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1. Introduction

The main purpose of this note is to prove the existence of optimal stopping
rules for certain problems involving sums of independent, identically distributed
random variables. A special case was treated by Y. S. Chow and H. E. Robbins
[2]. Their problem is very easily stated: let sn be the excess of the number of
heads over the number of tails in the first n tosses of an infinite sequence of
independent tosses of a fair coin. Does there exist a stopping variable T for which
the expected average gain is maximal? In other words, does there exist a T for
which the expectation of s8/r is at least as great as the expectation of st/t for
any other stopping variable t? It turns out that this simple problem is not
reducible to any of the available standard results on the existence of optimal
stopping rules. Chow and Robbins do prove the existence of an optimal T by
an ingenious method which is, at least in part, suited only to the special case
which they consider. Here, following in part the method of [2] and substituting
general considerations for the specific ones used there, we establish the existence
of an optimal stopping variable, maximizing the expected average gain under
the sole assumption that the random variables involved have finite variance.

In section 2 we prove the above result. Our method also yields interesting
information on the structure of the optimal r which we present in section 3.
For the sake of clarity, we confined the main exposition to the problem of max-
imizing the expected average gain; however, the methods developed here can
deal with more general situations, and one generalization is presented in sec-
tion 4. The last section contains various remarks.
Throughout we denote by (Q, B, P) the underlying probability space. Also,

E denotes expectation, and we write {-... } to denote {w: ... }, the set of co
having the indicated properties. All random variables are, of course, defined
only almost surely but, in the interest of brevity, this qualification is usually
omitted.
Throughout the paper, xi, x2, x*, x,,. , is a sequence of independent, iden-
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tically distributed random variables with zero mean and positive finite variance a2.
We put
(l) Sn --= Xi + ***+ Xn, (n = 1, 2, ***
and denote by cB,n the a-field generated by xi, - -, x.. By a stopping variable t-
(relative to the sequence xl, x2, * - *) we understand a random variable whose
range is the set of positive integers and such that

(2) It = nl IE (Bn, (n = 1, 2,***)
This definition implies

(3) P(t<oo)=1.

For technical reasons we find it convenient to consider also generalized stopping
variables. These are defined as random variables t whose range is the set con-
sisting of the positive integers and +oo, and which satisfy (2).
We shall denote by T the set of all generalized stopping variables, that is,

those t E T. which satisfy (3). If yl, Y2, * is a sequence of random variables
and t E T., then we define

(4) Ey8' f{<. y dP,

provided the right side is defined. For t e T, this reduces to the usual definition
of the expectation of yi.

2. Existence of an optimal stopping variable

In this section we shall prove the following result.
THEOREM 1. There exists a stopping variable T E T such that

(5) E r = SUp Ep .T tET,, r

Moreover, we have

(6) O<Es< Ta

Since the proof is somewhat long, we shall break it into several auxiliary
assertions.
LEMMA 1. Let t e T., and let t(m), (m = 0, 1, 2, * ) be defined by

(7) t(m) = {to othewm,
Then t(m) E T. and
(8) E5<m)< mal.

PROOF. That t(m) is a generalized stopping variable follows immediately
from the definition. To establish (8) we proceed as follows:
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m f m r
(9) E82(m) = E | ss dP < E2 | (s8 + (Sm -s)2) dP

i=1 Jflt=i) i=1 J( t=i)

= s
f (sg + (S8.Si))2dP f=| 2dP < Es8 = Mci2.

In the passage from the first to the second line we used the facts that {t = i} E (,
and E(xjjkB) = 0, for j > i.
LEMMA 2. For all t E T,c, and all a > -1 we have

(10) E (~~~~a+ t) <
., (a + 1)2-

PROOF. Defining t(m) by (8) we have

(11) f(a + t )2 1 is StdPa t Tia ~+j)
~ 1

= E1=(a + i)2 (Es) (

Putting, for i = 1, 2, * * * ,

(12) vi = Es2?( - ESl-1),
the right side of (11) becomes

(13) - (a + i)2

with vi satisfying, by (12) and (8),
m

(14) Vi O, Evi <m2, (m =1, 2,*).
i=l

Since (a + i)2 > 0 and is strictly increasing with i, (13) is increased if some vi
is increased and a vi, with j > i, is decreased by the same amount. Hence, the
maximum of (13), for vi satisfying (14), is obtained for, and only for, v1 = V2=
..= r2.
This proves (10) with < instead of the sharp inequality. Though this is quite

enough for our purposes, we add the short argument which yields (10). By the
preceding, equality of the two sides of (10) would imply v1 = v2 = *-= 2.
But v1= f ji1=xAdP = a2 implies that xi S0 ot = 1 a.s., and thus, by inde-
pendence, V2 = Jft=2) (X1 + X2)2 dP < ftt>i X2 dP = u2P(t> 1) <i2.
LEMMA 3. For all t E T. and a > -1 we have

(15) E a + t (I (a + i)2
In particular we have for a > 0,

(16) E St <a
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PROOF. Inequality (15) is an immediate consequence of (10) and implies
(16), since, for a > 0,

(17) 2 1 f du = du = 1
,=1(Ta +i)2<i,i J1 (a +u)2 - o(a+ U)2 -a

The next lemmas study the expected value of b + st/a + t for suitable gen-
eralized stopping variables t.
LEMMA 4. If for some a > 0, real b and t E Tcc we have

(18) E b + st b(18) ~~~~~a+t -a

then there exists t' e T. satisfying
(19) t' < oo =* szt > -b
and

(20) ~~~Eb+st > b.
(20) E ba+t' a-

PROOF. Put t' = t if t <0 and st > -b; and t' = oo otherwise.
LEMMA 5. Let a > 0, b real, and t' e T, satisfy (19) and (20). Then we have

(21) E b' + t, > b'a' +t' -a'

for all a' > a and b' < b. (Moreover, for b > 0 the equality sign occurs in (21)
only for a' = a, b' = b.)
PROOF. The derivative, with respect to b of the right side of (18), or (20),

is 1/a, while that of the left side is bounded by 1/(a + 1). Hence, (18) implies
the same relation (even with strict inequality, unless the left side vanishes
identically, that is P(t = 00) = 1, and b < 0) when b is replaced by b' < b.

It remains to prove that (20) implies the same relation (even with strict
inequality unless P(t = 00) = 1) when a is replaced by a' > a. But (20) is
equivalent to E(a(b + st')/(a + t')) 2 b and, by (19), the left side is increasing
in a (strictly, unless t' = oo almost surely).
LEMMA 6. Let a' > a > 0, b' < b, t c T., and (18) hold. Then there exists,

for every m = 0, 1, 2, * , a generalized stopping variable tm e Ts, satisfying
(22) tm < m=> st, > b-b'

and

(23) E b' + st > b'-(23) ~~~~~a'+tm a'V
PROOF. For m = 0 the requirement (22) is vacuously satisfied, and by

lemmas 4 and 5 there exists to = t' (the same for all a'> a, b' < b) satisfying
(23). Having proved the existence of ti for i < m, we put
(24) to)(XI, X2, ..* , Xm, Xm+l, Xm+2, * ) = tO(Xm+l, Xm+2, * *)
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and define
(25)

t ftm.l + tom) if t,_1=m and Sm< b-b',
00 ~~otherwise.

Since to is a fixed generalized stopping variable, it follows that tm E Ta,, and,
by definition, satisfies (22). Moreover, it follows from (23) with m = 0 that

(26) E'+ s > E b' + s(m 1,2,-a' +t a' +tmij'
and thus (23) is valid for all m.
(We used a somewhat abbreviated notation in (24). The precise meaning is

the following: if X and co' on Q are such that xi(w') = xm+i(w) for all i = 1, 2, *. *,
then to)(co) = to(w'). The function to") itself is not a generalized stopping vari-
able, since the set {t = i} need not belong to 63i, but it belongs to 63(m+i, and
therefore, tm e T,,). It may be remarked that lemmas 4 and 5 hold for arbitrary
sequences of random variables, but lemma 6 utilizes the stationarity of the se-
quence xi, X2, * . . In the following lemma, even more properties of this sequence
are used.
LEMMA 7. Let (18) hold for some a > 0, b > 0, and t E Too. Then there exists

t* E T. satisfying

(27) E2b+ st* >b(27) ~~~~~~~~a+ t* >2a
and

(28) E ~ ~~~~~~11 2o,2(28) Ea + t* < 2a + b+2t
PROOF. Let t* be the ti, whose existence is assured by the previous lemma,

corresponding to a' = a, b' = b/2, and m= [a] (namely, the greatest inte-
ger < a). Then (27) holds and, by (22),
(29) t* < a =X max (S1, 82, * * *S[) > b/2.
Therefore, by Kolmogorov's inequality,

(30) P(t* < a) (b/2a2 <4b-2
But
(31) E 1 < P(t*.a) + P(t* > a)

a+t* -a+1 a+[a]+ 1

< P(t* < a) + P(t* > a) 1 + P(t* < a)
a 2a 2a 2a

and (28) follows from (30).
LEMMA 8. Let a > 0 and

(32) b > 5crVa-.
Then

(33) E b +St< b
a+t a

for all t E T7,
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PROOF. If (33) were false, we would have, by (27), (28), and lemma 3,
for the t* of the preceding lemma,

b b 1 St* b ~2
(34) ~ -a < 2Ea+t*+Ea+t* <4- +b +

Hence, b2 - 4aVab - 4a2oa < 0, thus

(35) b < 2aA/a + V/4o2a + 4O2a = 2(1 + V¶0)a.Va,
contradicting (32).

This lemma asserts that the conditional expectation of st/t, given that t > n
and s8 2 5a<.V, is maximized by putting t =n.
LEMMA 9. We have

(36) E sup, n <00.
\n= 1,2,... nl

PROOF. Denoting the sup in (36) by s, we have for every u > 0,

(37) P(s 2 u) < P(max ±n> )
1e 2G-1<n<2, n

< L P( max Sn . 2i-'u).
i=1 1<n <2'

Therefore, by Kolmogorov's inequality,

p(8>U)< y

2' 4a2
(38) P(s 2 u) <a2 E 22('-1)u2 =
whence
(39) Es= u-dP(s 2 u) = g P(s > u) du < X.

To complete the proof of the theorem we need the following result. It may be
found in [1] (see lemma 2 there) however, for the sake of self-containedness we
reproduce its proof here.
LEMMA 10. Let t E T, let yn(n = 1, 2, * ) be a sequence of random variables

satisfying
(40) E( sup y+) <0,

n=1,2,*-

and let T be the family of all stopping variables t < t (that is, those t E T for which
t(w) < !(w) almost surely). Then there exists T E T satisfying
(41) Ey, = sup Eyt.

tET
PROOF. The stopping time t e T is called regular if t > j =X E(ytI(lBj) > yj

for all j = 1, 2, - - - . If t and t' are regular and t < t', then we have on {t = j}
the inequality E(yt,'Bj) 2 y, = yt, hence t < t' = Eys, 2 Eye. Now, if the
right side of (41) is -oo, there is nothing to prove. We may therefore assume
that it is finite, M say. Then there exists for every n = 1, 2, *--, a stopping
variable t. e T with Etn > M - 1/n. Let t' = smallest integer i > 1 for which
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E(yt,j(131) < yi. Then tn E T, Eyt,, > Eyt., and t' is regular. Putting tn =
max (t', - * *, t'), it is clear that tn' < in < i+±, and that in e T is regular.
Finally let r = limn= x in. Because of (40) we have, by Fatou's lemma, E(y I(Gj) >
lim supn= E(yiI63j) and, since r > j => in > j for some n, it follows that

T> j X E(yTIBj) > y,. Hence, T is regular. Since T > in > t' we have EyT >
M - 1/n for all n, that is, EYT = M.
PROOF OF (5). Let - e Too be defined as follows: t = j when j is the smallest

positive integer for which si > 5a<V'. Then, by the law of the iterated logarithm,
t E T. If t e T.r is arbitrary and we put t' = min (t, ), then, by lemma 8,
E(st,/t') > E(si/t). Thus the sup in (5) may be taken only over the class
T C T of all stopping variables < t. Since, by lemma 9, the sequence
Yn = Sn/n (n = 1, 2, * * *) satisfies (40), we can apply lemma 10 and deduce the
existence of an optimal r E T satisfying (5).
PROOF OF (6). For the generalized stopping variable t defined by t = 1 if

xi > 0 and t = X otherwise, we have E(s,/t) = Exj+ > 0. This gives the first
inequality of (6). The other inequality follows from (15) with a = 0.
For reference in the sequel we state the following slight extension of theorem 1,

which is proved in exactly the same way.
THEOREM 1'. Let a and b be real, then there exists a stopping variable r e T

for which
b +s, b +st(42) E -s= sup b
a +T teT., a + t

Since we do not need the analogue of (6), we do not state it here.

3. Structure of the optimal rule

By Theorem 1', there exists for every B > 0 and n = 1, 2, * a stopping vari-
able T(#, n) for which

(43) Vn(3 E +5(,)=sup E3+ tn + T(3, n) =ETe., n + t

Since we have for all real , ,B', and every t E Twr,

(44) |E n+ t nE+ t < n + 1

it follows that Vn(/3) is continuous in /3. Consider now the equation

(45) Vn(/) = -

Since Vn(O) > 0 for all /3 (consider the rule: stop when si > -/ for the first
time), and since, by lemma 8, Vn(/3) < ,/n for large /3, it follows from the con-
tinuity of Vn(/3) that equation (45) is solvable for every n. If On is a solution of
(45), then it follows from the last sentence of lemma 5 that Vn(/) < /3/n for
/3 > /n-
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The equation

(46) sup ±t
n tET. n+t

defines 0(3n uniquely.
By lemma 5, the sequence

(47) 131,32, ...* ** n ...

is a strictly increasing sequence of positive numbers, and by the considerations
of section 2, an optimal stopping variable To satisfying (5) may be defined by

(48) To = n=:> s 3> and si < i for i = 1, n,n-1,

that is, by the rule: stop whenever s,, > on for the first time.
The analysis of section 2 also shows that if r is any stopping variable optimal

in the sense of (5), then P(T > To) = 1, and that there exists an optimal r with
P(T F- TO) > 0 if and only if P(s = r3oT = n) > Ofor at least one n = 1, 2, - - - .

Thus, if we identify two stopping variables which are equal almost surely,
To given by (48) is the unique minimal optimal stopping variable. It is interest-
ing to study the rate of growth of the sequence (47), and the following result
contains information about this rate.
THEOREM 2. The numbers 1Bn (n = 1, 2, ***) defined by (46) satisfy

(49) lim sup 03 < C1
n = CiT

and

(50) lim inf o > C2U,
n= n

where c1 = 4.06 ... is the infimum for 0 < v < 1 of the positive root c of the equation

(51) c -vC2 + ( 2log (1 + (1 -v)2c2) = 0(1 - v)I
and C2 = 0.32 ... is the supremum for v > 0 of the positive root c of the equation

(52) c + v) (e2 + $7fv eu2i2 du) = 0.

The assertion (49) with cl replaced by 5 was proved in lemmal 8 (or with cl
replaced by 4.828 ... in (35)). Since cl is not the best possible constant, our main
reason for stating (49) is to introduce the following strengthening of lemma 7,
which is of certain independent interest.
LEMMA 11. Let (18) hold for some a > 0, b > 0 and t G T.,, and let v satisfy

0 < V < 1. Then there exists t* E To,o satisfying

(53) E vb +st* vb
a + t* a

and

(54) E 1 < a2 log(1 + v)b2a)
a+ t* (1 - V)2b2\ I
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PROOF. Let m = [(1 - v)2b2/a2] and define t* as the tm given by lemma 6
for thism and a' = a, b' = vb. Then (53) holds and we have

1 _ P(t* =i)(55) E = (+W--t* =1a+i
But, by (22), t* < i implies, for i < m, the inequality max (si, , si) >
(1 - v)b, and therefore, by Kolmogorov's inequality,

(56) P(t* < i) < (1 f- V)2b2' (i = 1, , i).

The right side of (56) is > 1 for i> m + 1, and hence, by a reasoning similar
to that which leads from (13) to (10), the infinite sum in (55) is smaller than

a.2 mn+11

(57) (1-v)2b2 t a+i
Estimating the sum in (57) by an integral, we obtain (54).
PROOF OF (49). We first remark that the left side of (51) vanishes for c = 0,

is a convex function of c, and tends to -oo as c -m oo ; therefore, the equation (51)
has indeed a unique positive root.
From (46), (43), lemma 11, and (16), we have

(58) Vn < va2 log (1 + 1+(1 V)203./c2) + Of
n (-V)2 /n nv'/

or, putting c = f3/(aVn),

(59) vc2 < v )2og (1 + + (1-v)22) + c.

Letting n -X and remarking that (59) holds for all 0 < v < 1, we obtain (49).
PROOF OF (50). We first remark that the left side of (52) is negative for

c = 0 and that it has, relative to c, a positive derivative bounded away from
zero; therefore, the equation (52) has indeed a unique positive root.

Let now v > 0 and c > 0 be given. For a > 0, define b and t e To,o by

(60) b = c-la, t= [va] if S[va] >-bfoo otherwise.
Then

(61) E b + t + ] (b + u) dP(S[va] < u).
Using the fact that SnA/(an) is asymptotically normal with zero mean and unit
variance and that its first absolute moment converges to the same moment of
the limiting distribution, we see from (60) and (61) that

lmab+s
~ \______C(62) lim - E +Sw4 ( + u) e-u(/2 du.

a=. b a + t + v)c v
But, by the definition of c2, the right side of (62) is smaller than 1 for c < c2
gnd an appropriate v. Hence, we have for c < c2 and large n,
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(63) n < Vn(C\)
or coa-Vn < O., which completes the proof.

4. Generalization

In order not to lengthen the paper, we state only one generalization whose
proof follows very closely those given above.
THEOREM 3. Let a > -; then there exists a stopping variable r E T for which

(64) E 7 = sup E tL
For such r we have

(65) 0 < E (a =< )2
Such a r may be defined through a suitable increasing sequence of positive numbers
1(a), 032(a), . * * as follows: T = n if n is the smallest positive integer for which
Sn 2 013 (a). The 03n (a) satisfy

(66) C2(a) < lim inf n. ) < limsup .na)< cl(a)n=- n= (o/
with positive finite cl(a) and c2(a).

PROOF. As above for a = 1 we obtain, similarly to (10),
22

(67) E (a+t)2 < (a +i)2a'

from which we have in lieu of (16),

__S(68) E (a + t)- < (2a -1)-12aa-1/2
Lemmas 4, 5, and 6 hold with the same proof if we replace everywhere in the
denominators a, a + t, * * *, by an, (a + t)a, and so on. Similarly, lemma 7 re-
mains valid when a + t* and 2a in (27) are replaced by (a + t*)a and (2a)a
respectively, and we have, instead of (28),

(69) E 1 1 22-1 4o2a
(69) E ~~(a + t*) < (2a)a +622a)

As in the proof of lemma 8, we obtain from (68) and (69) an inequality similar
to (34), which may be rewritten as Qa (b/loVa) < 0 where Qa is a polynomial of
the second degree with leading coefficient 1, and the other coefficients negative
(and depending on a). This shows, similarly to lemma 8, that the conditional
expectation of st/tn, given that t > n and Sn > cj(ac)aVr", is maximized by put-
ting t = n. Since lemma 9 remains valid, with the same proof, when sn/n is
replaced by sn/nn, we can apply lemma 10 and deduce the existence of r C T
satisfying (64) as well as the last inequality of (66). The second inequality of
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(65) follows from (68), and the first is proved exactly as the first inequality of (6).
Finally, the first inequality of (66) follows again from considerations of asymp-
totic normality, similarly to the proof of (50).

5. Remarks

1. Various other generalizations and extensions are possible. Thus we can
study in a similar fashion E((b + sj)+)#/(a + t)a provided 2a > max (1, ,B).
Also more complicated, and less explicit, functions of t and st may be considered.

2. The left inequality of (6) cannot be improved (without considering other
features of the distribution of the xi besides the variance). This is seen trivially
by remarking that a random variable with zero mean and given variance can
have an arbitrary small positive bound. On the other hand, 7r/V6 is not the
best possible constant in (6).

3. The inequality (10) of lemma 2 cannot be improved. Indeed, let 0 < p < 1,
q = 1 - p, and each xi assume the values ov'-7 and -a<)IVl7 with probabil-
ities p and q respectively. Then for t E T. defined by: t = i if i is the smallest
integer for which xi > 0 and i < q/p, and t = X otherwise, we have

(70) E( ) = a2 [ pqi- ((q/p)2 - (ij-)(a+ 2 pq''(a+)
But as p -*0 the right side of (70) approaches the limit a2 _- (a + i)-2.
However, (15) in lemma 3 can be improved as is seen by examining the condi-
tions under which little is lost by the passage from (10) to (15), as well as those
under which (10) gives a close to best estimate, and observing that it is impos-
sible to satisfy both simultaneously. This establishes, in particular, the assertion
about (6) in the preceding remark.
A similar remark applies to (68) and (67).
4. It is not difficult to improve the constants c1 and c2 in (49) and (50) in

theorem 2. But we do not know how to obtain the best constants. It is very
likely that the lim sup and lim inf in (49) and (50) must coincide; that is, that
lim.=. P,l/Vn must exist (though it may depend on aspects of the distribution
of the xi other than the variance). But we cannot prove this in general. The
existence of this limit seems to be a most interesting problem connected with
the structure of the optimal stopping rule.

5. Since the sequence s1, 82, * * * is Markovian, it is possible to describe every
optimal stopping variable r by a sequence of "absorbing" sets Bn of real num-
bers as follows: X = n if n is the smallest positive integer for which Snn Bn.

It follows from lemma 5 that it is natural to take the sets Bn as half-lines:
Bn = {u: u 2 bn}. Theorem 2 gives such a description of the regular stopping
variable ro, but more is true. If r = n when n is the smallest integer for which
Sn 2 bn describes an optimal stopping variable (in the sense of (5)), then the bn
necessarily satisfy (49) and (50) (with bn in place of fn). Indeed, it follows from
the considerations of the beginning of section 3 that T can be optimal only if
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P(ro = n, sn E I.) = 0 for all n, where I,, is the open interval with endpoints
#n and bn. It can be easily seen that To is not bounded. If the random variables
xi are such that P(xi E I) > 0 for every interval I whose length exceeds some
given number, it can be easily inferred that the sequence bn- 0(n = 1, 2, * *)
is bounded, and thus the bn satisfy (49) and (50). The general case requires
more elaborate arguments.

6. The assumption that the random variables xi have zero mean is, of course,
unimportant and can be dropped. We did, however, make essential use of the
fact that they have finite variance. It seems possible to replace this condition
by a weaker one, such as assuming the finiteness of an absolute moment of
order greater than one, but this has not yet been done. It would also be inter-
esting to relax the conditions of independence and identical distribution of
the xi.

7. We assumed that (B. is the a-field generated by xi, * , x,.. All our consid-
erations remain valid if we assume instead that (3n is the a-field generated by
xi, - * *, xn and C, where e is a subfield of 63 independent of those generated by
the xn. This device makes it possible to treat certain randomized stopping vari-
ables.

8. Our method can easily be adapted to treat stochastic processes with a
continuous time parameter. This may, however, necessitate a slight reformula-
tion of the problem. Consider, for example, the standard Brownian motion
process s(h), 0 < h < oo. Denoting by 63(h) the a-field generated by s(h'),
0 < h' < h, a nonnegative random variable t is called a stopping variable if
{t < h} e 63(h) for all 0 < h < co. Now, sup Es(t)/t taking over all stopping
variables is co, and indeed if we define T to be the smallest h > 0 for which
s(h) 2 Vh log+ l/h, then we find Es(r)/r = 00 (the almost sure continuity of
s(h) and the law of the iterated logarithm imply that T is a stopping variable).
If we wish to consider problems for which sup Es(t)/t is finite we must modify
the original problem somewhat. We might, for example, confine our attention to
stopping variables t satisfying P(t > 6) = 1 for a given 5 > 0, or consider
s(t)/(a + t) instead of s(t)/t. Then the supremum of the expectations would be
finite, and there would exist a stopping variable T for which this supremum is
achieved and, moreover, a result similar to theorem 2 would hold.
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