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1. Introduction

Many problems of mathematical statistics consist in that one has to extract
from certain observations the information which is needed. In other words, one
has to separate the relevant information from the irrelevant. For instance, it is a
generally accepted view that if for a parameter there exists a sufficient statistic,
its sufficiency means that it contains all the information which is present in the
sample and is relevant for determining the parameter. Although this is generally
admitted, it is not usual to go a step further and ask: how much informationis
contained in a statistic (sufficient or not) concerning a parameter? (According to the
author's knowledge, the first to consider this question was D. V. Lindley [1].)
In view of the success of information theory in other fields (especially in the
theory of information-transmission), which success was achieved by attributing
a numerical measure to amounts of information, this question is a very natural
one. It seems to the author that the reason why this question is usually not asked
in current statistical practice is that a meaningful answer to this question can
be given only if one accepts the Bayesian point of view; that is, if one considers
the unknown parameter as a random variable and attributes to it a prior distri-
bution. As a matter of fact, the amount of information in a random variable
concerning another random variable is a well-defined concept of information
theory, whereas the amount of information in a random variable concerning a
constant is always zero. The amount of information in a random variable 4 con-
cerning another random variable 0 is equal to the average decrease of uncertainty
(entropy) concerning 0 which results if 4 is observed. In order to measure this
decrease of uncertainty, our prior knowledge about 0 has to be taken into account.

If we have some prior knowledge about 0, this causes no difficulty. If we have
no prior knowledge about 0, except that we know the set of its possible values,
from the point of view of information theory it seems to be natural to attribute
to 0 that prior distribution on the admissible set of values which has the largest
entropy, that is which corresponds to maximal uncertainty. Even if the param-
eter is in reality a constant, if its value is unknown to us, I do not find any
logical fault in attributing to 0 a prior distribution, if this is needed to compare
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different statistics and to choose that which is the best for our purposes. Usually
the choice depends only weakly on the prior distribution.
In this paper we do not want to go into the philosophical aspects of the ques-

tion-however interesting they may be-as our aim is to deal with certain purely
mathematical problems which arise when one tries to apply the concepts of
information theory to the mentioned statistical problems.
The problem which will be discussed in what follows is: how can one decide

whether or not a certain sequence of observations contains all the information which
is needed (for example, to find the true value of the parameter)? In general, if a
statistician is confronted with a concrete problem, his first task is to decide
whether or not the required information is fully present. If the answer is positive,
then the second step consists in trying to find an appropriate decision procedure,
for instance one which is optimal in some respect. However, if the answer to the
first question is negative, then it is futile to take the second step, as even the
"best" decision procedure will not yield the required information. In this case
the statistician has to look for some other source of information, that is, make
some other observations.
In the present paper we shall discuss from this point of view the following

problem. Let us be given an infinite sequence {}, (n = 1, 2, - - *) of observa-
tions. We suppose that the distributions of the random variables n,
(n = 1, 2, - - *) depend on a parameter 0, whose set of possible values is finite.
We suppose further that for each fixed value of 0 the random variables n,
(n = 1, 2, * * *) are independent, but in general do not have the same distribu-
tion. We shall be especially interested in the case where the amount of informa-
tion on 0 contained in the observation , decreases when n increases. Such prob-
lems are often encountered. Let us imagine for instance that an event E happened
at time t = 0, and ,n iS the value of some quantity connected with the aftereffects
of this event measured by some instrument at time t = n. Usually as time passes,
the aftereffects of the event 8 become weaker and weaker, and thus as n increases,
t,n gives gradually less and less information on the event S.

In section 2 we shall consider the amount of information on 6 which is still
missing after having observed the values 1, , ..* , ~nand compare it with the
error of the "standard" decision, consisting in deciding always in favor of the
hypothesis which has the largest posterior probability.

In section 3 we give an upper bound for the amount of missing information
(theorem 2) and give a necessary and sufficient condition for the convergence to 0
of this quantity for n tending to +oo.

In section 4 we shall discuss some special cases, some of which have been dis-
cussed in previous papers of the author (see [2], [3], [4]), and also others which
are presented here for the first time. In section 5 we compare some of our results
with a theorem of S. Kakutani [5].

For the sake of brevity we deal in detail only with the case where 0 may have
only two values. The generalization to the case when the set of possible values of
0 is an arbitrary finite set is quite straightforward and presents no difficulty. It
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should be added, however, that our results cannot be generalized immediately
to the case when the set of possible values of 0 is infinite. This case presents
some peculiar difficulties. We hope to return to this question in another paper.

2. An inequality between the amount of missing information and
the error of the standard decision

Let {f}, (n = 1, 2, - - *) be a sequence of random variables. Let us suppose
that the distribution of $;n depends on a parameter 0, which may take on two
different values Go and 01. We suppose that the random variables ,n are inde-
pendent under the condition 0 = 60, as well as under the condition 0 = 0A. We
suppose further (this restriction is made only to simplify notations) that all the
distributions in question are absolutely continuous. Let fn(x) and gn(x) denote
the density functions of n under the conditions 0 = 0o and 0 = 61, respectively.
As regards 0 we suppose that it is a random variable, taking on the values 0o and
0A with the corresponding positive probabilities WO and WI, (WO + W1 = 1).
These suppositions can be formulated as follows. Let [Q, (t, P] = S be a prob-

ability space. Let us be given a partition of U. into two a-measurable sets go and
Q, = Q- go, with P(Qo) = Wo, P(A1) = WI = 1 -Wo. Let So and Si denote the
probability spaces So = [Q, a, Po] and Si = [Q, a, Pi] where Po(A) =
(P(AQo)/P(Qo)) and P1(A) = (P(AQ2)/P(Q2)) for A E (t. Let ,n = Sn(W), (° E Q),
(n = 1, 2, * ) be a sequence of a-measurable real functions. Then we can con-
sider the {n as random variables on the probability space S as well as on the
probability spaces So and Si. We suppose that the random variables n are inde-
pendent on So as well as on S1. Note that on the probability space S the random
variables n are usually not independent.

Let us suppose now that we observe the values of all the variables {n, and we
want to decide on this basis whether 0 = 0o or 0 0= . In other words, we suppose
that the sequence of values (n(W*), (n = 1, 2, * is given for a single unknown
co* c Q, and want to decide, whether o* E QO or w* E Q1. We especially want to
find out under what conditions on the density functions fn(x) and g,(x) can a
correct decision be made for almost all w* E Q (with respect to the measure P)?

Let us denote by tn the random n-dimensional vector with components
(6, , . -* ,X). Let In denote the amount of information contained in tn con-
cerning 0. Then we have

(2.1) In = H(O) -E(H(0¢n)),
where

(2.2) H(0) = Wo log 1 + WI log W

is the entropy of the random variable 0, and H(0I|N) is the conditional entropy
of 0 given n, that is
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(2.3) H(0|I,,) = P(0 = 0olk,) log P(- 0kI )

+ P(0 = 01I|¢) log P( - 0

and E(H(0IVn)) denotes the expectation of the random variable H(0IlR). Here
and in what follows log always denotes logarithm with base 2.

According to our supposition and the Bayes' theorem, one has

(2.4) PO& = 0°n) = WOf()2(62) ...*
(2.4) P(O = = W0f1(i%) ... fM(WX) + W1g1(t1) ... g9((n)
and similarly,
(2.5) PO0 = 04¢ ) W=g1(t1)g2(42) * *n((n)

(2.5) P(0 n = 1'V0f1( i) ... f,(Q-) + Wll(%1) ...g*n(n)
For the sake of brevity, we introduce the notations x() = (xi, x. ),

SOn(x(n)) = fi(xi) .f(x.), and V,.(x(,)) = g1(x1) ...g*(xn).
With these notations, letting xn(x(n)) = W00.(X(n)) + W14,t(X(n)) we have

(2.6) E(H(0I¢N))

= f [~W00n(X@n)) log Xn(X(n)) + W164,(x(n)) log Xn(X)] dx(n))

where Xn is the n-dimensional Euclidean space and dx(n) stands for dxidx2 ... dxn.
The quantity E(H(01tn)) may be interpreted as the amount of missing informa-

tion on 0 after observing P.
It is easy to see that In is nondecreasing for n = 1, 2, * and In < H(O).

Thus liMn-+- In = I* always exists. If I* = H(O), we shall say that the se-
quence of observations {}4, (n = 1, 2, * * * ) gives us full information on 0, whereas
in the case I* < H(0) we shall say that the observations {f} do not give full
information on 0.

Clearly, the most natural decision after having observed rn is to accept 0o if
P(0.l1n) > P(04n) and to accept 01 if P(01I4n) > P(0oAI), and if P(0oAI|) =

P(011N) to make a random choice between o0 and 01 with probabilities Wo and
TV,. We shall call this the standard decision. Let us define the random variable
An = A,n((n) as follows:

(2.7) An -= 0 if the standard decision means acceptance of Oo,
01 if the standard decision means acceptance of 01.

The error En of the standard decision after taking n observations is defined as the
probability of the standard decision being false. We have clearly
(2.8) en = P(An Fd 0) = WoP(A\n = 01|0 = Oo) + WTP(An = 0010 = 01)
where P(AIB) denotes the conditional probability of the event A under con-
dition B. Obviously, An = 0o if ( > (W1/W0) and An = 01 if
((Mn()/'kn(¢n)) < (WI1/Wo). Thus

(2.9) En = Wo IA SO,(X(n)) dx(n) + WV fB 'Pn(X(n)) dx(n)
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where

(2.10) A.= {4n(X() > W°} and B.= fP(x(n)) Wo1

It is easy to prove the following.
THEOREM 1. One has

(2.11) En < H(0) - In < h(e-)2
where

(2.12) h(p) = p log + (1-p) log (O< p < 1).
p i-p

PROOF OF THEOREM 1. One has clearly
(2.13) E(H(0l\¢)) = WoE(H(01¢n)10 = Oo) + W1E(H(0I¢n)I0 = 01);
E(,qlB) denotes the conditional expectation of t7 under condition B. Now evi-
dently
(2.14)

W1E(H(0ljn)JO = 0A) > | (X(n)) ° log (1 + W,4, (x(n)) W,4,(x(n)) dx(n)

and thus, as on the set defined by (4n(X(n))/n(X(n))) > (Wo/W1) one has
(W1p,(X(n))/pn(X(n))) > ', it follows that

(2.15) W1E(H0IJn)I0 = 01) > 12 W0;n(X(n)) dx(n) =-2 = 010 = 0°).
Similarly we obtain

(2.16) WoE(H(0I|n)10 = 00) > WI P(A = 00j0 = 01).
Thus it follows that

(2.17) E(H(0IRn)) > 2-.

This proves the lower inequality in (2.11).
This proof was given earlier in [2]; it is reproduced here for the convenience of

the reader. To prove the upper inequality in (2.11) we apply the following inte-
gral form of Jensen's inequality:

f h(a(x))k(x) dx a(x)k(x) dx

IA k(x) dx
h

k(x) dx

valid for every nonnegative function k(x) and every concave function h(x); we
apply (2.18) to the concave function h(x) defined by (2.12) and the domain A
in Xn defined by (Pn(X(n))Wo/;k(X(n))WI) > 1 and for the complementary domain
A. Thus we obtain

(2.19) E(H(0lff)) < ah(p) + 13h(q)
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where

CY = J Xn(X(n)) dx(n) X=xn((n)) dX(n) = 1-

(2.20)
Wi fA 4'n(x(n)) dx(n) Wo JA Pn(X()) dx(n)

and (3=j

Again applying Jensen's inequality in the form
(2.21) aih(p) + 3h(q) < h(ap + 3q),
valid for any concave function h and for a > 0, ,B > 0, a + ,B = 1, since ap +
f3q = en, it follows that

(2.22) E(H(OjN)) < h(en) = en log1 + (1 - En) log1
Thus theorem 1 is proved.
We obtain easily from theorem 1 the following corollary.
COROLLARY. The error of the standard decision tends to zero for n -x o if and

only if the amount of missing information tends to zero, that is, limn-+ en = 0
if and only if limn, In = H(O).

It should be added that by a slight modification of the usual proof of the
Neyman-Pearson fundamental lemma one can prove (see [3]) that the error of
any decision function is at least as large as that of the standard decision. Thus if
limn, In < H(o), that is, if the amount of information in the first n observa-
tions does not tend to the total amount of information needed, then there cannot
exist a decision procedure whose error tends to zero, whereas if liMn,- In = H(6),
there certainly exists such a procedure, namely the standard decision.

3. An upper bound for the amount of missing information and
a criterion for obtaining full information

We prove now the following theorem.
THEOREM 2. Let us write

(3.1) Xk = f Vfk(x)gk(x) dx, (k = 1, 2, ***).

Then the following inequality holds:

(3.2) 0 < H(O) - In < BV'WoW1 II Ak
k=1

where B > 0 is an absolute constant.
PROOF OF THEOREM 2. The function (h(x)/x/x) where h(x) is defined by

(2.12) is clearly continuous in the closed interval 0 < x < 1. Let

(3.3) C = mah(x).O<S<i hX
Since h(x) = h(l1-x), we also have
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(3.4) C = max hxO<r<l \/Ix
It follows that

(3.5) H(0IJ.) < CV\P(0= o19k-,)
and also that

(3.6) H(0IlDn) < CV\P(0 = 0ok).
Thus we have, in view of (2.4) and (2.5),

(3.7) H(0n) < C V

and

(3.8) H(0I1-,) < C VW II

From (3.8) we obtain

(3.9) 'WoE(H(OIN1)j0 = WW). CVWoW1 II Xk,
k=1

and from (3.7) we obtain
n

(3.10) W1E(H(OIN)0 = 0A) < C\/W7OW II Xk.
k=1

Adding (3.9) and (3.10) we get

(3.11) E(H(OjN)) < 2C\lI oW1 II Xk,
k=1

which proves theorem 2 with B = 2C.
Note that according to the Cauchy-Schwarz inequality, 0 < Xk < 1 and Xk = 1

if and only if fk(x) = gk(x) almost everywhere. Further, Xk = 0 if and only if
the intersection of the sets on which fk(x) > 0 and gk(x) > 0 is of Lebesgue
measure zero. In this case, of course, the observation of (k alone is sufficient with
probability 1 to decide whether 0 = Oo or 0 = 0A.
We shall now prove the following.
THEOREM 3. One has

n
(3.12) III Xkkc=1 W0V

where Xk is defined by (3.1), and en iS the error of the standard decision.
PROOF OF THEOREM 3. Clearly,

(3.13) II Xk = n ) )n
k=1 X.

Let us denote again by A the subset of Xn on which (W0fn(X(n))/W14n(X(n)) 2 1
and put A = X- A. Taking into account that (pn is a density function, the
Cauchy-Schwarz inequality gives

(3-14) [. 5n(X(8)))6n(X(n)) dx(n) < ( . (X6 (n)) dx(n)4l2
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Similarly we obtain

(3.15) f v (X(n))n(X(n)) dx (n) < (f pn(x())dx(n))
Thus using again the Cauchy inequality we obtain

n 11 \1 12 En(3.16) II Xk . - + -) \/e = 1wn
This proves theorem 3.
Now we can prove the following theorem.
THEOREM 4. If Xk > 0 for k = 1, 2, * * *, the sequence of observations (n

(n = 1, 2, ** ) contains full information on 0 if and only if the series

(3.17) E (1 - Xk)
k=1

is divergent.
As regards the connection of theorem 4 with a theorem of Kakutani, see

section 4.)
PROOF OF THEOREM 4. Since 1 - x < e-x, if the series Y_= I (1 - Xk) iS

divergent, one has limn- Hk Xk = 0, and thus by theorem 2 it follows that
(3.18) lim In = H(0).

This proves the "if" part of the theorem. On the other hand, using the inequality
1 - x > e-(X11-, (0 < x < 1), we obtain

n31_n{ 1k)j(3.19) II Xk . exp{~(
k=1 k= Xk

Now if _k=1 (1 - Xk) is convergent, then limk1, Xk = 1, and since by assump-
tion Xk > 0 for k = 1, 2, * , it follows that the sequence Xk has a positive lower
bound: Xk > c > 0 for k = 1, 2, *-- . It follows that the series _k'= (1 - Xk/Xk)
is also convergent, and thus IIIk= Xk has a positive lower bound. By theorem 3
this implies that en has a positive lower bound. Therefore, by theorem 1 the
sequence H(O) - In has a positive lower bound too. This proves the "only if"
part of theorem 4.
THEOREM 5. A sequence of statistics an = an(Q1, * n**,) converging in prob-

ability to the true value of the parameter (real-valued) can exist only if the sequence
{n (n = 1, 2, * * *) contains full information with respect to 0, that is if (3.18) holds.
Conversely if (3.18) holds, there exists a sequence of statistics an which converges
with probability 1 to 0.
PROOF OF THEOREM 5. If limn,o P(lan - 01 > e) = 0 for every E > 0, then

we can construct the following decision function:

rif Ian - Oil < Ian - Go|, accept 0A;
(3.20) |' if IOn - 0oI < Ian - ,l1, accept 0,;

( if Ian - Go! = Ian - G11, choose at random between Oo and
01 with probabilities Wo and W1.
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Let us suppose that 0o < 01. Clearly,

(3.21) P(lan - .ol aJan - 0I1 10 = 01) = P (an < 00 + o1 = 01),
and thus by assumption,
(3.22) hlr P(lan - 0o1 . lan - 0,1 10 = 01) = 0.

n--

Similarly,
(3.23) lim P(lja - Oll < Ian 0lol = 0o) = 0.

n-

Thus the error of the decision in question tends to zero for n -+ oc. A fortiori,
the error of the standard decision tends to zero which implies by theorem 1 that
(3.18) holds. This proves the "only if" part of theorem 5. Conversely, if (3.18)
holds and 0o and 01 are different real numbers, let us choose a sequence n, such
that the series Fr°=, enr is convergent. Then by the Borel-Cantelli lemma the
standard decisions An, tend with probability 1 to 0. More exactly, An, = 0 for all
but a finite number of values of r. Now if we put an = An, for n, < n < nr+1,
then the sequence of statistics an = an(%, .* * ,X ) tends with probability 1 to 0.

If the variables Sn have a discrete distribution, all our results remain valid;
only the quantity Xk has to be defined accordingly. If (n can take the values
a,, * * *, a,, and if

(3.24) P(%k = auG0 = 00) = Pk,l,
whereas

(3.25) P(%k = auG0 = 01) = qk,l,

write

(3.26) k= E7 p
1=1

All our results remain valid for this case.

4. Some examples

EXAMPLE 1. Let us suppose that fk(x) = f(x) and gk(x) = g(x), (k = 1, 2,
... ); that is, the random variables (k are identically distributed under condition
0 = &i, (i = 1, 2). Suppose further that

(4.1) 1 > X = f| vf(x)g(x) dx > 0.

Then it follows from theorem 2 that

(4.2) H(0) - In < BV/WoWXn,
and thus the missing information tends exponentially to zero for n Co. This
question was treated in [2] and [3]. In [4] we have been concerned with the
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special case where the random variables n take only the values 0 and 1, and
where one has

(4.3) P({n = 1j0 = Oj) = pj, P(n=010= Oj) = qj = 1 - pi
for j = 1, 2. We have shown that the smallest value of X for which (4.2) holds is
X = 2-d(p.,p,) where

(4.4)
d(pi, p2) = plogp+ (1 - p) log 1 p = p log p-+ (1-p) log 1 p

Pi ~ ~ Pi P2 lP2
with
(4 5) p = log (ql/q2)

log (P2qj/piq2)
In the special case where p1 = q2 = p, q1 = P2 = q = 1-p, one has simply
X = 2V'pq.
EXAMPLE 2. Let t. be normally distributed with variance S.2 and with mean

m = mo or m = ml 5$ mo according to whether 0 = 0o or 0 = 01. We want to find
the true value of m. Clearly

(4.6) k = exp (in-M1)20
It follows that we have full information on mif and only if the series ,k=1(1/Sk )
is divergent. Note that the statistic

(4.7) _S=I(1/S2),
Ek =1( /k)

being the unbiased linear estimate of m with the least variance, is normally dis-
tributed with mean m and variance k (1/Si))'. If 2k=l (1/Sk) = +°0
then tOn converges in probability to m and a suitably chosen subsequence qn,
such that "r=l (Ek'=l (1/Si))-1 < oo, converges with probability 1 to m.
EXAMPLE 3. Let an urn contain a + b balls (a > 0, b > 0, a $- b) of which

either a are red and b white, or conversely, b are red and a white. Suppose that
both cases have the prior probability 2. We draw a ball from the urn, notice its
color and put it back, and add, independently of the color of the ball drawn,
cl 2 1 red balls. After mixing the balls we draw again a ball, notice its color and
put it back, adding c2 2 1 red balls.

Let us continue this process indefinitely so that after the n-th step cn 2 1 new
red balls are added. Can we determine with probability 1 the original composition
of the urn?

Let us put tn = 1 if the ball drawn at the n-th step is white and {n = 0 if it
is red. Let 0 denote the number of white balls contained originally in the urn;
thus O0 = b and 01 = a. In this case

(4.8) Pkj1 = P((k = 1la = 00) - b k-i
a + b + ci
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and

(4.9) qk,l = P(,k = 110 = 01) = k-1
a + b + E c

i=l

Putting Nk = a + b + _k=¶ cI one has

(4.10) Xk = Na+
and thus

a±+b a_
(4.11) Xk = 1 _ 2 (iNNk~ ~ N~

Therefore, Zk= 1 (1 - Xk) is divergent or convergent according to whether
,k'=1 (l/Nk)is divergent or convergent. Thus F_=1 (1/Nk) = +o, for example

if c,n = 1 for n = 1, 2, * , one can find out the original composition of the urn
with probability 1, whereas if 7k=l (1/Nk) < 00 (for instance if (cn = n) this is
impossible.
EXAMPLE 4. Suppose that (n has under the condition that 0 = 0i a Poisson

distribution with mean value aibn, (i = 1, 2) where a1 > 0, a2 > 0, a,1 7$ a2 and
6a > 0, limn.,-a = 0. In this case

(4.12) Ak = exp (- ( 2 - vala) 6k).
Clearly, _k=l (1- Xk) is divergent if and only if Y_k=l &k is divergent. Thus,
for instance, if 6k = (-y/k), (k = 1, 2, * * *; y > 0), it is possible to decide with
probability 1 whether 0 = 01 or 0 = 02, but if 8k = (-y/k2), this is not possible.
EXAMPLE 5. Let n,, have a binomial distribution of fixed order N and pa-

rameter 6,,0i under the condition that 0 = Oi, (i = 0,1) where Oo > 0, 01 > 0,
00 $, 01. Then we can easily see that the observations i,, (n = 1, 2, ***) contain
full information on 0 if and only if Ek178an = +0°.
EXAMPLE 6. Let 1,, have the density function f(x) where f(x) is everywhere

positive and has a continuous derivative such that f+ (f'2(v)/f(v)) dv < +00.
Suppose that (,. = mo + c,,77,, if 0 = 0o and $,, = ml + c.-q. if 0 = 01 where
mo $ mi and c, oo. Writing d = ml- mo, we have

(4.13) 1 - = I (#(U + - Vf(u))d

Write p(u) = \/f(u); then we have

(4.14) 1 - = 2 f (LU+(d/c) p'(v) d u.

Thus

(4.15) lXk< |2f f(V)~Qf ,f(v)
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It follows that if the series Ek.1 (1/cf) < +00, then k=l 1 - Xk < +oo, and
we do not get full information on 0.
On the other hand, the divergence of the series E7 (1/ck2) ensures that the

sequence of observations {f} does contain full information on 0. As a matter
of fact, since p'(x) is continuous, there exists an interval (a, b) in which p'(x)
does not change sign and lp'(x)l > a > 0. Letting h. = d/c., it follows that

(4.16) 1 - X. > 62(b - a - h.)hn.
Thus if , i (1/cn) = +°°, then n (1 - Xn) = +00-

5. Further remarks

S. Kakutani [5] has proved the following.
THEOREM K. Let (On, en) be measurable spaces (n = 1, 2, ** ). Let Q be the

product space fl,n= I On. Let An, and VP be two equivalent probability measures on Qn,
and let, and v denote the product measures s = ln`= 1 A,n and v = IV= VPn on R.
Then the measures ,u and v are either equivalent or orthogonal according to whether
the infinite product 11'.IP1 VnP) is convergent or divergent. Here p(j.n, vn) denotes
the Hellinger distance of the measures n,, and v.; that is, if m is any measure such
that ,n and vn are both absolutely continuous with respect to m,

(5.1) p(An, vn) = f In dn dmQnVd dmn
where (di,n/dm) and (dv,/dm) are Radon-Nikodym derivatives.

(The value of p is clearly independent of the choice of m.)
Obviously our results are closely connected with the above mentioned theorem

of S. Kakutani. (My thanks are due to Professor K. Jacobs for calling my atten-
tion to this fact.)
As a matter of fact, according to Kakutani's theorem, if lAn and vn denote the

measures with density fn(x) and gn(X) with respect to the Lebesgue measure on
the real line, then according to whether 0 = 00 or 0 = 01, one obtains in the se-
quence-space x = (ti, t2, * * *, {", * * * ) the product measure , or P. Further, our
Xk is equal to the Hellinger distance Pk of Ik and Pk. It follows that ,u- or
,I I v according to whether lk= 1 Xk > 0 or flik= 1 Xk = 0.

If lk'l- Xk = 0, that is, if , I v, then there exists a measurable set A in X
such that,u(A) = 1 and v(A) = 0. In this case given the infinite sequence {Cn}
one can clearly decide with probability 1 whether 0 = 0o or 0 = 0A: if the infinite
sequence (ti, - - *, {n, - - *) e A we decide for 0 = 00, and in the opposite case for
0 = 01. Now one can obviously find a sequence of sets A. such that An is a cyl-
inder set of X, its base belonging to the finite product set Ifkl=1 Qk, such that
u(An) -* 1 and v(An) -*0 for n - +0oo. Thus if after observing {,, ***, (n we
decide for o0 or 0A according to whether or not the point (%, * * *, {n) belongs to
the base of An, the error of our decision tends to 0 for n -* oo.

Conversely, it is easy to see that such a sequence of sets cannot exist if u v.
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Thus, in view of the corollary of theorem 1, theorem 4 can be deduced from
theorem K. Note, however, that our direct approach is not only more elementary
than this one via Kakutani's theorem, it also gives somewhat more, as it shows
niot only that en, -> 0 if and only if limn- II'= 1 Xk = 0, but also gives estimates
between these quantities for finite values of n.
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