decomposition theory of these algebras. This theory, coupled with the
fact that there is a natural unitary equivalence between the space H and the
reproducing kernel, Hilbert space H;, whose reproducing kernel is f(a, b), ought
to enable us to get a generalized canonical representation for £ much in the same
way as in Hida’s paper [10]. We are able to do this in some favorable cases, but
not in general.

The other class of problems which arises is the discussion of Markov propertics
of the process £ as envisaged by Lévy [13] and McKean [16]. To be specific,
suppose we are in case 1V described above. If @ = {C.} is a family of smooth
surfaces in G/K, each of which disconnects /K into an interior I, (containing
the point eK), with compact closure I, U C, and an exterior I, then £ is said
to have the Markov property relative to € if for each «, the o-ficlds $;, and 8y,
are independent conditional on the o-field Sc.. Lévy defined this notion having
in mind the family of concentric spheres in R¢, and McKean pointed out the
general formulation as well as the connection between the Markov property and
certain Dirichlet problems, for the special kernels (1.1).

. We have been able to make some progress on these questions also. To keep
things simple, let us confine attention to those cases where G/K is two-point
homogeneous, (see [9]) and a process ¢ whose sample functions are continuous.
In that case, a point a € G/K corresponds to a pair ([a|, §) where |a] is the dis-
tance of a from o, and 6 is a point of the unit sphere in G/K. The distance |a]
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ranges over a finite or infinite interval according to whether or not G/K is
compact. We can now imitate McKean’s procedure in [16] and obtain an ex-
pansion

@) Ha) = = &(laDxi), a~ (al, 0

for the process £ This expansion converges in L2(Q). Here, £(-) are certain
Gaussian processes, and x5 are the spherical harmonics for the natural action of
K on the unit sphere in G/K. One can express the covariance of £ in terms of the
covariance of £ It is then also possible to relate the Markov property (relative
to spheres) for ¢ to the Markov properties of the sequence & of one-parameter
processes. The details of these results and the illustrations of their applicability
must await the fuller exposition of this paper mentioned above.
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