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1. Introduction

The present paper, as so many others in information theory, was stimulated
by a paper of Shannon's [1]. The interesting theorem 1 below is due to him;
the new result is theorem 2. We give a different proof of theorem 1. Actually
this proof is not very new and is essentially the one used to prove theorem 1
of [3] (reproduced in [2] as theorem 3.2.1). The relation between the notion of
"distortion" and that of "being generated" will be clear from this proof.

In the present paper we keep separate the ideas of approximating and coding.
Then theorem 1 says essentially that, by embedding a certain number of se-
quences one can achieve a prescribed bound on the distortion, and theorem 2
says essentially that this cannot be done with fewer sequences. Shannon's
results on coding are described in section 4. Some of his generalizations and
additional suggestions for further generalizations are described in section 5.

It may perhaps be of interest to mention that theorem 4.9 of [4] is a special
case of (4.3) below (the latter is theorem 1 of [1]). In fact, the probability of
error defined in (4-65) of [4] is a special case of Shannon's distortion function
((2.1) below).
In [1], and in the present paper, the "source" digits (components of u below)

are chance variables with a given (fixed) distribution. This is also true in the
situation treated in theorem 4.9 of [4]. In the strong converse proved in [3],
and in the others proved in [2], the messages are not stochastic and are chosen
arbitrarily by the sender. If they should be chosen by a chance process their
distribution can be arbitrary. The claims made in ([4], p. 219) on behalf of
theorem 4.9 of [4] are therefore without the least basis in fact.

2. The approximating theorem

Consider the alphabets M = {ml, * * ,ma} and Z = {zl, * ,Zb}. Let M*
(resp. Z*) be the space of n-sequences (sequences of length n) in the M-alphabet
(resp. the Z-alphabet). Let sr = (7rl, *--, 7ra) be a probability a-vector which
will be fixed in all that follows. When we speak of the probability distribution
on M*, we shall always mean the distribution implied by n independent chance
variables with the common distribution 7r.
Research under contract with the Office of Naval Research.
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Let d be a nonnegative function, called the "distortion" function, defined on
(M X Z). Let u0 = (xi, * * *, x,,) be any sequence in M* and v0 = (yi, * * *, yn)
be any sequence in Z*. We define the distortion d(u0, v0) between u0 and v0 by

1 n(2.1) d(u, vo) = - E d(xi, yi).
n ~i,

Let Do and Doo be, respectively, the minimum and maximum values of d.
Let D be a variable which temporarily takes values in the open interval (D0, Doo).
For any value of D let w(jjiD), i = 1, - * *, a; j = 1, * * *, b, be nonnegative
numbers (if they exist) such that w( hiID) is a probability b-vector with the
following properties:

(2.2) E 7riw(jjijD) d(i, j) = L(w(* ID)) (say) < D
i,j

aiad

(2.3) R(w( -I D)) (say) = E 7riw(jjiID) log ( jijw(j[iiD))

< E 7riw(Iji) log w(2 ii))
where w( I.) is any channel probability function ((c.p.f.), that is, w(jli) > 0,
i = 1, * , a; j = 1, - * *, b, and w(. i) is a probability b-vector) such that
L(w(.-)) < D. Henceforth we write

(2.4) 7r'(D) = (Es ijw(1LiID), ...
I* 7rjw(bjijD)).

i i

When we use ir and 7r'(D) to multiply matrices we shall consider them to be
column vectors. Let W(D) be the (b X a)-matrix with element w('jiID) in the
j-th row and i-th column. Then
(2.5) 7'(D) = W(D)7r.
To simplify the notation, we shall write R(D) for R(w(-!-jD)). From the

definition of R(D) it is obvious that R(D) is a monotonically nonincreasing
function of D. Let D1 < D2 be any two values of D, and consider

(2.6) w I(*I*) = IW(-.ID,) + w(.I- ID2).
We have
(2.7) L(wo(.i.)) = 2L(w(.I- -ID)) + 2L(w(.I- - D2))
and
(2.8) R(wo) < 12(R(D1) + R(D2)).
Hence, R(D) is a convex function of D, and hence, a (strictly) monotonically
decreasing function of D.
The minimum value Dmin of D, which we shall need to consider, can be found

as follows: fix i; let jo be such that
(2.9) d(i, jo) = min d(i, j),

.1
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and let w(j0Ii) = 1. Then Dmin = i iri minj d(i, j). The maximum value Dmax
of D which we shall need to consider is the smallest value of D for which R = 0.
If R = 0, then w(jjijDmax) is independent of i, say wo(j). Then

(2.10) L(w(. iDmax)) = min E wo(j) E ri d(i, j)
wo j i

= Dmax = min L7ri d(i, j).
j i

Henceforth, D will be a variable with values in the open interval (Dmin, Dmax).
What happens at the ends of the interval will be discussed separately later, or
else will be obvious.

Let S be a set of n-sequences in Z*. For any element u0 of M*, let
(2.11) d(u0, S) = min d(u, v.).

vo es

Let u be a chance sequence with values in M* and the distribution already
defined on M*. For any set S, the expected value E d(u, S) is thus defined.
THEOREM 1. (The approximating theorem.) Let e* > 0 be arbitrary. There

exists a function no(e*) of E* such that, for n > n0(6*), we have the following: for
any D(Dmin < D < Dmax) there exists a set S(D) C Z* containing N elements
such that

(2.12) E d(u, S(D)) < D +e*

and
(2.13) N < exp2 {nR(D)}.
PROOF. We may assume that D < Dmax - *, or the theorem is trivially

true. Let

(2.14) 2(1+D= )' D'= D + '

and
(2.15) h = min [R(y) -R (y + )]

where the minimum is taken over the range Dmin < y < Dmax - e*/2. Hence,
h > 0. Throughout the course of the present proof (and only then), write wr',
for short, in place of 2r'(D') = W(D')ir. Let w'(. ID') be defined by

(2.16) w'(iljlD') =iw(iiD) i = 1,* , a; j = 1, ,b.
7ri

We define the chance variable (u, v) (u has already been defined) with values
in M* X Z* and distribution determined by either of the following (which give
the same result):

(i) the (marginal) distribution of u is as given above, and the conditional
distribution of the k-th component of v, (k = 1, * , n), given u = u0 and all
the other components of v, is w(- IxkID'), or

(ii) the (marginal) distribution of v is that of a sequence of independent
chance variables with common distribution 7r', and the conditional distribution
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of the k-th component of u, (k = 1, * , n), given v = v. and all the other
components of u, is w'( IykID').
Let N(ilu0) be the number of elements i in u0, and similarly for v,. Let

N(i, jlu0, v.) be the number of k, k = 1, * , n, such that Xk = i and Yk = j.
We shall say that u0 is generated by v, if
(2.17) jN(i, jIuo, v.) - N(jlvo)w'(iljlD')I

< b[N(jjvo)w'(iIjID'))(l - w'(iljlD'))]"2
for i = 1, ,a; j = 1, ,b. Here a > 0 is such that

(2.18) P{u is generated by v0Iv = v0} > 1 - c-4
(The symbol PI } denotes the probability of the relation in braces. The sym-
bol P{AjB} denotes the probability of A, conditional upon B.) We shall say
that a sequence v, in Z* is a r'-sequence if

(2.19) IN(jivo) - n 'I < z\/n '(1 - j
), = 1, *** b

where z > 0 is such that

(2.20) P{v is a 7r'-sequence} > 1 -

It follows from (2.2), (2.16), (2.17), and (2.19) that, for all n sufficiently large
and any pair (u0, v,) such that v. is a 7r'-sequence and u. is generated by v0,
we have

(2.21) d(u0, vo) < D' +
Let

(2.22) {(v1, A1), * , (VN, AN)}
be a code (n, N, 1 -e/4) as follows:
(2.23) v,, * * *, VN are 7'-sequences;
(2.24) Ai, i = 1, * , N, consists of all n-sequences in M*

generated by vi and not in A1 U ... U Ai-,;

(2.25) P{u E Ailv = v,} > -e, i = 1, N;

(2.26) it is impossible to increase N and maintain (2.23)-(2.25).
As in ([2], (3.2.5)), we conclude that, when v, is any 7r'-sequence not in the
set {v1, * , VN}, we have

(2.27) P{u is generated by v, and is in A1 U ... U ANIV = vO} > 1-

For, if (2.27) did not hold, we could increase N by adding to (2.22) the
pair (v,, A,), where A0 is the set of sequences generated by v, and not in
A, U ... U AN.
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Now, to each Ai, add enough sequences generated by vi so that, calling the
enlarged set Bi,

(2.28) P{u e Bi4v = vi > 1 - i 1, ,N.

We conclude from (2.27) and (2.28) that, for any 7r'-sequence v0 we have

(2.29) P{u e (B1 U ... U BN)Iv = vO} > 1

From (2.20) and (2.29) we conclude that
(2.30) P{u e (Bi U ... U BN)} > 1 -e
Let

(2.31) S(D) = {v1, ,VN}.
From (2.30), (2.21), and the fact that every sequence in Bi is generated by the
,r'-sequence vi, we obtain that
(2.32) E d(u, S(D)) < D' + e + eDOO = D + E*.

From ([2], lemma 3.3.1) we obtain that
(2.33) N < exp2 {n[R(D') + h]} < exp2 {nR(D)}
for n sufficiently large. In the above argument, whenever n had to be sufficiently
large, its lower bound could be made to depend only on e'* and not on D or D'.
(The lemma of [2] which we invoked is valid with constants which do not
depend on the channel probability function.) The theorem is therefore proved.

It is obvious that we can replace e* by zero in (2.12) if we replace R(D) by
(R(D) + e*) in (2.13). From this, one can easily conclude what the theorem is
when D = Dmin or Dma.
THEOREM 1'. The set S(D) whose existence is proved in theorem 1 may consist

only of 7r'-sequences.
This is a consequence of (2.23).

3. Converse of the approximating theorem

THEOREM 2. Let e* > 0 be arbitrary. There exists a function n00(e*) of e* such
that, for n > n00(e*), we have the following: for any D (Dmin < D < Dma,x), any
set S(D) C Z* which contains N elements and satisfies
(3.1) E d(u, S(D)) < D,
must also satisfy
(3.2) N > exp2 {n[R(D) -e*]}
PROOF. Let E> 0 be a number to be chosen later. Write D + E = D*. We

have

(3.3) P{d(u, S(D)) < D*} > D- = 2a (say)
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by (3.1). Define the set G' by

(3.4) G' = {u0 E M*ld(uo, S(D)) < D*}.

Let u0 be any sequence in M*. We shall say that u0 is a 7r-sequence if

(3.5) IN(iIuo) - n7ril < z'V/nwr(1- i = 1, r*-, a

where z' > 0 is such that
(3.6) P{u is a 2r-sequence} > 1 - a.

Hence,
(3.7) P{u e G} > a,
where G is the set of 7r-sequences which are members of G'. For n sufficiently
large the number of sequences in G exceeds
(3.8) a.exp2 {n[H(7r)-
where H(7r) = -Yi ri log7ri; this is proved exactly as in lemma 2.1.7 of [2].
The lower bound on n does not depend on D.

Let u0 be any sequence in G and v0 any sequence in S(D) such that
(3.9) d(u0, vo) < D*.

Now
(3.10) nd(u., v.) = E N(i, jlu0, v,) d(i, j)

i,j

= E N(iju,,)w(jjiju,,, v,,) d(i, j)
where

(3.11) (il i, v) = N(i,jIu0, v.)

(We stop for a moment to dispose of the case N(ilu0) = 0. If no component
of 7r is zero, then for n sufficiently large this can never occur. If 7ri = 0 let the
probability vector w(. Iiluo, v,) be defined arbitrarily.) Let W(u0, v,) be the
(b X a)-matrix whose (j, i)-th element is w(j|iuo, v,). Since u0 is a 7r-sequence,
it follows from (3.9), (3.10), and the definition of R in (2.3), that

(3.12) R(w(.j I u, vQ)) > R(D*) - 1(f),
where '1(e) 0 as e -*0 and n --+oc.
To each u0 in G we may assign some v, which satisfies (3.9). Since the right

member of (3.11) is the ratio of two integers, it follows that the number of
possible matrices W(u0, v,) is at most na(b+i). Let W = {w(jli)} be any matrix
obtained as in (3.11), and let B be the set of pairs (u0, v,) such that w(jIiIu0, v.) =

w(jli), i = 1, * * *, a; j = 1, - * *, b. Let K be the set of different v, which occur
among the elements of B. Suppose (3.2) does not hold. Then the number N. of
elements in K satisfies

(3.13) No < exp2 {n[R(D) - e*]}.
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Let v. be any sequence in K. It follows from the definition of G that

(3.14) IN(jlvo) - npjl < n4'2(e), j = 1, *--, b

where

(3.15) s= Wir,
462(e) -+0 as e -+0 and n -> oo, and W = W(u0, v,) is a matrix which corresponds
to any pair (u0, v,) whose second element is the present v,. Let w(jli) be the
element in the j-th row and i-th column of W. Define

(3.16) w'(ilj) = (Ji), =1, , a,
(pj ~~~j= 1,., b.

From (3.11), (3.16), and the fact that u0 is a vr-sequence, we obtain

(3.17) IN(i,jju., v.) - npjw'(i|j)j < n43(e), i 1, , a,

where #3(e) -*0 as e -- 0 and n -* oo. It follows from (3.14), (3.17), and ([2],
lemma 2.1.6), that the number of pairs in B, with the same v,, is less than

(3.18) exp2 {n[E spH(w'( Ii)) + +4(e)]}
j

where #,4(E) -* 0 as e -- 0 and n -* oo. From (3.12) we obtain

(3.19) E2 spH(w'(. j)) < E2 7rj(D*)H(w'(.IjID*)) + 4,1(e)
j

= E j(D)H(w'(*jjjD)) + #&(e),
j

where 4,6,(e) -+0 as e 0 and n -xa. The right member of (3.13) is equal to

(3.20) exp2 {n[H(T) - irj(D)H(w'(*IjlD)) -e*]}.
j

From (3.13), (3.20), and (3.18), we conclude that the number of different se-
quences in G is less than

(3.21) exp2 {n[H(tr) - rji(D)H(w'(. IjID)) -E*

+ max E pojH(w'(- Ij)) + #44(e)] + a(b + 1) log2 n}
W j

which, by (3.19), is less than

(3.22) exp2 {n[H(7r) + {5(e) + +4(E) - e*] + a(b + 1) -log2 n}.

From (3.8) and (3.22), we obtain

(3.23) -fnE + log2 a < n(#,s(e) + #4(E) - e*) + a(b + 1) -log n.

Now e* > 0 is fixed. Let e be sufficiently small and n sufficiently large. We
obtain that (3.23) cannot hold. This contradiction and the fact that, whenever
n had to be sufficiently large in the above proof, the lower bound on n did not
depend on D, complete the proof of theorem 2.
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4. Coding and approximating

Suppose that a discrete memoryless channel r of capacity C per letter is
given. Each sequence in M* is coded into an n'-sequence in the input alphabet
of r, the latter is sent over r, and the then received n'-sequence in the output
alphabet of r is decoded by the receiver into a sequence of Z*. What is the
expected value of the distortion d* between the sequence in M* and the one
in Z*? Essentially, the answer to this question has been given in [1].
Suppose that D(Dmi. < D < Dmax) and an arbitrary E > 0 are given. If n

and n' satisfy
(4.1) nGC > 1 +

nR(D)>1+
then, for all such n and n' greater than lower bounds which depend on D and e,
the expected value of d* is less than D + E. To see this, one takes the set S(D)
embedded in Z* according to theorem 1 (e* = e/2). Let Ko be a code (n', 2nR(D), X)
for channel r (that is, word length n', code length 2nR(D), probability of
error < X). Because of (4.1), we can, by making n and n' sufficiently large,
make X as small as we wish. To each sequence in S(D) we make correspond a
transmitted (message) sequence of Ko in any manner, provided only that no
transmitted sequence corresponds to more than one sequence in S(D). Let
u0 E M* be any sequence. We code u0 into that transmitted sequence of Ko
which corresponds to that (or any) sequence v. in S(D) such that
(4.2) d(u0, vo) = d(uo, S(D)).
After receiving the received sequence, the receiver decides which sequence was
transmitted and then decodes the latter into its inverse in S(D), if such an
inverse exists. If it does not exist then he decodes into an arbitrary element
of S(D). Since X can be made arbitrarily small the desired result is obvious.

(After this paper was completed, the author concluded that the problem de-
scribed in this paragraph was considered in greater generality by Dobrushin [5].
It is extremely likely that the result attributed to Shannon in our paragraph
above was also obtained by Dobrushin. (The verification of the latter's condi-
tions is a formidable task.) Theorem 1 of our paper does not seem to be in [5]
and seems, therefore, to be due to Shannon alone, as ascribed above. Our
theorem 2 is not in [5] and, as stated in the introduction, is the new result of
the present paper.)
Shannon ([1]) has proved the following nonasymptotic result:

(4.3) Ed* > R-1 nC
An intuitive explanation of this result is easy to give. According to theorem 2,
we must embed approximately exp2 {nR(D)} sequences in Z* in order to attain
Ed(u, S(D)) < D. Only exp2 {n'C} sequences (approximately) can be sent over
r and be distinguished from each other. Hence, operationally speaking, S(D)
acts as if it contained exp2 {n'C} sequences. By theorem 2 the minimum distor-
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tion S which can be achieved with this many sequences in S(D), satisfies
nR(s) = n'C.

5. Generalizations

Theorems 1 and 2 can be generalized. For example, we used the fact that the
distribution on M* is that implied by independent, identically distributed chance
variables in order to obtain (2.20) and (3.6). These will hold if the process on M*
is merely stationary and ergodic. Suppose now that the distortion function d
is defined over the Cartesian product of g copies of M and g copies of Z, and,
in place of (2.1), one defines
(5.1) (u0, v) - -1 n-g+1

(5.1) d(u, vo) = g + 1 E d(xk, Xk+l, ...* Xk+g-1 Yk, *... Yk+g-1)-

Shannon [1] has treated both these generalizations. Finally, it is not necessary
that the channel r be discrete memoryless. This case, too, has been treated
in [1].
The reader will recognize that the distortion function of (5.1) corresponds to

the discrete finite-memory channel of ([2], chapter 5), just as the distortion
function of (2.1) corresponds to the discrete memoryless channel. This suggests
that one could employ even "nonlocal" distortion measures which correspond
to other channels, for example, that of ([2], section 6.6).
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