
SOME METHODS FOR
CLASSIFICATION AND ANALYSIS

OF MULTIVARIATE OBSERVATIONS
J. MACQUEEN

UNIVERSITY OF CALIFORNIA, Los ANGELES

1. Introduction

The main purpose of this paper is to describe a process for partitioning an
N-dimensional population into k sets on the basis of a sample. The process,
which is called 'k-means,' appears to give partitions which are reasonably
efficient in the sense of within-class variance. That is, if p is the probability mass
function for the population, S = {S1, S2, - * *, Sk} is a partition of EN, and ui,
i = 1, 2, * - , k, is the conditional mean of p over the set Si, then W2(S) =
ff=ISif z - u42 dp(z) tends to be low for the partitions S generated by the
method. We say 'tends to be low,' primarily because of intuitive considerations,
corroborated to some extent by mathematical analysis and practical computa-
tional experience. Also, the k-means procedure is easily programmed and is
computationally economical, so that it is feasible to process very large samples
on a digital computer. Possible applications include methods for similarity
grouping, nonlinear prediction, approximating multivariate distributions, and
nonparametric tests for independence among several variables.

In addition to suggesting practical classification methods, the study of k-means
has proved to be theoretically interesting. The k-means concept represents a
generalization of the ordinary sample mean, and one is naturally led to study the
pertinent asymptotic behavior, the object being to establish some sort of law of
large numbers for the k-means. This problem is sufficiently interesting, in fact,
for us to devote a good portion of this paper to it. The k-means are defined in
section 2.1, and the main results which have been obtained on the asymptotic
behavior are given there. The rest of section 2 is devoted to the proofs of these
results. Section 3 describes several specific possible applications, and reports
some preliminary results from computer experiments conducted to explore the
possibilities inherent in the k-means idea. The extension to general metric spaces
is indicated briefly in section 4.
The original point of departure for the work described here was a series of

problems in optimal classification (MacQueen [9]) which represented special
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cases of the problem of optimal information structures as formulated by
Marschak [11], [12]. (For an interesting treatment of a closely related problem,
see Blackwell [1].) In one instance the problem of finding optimal information
structures reduces to finding a partition S = {Sl, S2, * * *, Sk} of EN which will
minimize W2(S) as defined above. In this special model, individual A observes a
random point z E EN, which has a known distribution p, and communicates to
individual B what he has seen by transmitting one of k messages. Individual B
interprets the message by acting as if the observed point z is equal to a certain
point £ to be chosen according to the message received. There is a loss propor-
tional to the squared error Iz - g12 resulting from this choice. The object is to
minimize expected loss. The expected loss becomes W2(S), where the i-th message
is transmitted if z E Si, since the best way for B to interpret the information is
to choose the conditional mean of p on the set associated with the message
received. The mean, of course, minimizes the squared error. Thus the problem
is to locate a partition minimizing w2(S). This problem was also studied by
Fisher [5], who gives references to earlier related works.
The k-means process was originally devised in an attempt to find a feasible

method of computing such an optimal partition. In general, the k-means pro-
cedure will not converge to an optimal partition, although there are special cases
where it will. Examples of both situations are given in section 2.3. So far as the
author knows, there is no feasible, general method which always yields an optimal
partition. Cox [2] has solved the problem explicitly for the normal distribution
in one dimension, with k = 2, 3, - - *, 6, and a computational method for finite
samples in one dimension has been proposed by Fisher [5]. A closely related
method for obtaining reasonably efficient 'similarity groups' has been described
by Ward [15]. Also, a simple and elegant method which would appear to yield
partitions with low within-class variance, was noticed by Edward Forgy [7] and
Robert Jennrich, independently of one another, and communicated to the writer
sometime in 1963. This procedure does not appear to be known to workers in
taxonomy and grouping, and is therefore described in section 3. For a thorough
consideration of the biological taxonomy problem and a discussion of a variety
of related classification methods, the reader is referred to the interesting book
by Sokal and Sneath [14]. (See Note added in proof of this paper.)

Sebestyen [13] has described a procedure called "adaptive sample set con-
struction," which involves the use of what amounts to the k-means process.
This is the earliest explicit use of the process with which the author is familiar.
Although arrived at in ignorance of Sebestyen's work, the suggestions we make
in sections 3.1, 3.2, and 3.3, are anticipated in Sebestyen's monograph.

2. K-means; asymptotic behavior

2.1. Preliminaries. Let zi, Z2, - - - be a random sequence of points (vectors) in
EN, each point being selected independently of the preceding ones using a fixed
probability measure p. Thus P[zi e A] = p(A) and P [zn+l e A Izi, Z2, * - , Zn] =
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p(A), n = 1, 2, *-- , for A any measurable set in EN. Relative to a given
k-tuple X = (X1, X2, * , Xk), xi E EN, i = 1, 2, * * *, k, we define a minimum
distance partition S(x) = {SI(X), S2(X), * , Sk(X)} of EN, by
(2.1) SI(x) = TI(x), S2(x) = T2(x)S1(x), *-,

Sk(X) = Tk(X)S(X)S2(X) *.*.* Sk-l(X),
where

(2.2) Ti(x) = { E:EEN, I|-xil < 1 -xjl, j = 1, 2, ,k}.
The set Si(x) contains the points in EN nearest to xi, with tied points being as-
signed arbitrarily to the set of lower index. Note that with this convention con-
cerning tied points, if xi = xj and i < j then Sj(x) = 0. Sample k-means

= 2 k* * xx), eE EN, i = 1, * , k, with associated integer weights
l "2 k**W8)are now defined as follows: x1 = Zi, = 1,i = 1, 2, , k, and

for n = 1, 2, * , if Zk+n e Stxi = (Wt4t + Zn+k)/(Wl + 1), Wt+l - Wt + 1,

and xj"+' = x4n, wi +1 = win for j $ i, where Sn = {Sn, Sn, * *Sk} is the mini-
mum distance partition relative to x".
Stated informally, the k-means procedure consists of simply starting with k

groups each of which consists of a single random point, and thereafter adding
each new point to the group whose mean the new point is nearest. After a point
is added to a group, the mean of that group is adjusted in order to take account of
the new point. Thus at each stage the k-means are, in fact, the means of the groups
they represent (hence the term k-means).

In studying the asymptotic behavior of the k-means, we make the convenient
assumptions, (i) p is absolutely continuous with respect to Lebesgue measure
on EN, and (ii) p(R) = 1 for a closed and bounded convex set R C EN, and
p(A) > 0 for every open set A C R. For a given k-tuple x = (xl, x2, ,k)-
such an entity being referred to hereafter as a k-point-let

k
W(X) = ii js IZ- Xi2 dp(z),

(2.3)k
V(X) = i. Iz|-ui(x)12 dp(z),

where S = {S1, S2, * , Sk} is the minimum distance partition relative to x, and
ui(x) = siz dp(z)/p(Si) or ui(x) = xi, according to whether p(Si) > 0 or
p(Si) = 0. If xi = ui(x), i = 1, 2, * , k we say the k-point x is unbiased.
The principal result is as follows.
THEOREM 1. The sequence of random variables W(xl), W(x2), *-- converges

a.s. and W. = lim",. W(xn) is a.s. equal to V(x) for some x in the class of k-points
X = (Xl X222, * , Xk) which are unbiased, and have the property that xi # xj if i $ j.

In lieu of a satisfactory strong law of large numbers for k-means, we obtain the
following theorem.
THEOREM 2. Let Un' = U,(Xn) and pn = p(S,(xn)); then

(2.4) E ( Eptixt - u )/m-O as m-> oo.
n=l i=l II a.s.
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2.2. Proofs. The system of k-points forms a complete metric space if the dis-
tance p(x, y) between the k-points x = (xl, x2, * * *, Xk) and y = (YI, Y2, * * *, yk) '
is defined by p(x, y) = Sk- 1xi - yil. We designate this space by M and inter-
pret continuity, limits, convergence, neighborhoods, and so on, in the usual way
with respect to the metric topology of M. Of course, every bounded sequence of
k-points contains a convergent subsequence.

Certain difficulties encountered in the proof of theorem 1 are caused by the
possibility of the limit of a convergent sequence of k-points having some of its
constituent points equal to each other. With the end in view of circumventing
these difficulties, suppose that for a given k-point x = (X1, X2, * - *, Xk), xi e R,
i = 1, 2, * *, k, we have xi = xj for a certain pair i, j, i < j, and xi = xi 5= xm
for m 5$ i, j. The points xi and xj being distinct in this way, and considering
assumption (ii), we necessarily have p(Si(x)) > 0, for Si(x) certainly contains
an open subset of R. The convention concerning tied points means p(Sj(x)) = 0.
Now if {yn} = {(yl, y2, * , yk)} is a sequence of k-points satisfying y' e R,
and yi $ YJ if i $ j, n = 1, 2, * , and the sequence yn approached x, then y?
and yj approach xi = x;, and hence each other; they also approach the boundaries
of S,(yn) and Sj(yn) in the vicinity of xi. The conditional means u1(yn) and uj(yn),
however, must remain in the interior of the sets S,(yn) and Sj(yn) respectively,
and thus tend to become separated from the corresponding points y' and yJ. In
fact, for each sufficiently large n, the distance of U,(yn) from the boundary of
Si(yn) or the distance of u,(yn) from the boundary of Sj(yn), will exceed a certain
positive number. For as n tends to infinity, p(Si(yn)) + p(Sj(yn)) will approach
p(Si(x)) > 0-a simple continuity argument based on the absolute continuity
of p will establish this-and for each sufficiently large n, at least one of the proba-
bilities p(S1(yn)) or p(Sj(yn)) will be positive by a definite amount, say 6. But in
view of the boundedness of R, a convex set of p measure at least a > 0 cannot
have its conditional mean arbitrarily near its boundary. This line of reasoning,
which extends immediately to the case where some three or more members of
(xI, x2, * * *, Xk) are equal, gives us the following lemma.
LEMMA 1. Let x = (X1, X2, * , Xk) be the limit of a convergent sequence of

k-points {yl} = {(yi, Y2, *.**, yk)} satisfying y? E R, y' F6 yj if i $ j, n = 1, 2,
If xi = xj for some i $ j, then lim infn 1t p(Si(yn))|yt-Uj(yn) > 0.

Hence, if limn~g , p(Si(y")) Iyk -u,(y8) = 0, each member of the k-tuple
(X1, X2, - - * Xk) is distinct from the others.
We remark that if each member of the k-tuple x = (xI, x2, * , Xk) is distinct

from the others, then 7r(y) = (p(SI(y)), p(S2(y)), *- , p(Sk(y))), regarded as a
mapping of M onto Ek, is continuous at x-this follows directly from the absolute
continuity of p. Similarly, u(y) = (u1(y), u2(y), * * *, uk(y)) regarded as a map-
ping from M onto M is continuous at x-because of the absolute continuity of p
and the boundness of R (finiteness of f z dp(z) would do). Putting this remark
together with lemma 1, we get lemma 2.
LEMMA 2. Let x = (X1, X2, ...*, Xk) be the limit of a convergent sequence of

k-points {yn} = {(yl, y2, - * , yk)} satisfying yt c R, y? $ y7 if i $ j, n = 1, 2,



MULTIVARIATE OBSERVATIONS 285

*--.If imn t=l p(S(y))y - Ui(yn)I = 0, then ,t=l p(Si(x))xi -tul(xn)[
= 0 and each point xi in the k-tuple (X1, X2, * , Xk) is distinct from the others.
Lemmas 1 and 2 above are primarily technical in nature. The heart of the

proofs of theorems 1 and 2 is the following application of martingale theory.
LEMMA 3. Let t1, t2, * , and ti, t2y ... , be given sequences of random variables,

and for each n = 1, 2, , let t,n and tn be measurable with respect to j. where
#1 C /2 C ... is a monotone increasing sequence of a-fields (belonging to the under-
lying probability space). Suppose each of the following conditions holds a.s.:
(i) Itni < K < oo, (ii) n> 0, n < -, (iii) E(tn+1113n) < tn+ t.. Then the se-
quences of random variables t1, t2, and so, s1, 2, -- , where so = 0 and
Sn = Et= 1 (ti - E(t+±i!10), n = 1, 2, , both converge a.s.
PROOF. Let yn = tn + sn_- so that the yn form a martingale sequence. Let c

be a positive number and consider the sequence {f9} obtained by stopping yn
(see Doob [3], p. 300) at the first n for which yn < -c. From (iii) we
see that yn > - = i - K, and since yn- Yn-1 > 2K, we have yn >
max (- Ft'=l - K, -(c + 2K)). The sequence {y} is a martingale, so that
Eyn = E91, n = 1, 2, * , and being bounded from below with Elgil . K, cer-
tainly supn EI9nI < oo. The martingale theorem ([3], p. 319) shows 9n converges
a.s. But Yn = yn on the set Ac where i> -c-K, i = 1, 2,***, and
(ii) implies P[A,] -+ 1 as c -oo . Thus {yn} converge a.s. This means Sn = yn+1
-tn+i is a.s. bounded. Using (iii) we can write -Sn = Et=l { A
where Ai 2 0. But since Sn and E l {i are a.s. bounded, E, Ai converges a.s., Sn
converges a.s., and finally, so does tn. This completes the proof.
Turning now to the proof of theorem 1, let (On stand for the sequence z1, Z2, ***

Zn-l+k, and let Al be the event [Zn+k e Sn]. Since Sn+1 is the minimum distance
partition relative to xn+±, we have

(2.5) E[W(Xn+l)Ilwn] = E [f, XZ|- x+,I2 dp(Z)Icon]

S<E [i
k f z -xn+y2 dp(z)lW1n]

k -k 1
= E - Xn+112 dp(z)IAn X P
j=1 E Ji Z=Wj i

If Zn+k E 87, x' = xi for i Fd j. Thus we obtain

(2.6) E[W(Xn+l),.n] < W(xn) - E (f XZ-n42 dp(z))p
2

+ E E [f|s Iz- 4+112 dp(z)#A7, iWn] pj.

Several applications of the relation fA Iz - X12 dp(z) = fA Iz - U12 dp(z) +
p(A)lx - u12, where JA (u - z) dp(z) = 0, enables us to write the last term in
(2.6) as
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k
(2.7) W[f~,,~Iz - x1j2 dp(z) pi - (pi)2 xJ -U[2

6=1 Si

+ (p7)2|XJ - u712(Wj/(Wn + 1))2 + fs IZ- Uj12 dp(z) pj /(wj + 1)21.
Combining this with (2.6), we get

k
(2.8) E(W(xn+l) IWn] < W(xn) - E 4X -uYl2(p7)2(2wj + l)/(wj + 1)2

j=1
k

+ 7 2*,j(pjn)2/(Wn + 1)2,
6=1

where anj = fS, IZ -U712 dp(z)/pj7.
Since we are assuming p(R) = 1, certainly W(xn) is a.s. bounded, as is n,j.

We now show that

(2.9) E (pfn)2/(w7" + 1)2
n

converges a.s. for each j = 1, 2, * * *, k, thereby showing that

(2.10) E [o j(p7)2/(wn + 1)2])
n j=1

converges a.s. Then lemma 3 can be applied with tn= W(xn) and ,n=
Ek1 2f,j(p7)2/(W7 + 1)2.
It suffices to consider the convergence of

(2.11) E (pj)2/[Q3 + 1 + Wn)( 3 + 1 + W+1)]
n>2

with A > 0, since this implies convergence of (2.9). Also, this is convenient, for
E(I,lWn) = pj where I7 is the characteristic function of the event [zn+k E 87],
and on noting that wj-+ 1 + ,t= 1 j, an application of theorem 1 in [4],
p. 274, says that for any positive numbers a and j3,

(2.12) P d + 1+wj +1 > 1 + ,pj-a a,vjf for all n = 1, 2,**I
_L=l i=l-

> 1-(1 + a/3)',

where vt = pJ - (p5)2 is the conditional variance of It given ci. We take a = 1,
and thus with probability at least 1 - (1 + f)-I the series (2.11) is dominated by

(2.13) E (p")2/[(1 + (pj)2)2 + E (pf)2](2.13) n>2 IL\+

= E 4[J&+ E (pf))12 (1 + n (P)2)]'
n>2L/-

which clearly converges.
The choice of 3 being arbitrary, we have shown that (2.9) converges a.s.

Application of lemma 3 as indicated above proves W(xn) converges a.s.
To identify the limit W.O, note that with tn and ,n taken as above, lemma 3
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entails a.s. convergence of En[W(xn) - E[W(xn+')ico.]], and hence (2.8) implies
a.s. convergence of

(2.14) E (EXn - u. j2(pn)2(2W7 + l)/(w7 + 1)2)

Since (2.14) dominates ,n Plp7Xn - uj)/kn, the latter converges a.s.,
and a little consideration makes it clear that

k k
(2.15) E pnlXn - ujll = E p(Sj(xn))IXJ - uj(xn)l

j=1 j=1

converges to zero on a subsequence {xn } and that this subsequence has itself a
convergent subsequence, say {xn'}. Let x = (x,, x2, ... ,)Xk) = limt,. xnv. Since
W(X) = V(X) + Ek=, p(Sj(X))IXj-U(X)2 and in particular,

(2.16) W(x,) = V(xn) + E p(Sj(xn))Jxjn - u(xj7)12,
j=1

we have only to show

(a) limt,. W(xn') = WO, = W(x), and
(b) limn+0 Y,=,I p(Sj(xnt))lX7' - u(x, )12 = 0 = Fl=I p(Sj(x)) xj - uj(x)I2.

Then W(x) = V(x) and x is a.s. unbiased. (Obviously, _t=1 pilail = 0 if and
only if Y_it=, pi4aij2 = 0, where pi > 0.)
We show that (a) is true by establishing the continuity of W(x). We have

k
(2.17) W(x) < E ] Z(z - XjI2 dp(z)

k k
-E Si( z-yJ2 ± E [p(Sj(y))IXj yj- 2

j=1 ~~~j=1

+ 2lxj- yjl Ls(y) !z - xjl dp(z)],

with the last inequality following easily from the triangle inequality. Thus
W(x) < W(y) + o(p(x, y)), and similarly, W(y) < W(x) + o(p(x, y)).
To establish (b), lemma 2 can be applied with {yn} and {x-} identified, for

a.s. xi' $4Xj' for i 5- j, n = 1, 2, * - - . It remains to remark that lemma 2 also
implies a.s. xi #d xj for i $- j. The proof of theorem 1 is complete.
Theorem 2 follows from the a.s. convergence of 57n(Ft=1 p Xtn- ui)/nk

upon applying an elementary result (c.f. Halmos [8], theorem C, p. 203), which
says that if E an/n converges, _i. 1 ai/n -- 0.

2.3. Remarks. In a number of cases covered by theorem 1, all the unbiased
k-points have the same value of W. In this situation, theorem 1 implies
Ek= 1 p1 i Ut converges a.s. to zero. An example is provided by the uniform
distribution over a disk in E2. If k = 2, the unbiased k-point (xl, x2) with xi $d x2
consist of the family of points xi and x2 opposite one another on a diameter, and
at a certain fixed distance from the center of the disk. (There is one unbiased
k-point with xi = x2, both xl and x2 being at the center of the disk in this case.)



288 FIFTH BERKELEY SYMPOSIUM: MAC QUEEN

The k-means thus converge to some such relative position, but theorem 1 does
not quite permit us to eliminate the interesting possibility that the two means
oscillate slowly but indefinitely around the center.
Theorem 1 provides for a.s. convergence of EF=1 pilxi - uil to zero in a

slightly broader class of situations. This is where the unbiased k-points x =
(xI, X2, * * *, Xk) with xi $ xi for i #= j, are all stable in the sense that for each
such x, W(y) 2 W(x) (and hence V(y) > V(x)) for all y in a neighborhood of x.
In this case, each such x falls in one of finitely many equivalence classes such
that W is constant on each class. This is illustrated by the above example, where
there is only a single equivalence class. If each of the equivalence classes contains
only a single point, theorem 1 implies a.s. convergence of xn to one of those points.
There are unbiased k-points which are not stable. Take a distribution on E2

which has sharp peaks of probability at each corner of a square, and is symmetric
about both diagonals. With k = 2, the two constituent points can by sym-
metrically located on a diagonal so that the boundary of the associated minimum
distance partition coincides with the other diagonal. With some adjustment, such
a k-point can be made to be unbiased, and if the probability is sufficiently con-
centrated at the corners of the square, any small movement of the two points off
the diagonal in opposite directions, results in a decrease in W(x). It seems likely
that the k-means cannot converge to such a configuration.
For an example where the k-means converge with positive probability to a

point x for which V(x) is not a minimum, take equal probabilities at the corner
points of a rectangle which is just slightly longer on one side than the other.
Number with 1 the corner points, and 2 at the end points of one of the short
edges, and 3 and 4, at the end points of the other short edge, with 1 opposite 3
on the long edge. Take k = 2. If the first four points fall at the corner points
1, 2, 3, 4 in that order, the two means at this stage are directly opposite one
another at the middle of the long edges. New points falling at 1 and 3 will always
be nearer the first mean, and points falling at 2 and 4 will always be nearer the
second mean, unless one of the means has an excursion too near one of the corner
points. By the strong law of large numbers there is positive probability this will
not happen, and hence with positive probability the two means will converge to
the midpoints of the long edges. The corresponding partition clearly does not
have minimum within-class variance.

3. Applications

3.1. Similarity grouping: coarsening and refining. Perhaps the most obvious
application of the k-means process is to the problem of "similarity grouping" or
"clustering." The point of view taken in this application is not to find some
unique, definitive grouping, but rather to simply aid the investigator in obtaining
qualitative and quantitative understanding of large amounts of N-dimensional
data by providing him with reasonably good similarity groups. The method
should be used in close interaction with theory and intuition. Consequently, the
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computer program actually prepared for this purpose involved several modifi-
cations of the k-means process, modifications which appear to be helpful in this
sense.

First, the program involves two parameters: C for 'coarsening,' and R for
'refinement.' The program starts with a user specified value of k, and takes the
first k points in the sample as initial means. The k-means process is started, each
subsequent sample point being assigned to the nearest mean, the new mean
computed, and so on, except that after each new point is added, and for the
initial means as well, the program determines the pair of means which are
nearest to each other among all pairs. If the distance between the members of
this pair is less than C, they are averaged together, using their respective weights,
to form a single mean. The nearest pair is again determined, their separation
compared with C, and so on, until all the means are separated by an amount of
C or more. Thus k is reduced and the partition defined by the means is coarsened.
In addition, as each new point is processed and its distance from the nearest of
the current means determined, this distance is compared with R. If the new
point is found to be further than Rf from the nearest mean, it is left by
itself as the seed point for a new mean. Thus k is increased and the partition is
refined. Ordinarily we take C < R. After the entire sample is processed in this
way, the program goes back and reclassifies all the points on the basis of nearness
to the final means. The points thus associated with each mean constitutes the
final grouping. The program prints out the points in each group along with as
many as 18 characters of identifying information which may be supplied with
each point. The distance of each point from its nearest mean, the distances
between the means, the average for each group, of the squared distance of the
points in each group from their respective defining means, and the grand average
of these quantities over groups, are all printed out. The latter quantity, which is
not quite the within-group variance, is called the within-class variation for pur-
poses of the discussion below. If requested, the program determines frequencies
of occurrence within each group of the values of discrete variables associated
with each point. Up to twelve variables, with ten values for each variable, can
be supplied. This makes it convenient to determine whether or not the groups
finally obtained are related to other attributes of interest. (Copies of this
experimental program are available from the author on request.)
The program has been applied with some success to several samples of real

data, including a sample of five dimensional observations on the students'
environment in 70 U.S. colleges, a sample of twenty semantic differential
measurements on each of 360 common words, a sample of fifteen dimensional
observations on 760 documents, and a sample of fifteen physiological observations
on each of 560 human subjects. While analysis of this data is still continuing,
and will be reported in detail elsewhere, the meaningfulness of the groups ob-
tained is suggested by their obvious pertinence to other identifiable properties
of the objects classified. This was apparent on inspection. For example, one
group of colleges contained Reed, Swarthmore, Antioch, Oberlin, and Bryn
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Mawr. Another group contained the Universities of Michigan, Minnesota,
Arkansas, and Illinois, Cornell, Georgia Tech, and Purdue. Selecting at random
a half-dozen words from several groups obtained from the semantic differential
data, we find in one group the words calm, dusky, lake, peace, sleep, and white;
in another group the words beggar, deformed, frigid, lagging, low; and in another
group the words statue, sunlight, time, trees, truthful, wise.
When the sample points are rearranged in a new random order, there is some

variation in the grouping which is obtained. However, this has not appeared to
be a serious concern. In fact, when there are well separated clusters, as de-
termined by inspection of the between-mean distances in relation to the within-
class variation, repeated runs give virtually identical groupings. Minor shifts are
due to the unavoidable difficulty that some points are located between clusters.
A degree of stability with respect to the random order in which the points are

processed is also indicated by a tendency for the within-class variation to be
similar in repeated runs. Thus when a sample of 250 points in five dimensions
with k = 18, was run three times, each time with the points in a different random
order, the within-class variation (see above) changed over the three runs by at
most 7%. A certain amount of stability is to be expected simply because the
within-class variation is the mean of k dependent random variables having the
property that when one goes up the others generally go down. We can reasonably
expect the within-class stability to generally increase with k and the sample size.
Actually, it will usually be desirable to make several runs, with different values
of C and R, and possibly adding, deleting, or rescaling variables, and so on, in
an effort to understand the basic structure of the data. Thus any instabilities due
to random ordering of the sample will be quickly noted. Being able to make
numerous classifications cheaply and thereby look at the data from a variety of
different perspectives is an important advantage.

Another general feature of the k-means procedure which is to be expected on
intuitive grounds, and has been noted in practice, is a tendency for the means and
the associated partition to avoid having the extreme of only one or two points in
a set. In fact, there is an appreciable tendency for the frequency to be evenly
split over groups. If there are a few relatively large groups, these tend to have
relatively low within-class variation, as would be expected from a tendency for
the procedure to approximate minimum variance partitions.
Running times of the above program on the IBM 7094 vary with C, R, the

number of dimensions, and the number of points. A conservative estimate for
20-dimensional data, with C and R set so that k stays in the vicinity of 20, is one
minute for two hundred sample points. Most of this computation time results
from the coarsening and refining procedure and the auxiliary features. A limited
amount of experience indicates the undecorated k-means procedure with k = 20
will process five hundred points in 20 dimensions in something like 10 seconds.

3.2. Relevant classifications. Suppose it is desired to develop a classification
scheme on the basis of a sample, so that knowing the classification of a new point,
it will be possible to predict a given dependent variable. The values of the de-
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pendent variable are known for the sample. One way to do this, closely related
to a procedure proposed by Fix and Hodges [6], is illustrated by the following
computer experiment. A sample of 250 four-dimensional random vectors was
prepared, with the values on each dimension being independently and uniformly
distributed on the integers 1 through 10. Two of the dimensions were then arbi-
trarily selected, and if with respect to these two dimensions a point was either
'high' (above 5) on both or 'low' (5 or less) on both, it was called an A; otherwise,
it was called a B. This gave 121 A's and 129 B's which were related to the selected
dimensions in a strongly interactive fashion. The k-means with k = 8 were then
obtained for the A's and B's separately. Finally, using the resulting 16 (four-
dimensional) means, a prediction, A or B, was made for each of a new sample of
250 points on the basis of whether or not each point was nearest to an A mean
or a B mean. These predictions turned out to be 87% correct.
As this example shows, the method is potentially capable of taking advantage

of a highly nonlinear relationship. Also, the method has something to recommend
it from the point of view of simplicity, and can easily be applied in many di-
mensions and to more than two-valued dependent variables.

3.3. Approximating a general distribution. Suppose it is desired to approxi-
mate a distribution on the basis of a sample of points. First the sample points are
processed using the k-means concept or some other method which gives a
minimum distance partition of the sample points. The approximation, involving
a familiar technique, consists of simply fitting a joint normal distribution to the
points in each group, and taking as the approximation the probability combi-
nation of these distributions, with the probabilities proportional to the number
of points in each group.
Having fitted a mixture of normals in this way, it is computationally easy (on a

computer) to do two types of analysis. One is predicting unknown coordinates of
a new point given the remaining coordinates. This may be done by using the
regression function determined on the assumption that the fitted mixture is the
true distribution. Another possible application is a kind of nonlinear discriminant
analysis. A mixture of k normals is fitted in the above fashion to two samples
representing two given different populations; one can then easily compute the
appropriate likelihood ratios for deciding to which population a new point
belongs. This method avoids certain difficulties encountered in ordinary discrimi-
nant analysis, such as when the two populations are each composed of several
distinct subgroups, but with some of the subgroups from one population actually
between the subgroups of the other. Typically in this situation, one or several
of the k-means will be centered in each of the subgroups-provided k is large
enough-and the fitted normals then provide a reasonable approximation to the
mixture.
To illustrate the application of the regression technique, consider the artificial

sample of four-dimensional A's and B's described in the preceding section. On
a fifth dimension, the A's were arbitrarily given a value of 10, and the B's a value
of 0. The k-means procedure with k = 16 was used to partition the combined
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sample of 250 five-dimensional points. Then the mixture of 16 normal distri-
butions was determined as described above for this sample. The second sample
of 250 points was prepared similarly, and predictions were made for the fifth
dimension on the basis of the original four. The standard error of estimate on
the new sample was 2.8. If, in terms of the original A-B classification, we had
called a point on A if the predicted value exceeded 5, and a B otherwise, 96%
of the designations would have been correct on the new sample. The mean of the
predictions for the A's was 10.3, and for B's, 1.3.

Considering the rather complex and highly nonlinear relationship involved
in the above sample, it is doubtful that any conventional technique would do
as well. In the few instances which were tested, the method performed nearly
as well as linear regression on normally distributed samples, provided k was not
too large. This is not surprising inasmuch as with k = 1 the method is linear
regression. In determining the choice of k, one procedure is to increase k as long
as the error of estimate drops. Since this will probably result in "over fitting"
the sample, a cross validation group is essential.

3.4. A scrambled dimension test for independence among several variables. As a
general test for relationship among variables in a sample of N-dimensional ob-
servations, we propose proceeding as follows. First, the sample points are grouped
into a minimum distance partition using k-means, and the within-class variance
is determined. Then the relation among the variables is destroyed by randomly
associating the values in each dimension; that is, a sample is prepared in which
the variables are unrelated, but which has exactly the same marginal distri-
butions as the original sample. A minimum distance partition and the associated
within-class variance is now determined for this sample. Intuition and inspection
of a few obvious examples suggest that on the average this "scrambling" will
tend to increase the within-class variance, more or less regardless of whatever
type of relation might have existed among the variables, and thus comparison
of the two variances would reveal whether or not any such relation existed.
To illustrate this method, a sample of 150 points was prepared in which points

were distributed uniformly outside a square 60 units on a side, but inside a
surrounding square 100 units on a side. This gave a sample which involves
essentially a zero correlation coefficient, and yet a substantial degree of relation-
ship which could not be detected by any conventional quantitative technique
known to the author (although it could be detected immediately by visual
inspection). The above procedure was carried out using k-means with k = 12.
As was expected, the variance after scrambling was increased by a factor of 1.6.
The within-class variances were not only larger in the scrambled data, but were
apparently more variable. This procedure was also applied to the five-
dimensional sample described in the preceding section. Using k = 6, 12, and 18,
the within-class variance increased after scrambling by the factors 1.40, 1.55,
and 1.39, respectively.
A statistical test for nonindependence can be constructed by simply repeating

the scrambling and partitioning a number of times, thus obtaining empirically a
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sample from the conditional distribution of the within-class variance unlder the
hypothesis that the variables are unrelated and given the marginal values of the
sample. Under the hypothesis of independence, the unscrambled variance should
have the same (conditional) distribution as the scrambled variance. In fact, the
rank of the unscrambled variance in this empirical distribution should be
equally likely to take on any of the possible values 1, 2, * * *, n + 1, where n is
the number of scrambled samples taken, regardless of the marginal distributions
in the underlying population. Thus the rank can be used in a nonparametric
test of the hypothesis of independence. For example, if the unscrambled variance
is the lowest in 19 values of the scrambled variance, we can reject the hypothesis
of independence with a Type I error of .05.
A computer program was not available to do the scrambling, and its being

inconvenient to set up large numbers of scrambled samples using punched cards,
further testing of this method was not undertaken. It is estimated, however, that
an efficient computer program would easily permit this test to be applied at, say,
the .01 level, on large samples in many dimensions.
The power of this procedure remains to be seen. On the encouraging side is

the related conjecture, that for fixed marginal distributions, the within-class
variance for the optimal partition as defined in section 1 is maximal when the
joint distribution is actually the product of the marginals. If this is true (and
it seems likely that it is, at least for a large class of reasonable distributions),
then we reason that since the k-means process tends to give a good partition, this
difference will be preserved in the scrambled and unscrambled variances, par-
ticularly for large samples. Variation in the within-class variance due to the
random order in which the points are processed, can be reduced by taking
several random orders, and averaging their result. If this is done for the
scrambled runs as well, the Type I error is preserved, while the power is increased
somewhat.

3.5. Distance-based classification trees. The k-means concept provides a number
of simple procedures for developing lexigraphic classification systems (filing
systems, index systems, and so on) for a large sample of points. To illustrate, we
describe briefly a procedure which results in the within-group variance of each of
the groups at the most refined level of classification being no more than a specified
number, say R. The sample k-means are first determined with a selected value of
k, for example, k = 2. If the variance of any of the groups of points nearest to
these means is less than R, these groups are not subclassified further. The remain-
ing groups are each processed in the same way, that is, k-means are determined
for each of them, and then for the points nearest each of these, and so on. This
is continued until only groups with within-group variance less than R remain.
Thus for each mean at the first level, there is associated several means at the
second level, and so on. Once the means at each level are determined from the
sample in this fashion, the classification of a new point is defined by the rule:
first, see which one of the first level k-means the point is nearest; then see which
one of the second-level k-means associated with that mean the point is nearest,
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and so on; finally the point is assigned to a group which in the determining sample
has variance no more than R.

This procedure has some promising features. First, the amount of computation
required to determine the index is approximately linear in the sample size and
the number of levels. The procedure can be implemented easily on the computer.
At each stage during the construction of the classification tree, we are employing
a powerful heuristic, which consists simply of putting points which are near to
each other in the same group. Each of the means at each level is a fair repre-
sentation of its group, and can be used for certain other purposes, for instance,
to compare other properties of the points as a function of their classification.

3.6. A two-step improvement procedure. The method of obtaining partitions
with low within-class variance which was suggested by Forgy and Jennrich (see
section 1.1) works as follows. Starting with an arbitrary partition into k sets, the
means of the points in each set are first computed. Then a new partition of the
points is formed by the rule of putting the points into groups of the basis of
nearness to the first set of means. The average squared distance of the points in
the new partition from the first set of means (that is, from their nearest means)
is obviously less than the within-class variance of the first partition. But the
average within-class variance of the new partition is even lower, for the variance
of the squared distance of the points in each group from their respective means,
and the mean, of course, is that point which minimizes the average squared
distance from itself. Thus the new partition has lower variance. Computationally,
the two steps of the method are (1) compute the means of the points in each
set in the initial partition and (2) reclassify the points on the basis of nearness
to these means, thus forming a new partition. This can be iterated and the series
of the partitions thus produced have decreasing within-class variances and will
converge in a finite number of steps.
For a given sample, one cycle of this method requires about as much compu-

tation as the k-means. The final partition obtained will depend on the initial
partition, much as the partition produced by k-means will depend on random
variation in the order in which the points are processed. Nevertheless, the
procedure has much to recommend it. By making repeated runs with different
initial starting points, it would seem likely that one would actually obtain the
sample partition with minimum within-class variance.

4. General metric spaces

It may be something more than a mere mathematical exercise to attempt to
extend the idea of k-means to general metric spaces. Metric spaces other than
Euclidian ones do occur in practice. One prominent example is the space of
binary sequences of fixed length under Hamming distance.
An immediate difficulty in making such an extension is the notion of mean

itself. The arithmetic operations defining the mean in Euclidian space may not
be available. However, with the communication problem of section 1 in mind,
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one thinks of the problem of representing a population by a point, the goal being
to have low average error in some sense. Thus we are led to proceed rather
naturally as follows.

Let M be a compact metric space with distance p, let 5Y be the o--algebra of
subsets of M, and let p be a probability measure on 5. For the measure p,
a centroid of order r > 0 is any point in the set er of points x* such that
f pr(x*, z) dp(z) = inf. f pr(x, z) dp(z). The quantity f pr(x*, z) dp(z) is the r-th
moment of p. The compactness and the continuity of p guarantee that Ce is
nonempty. For finite samples, sample centroids are defined analogously, each
point in the sample being treated as having measure 1/n where n is the sample
size; namely, for a sample of size n, the sample centroid is defined up to an equiva-
lence class e which consists of all those points An such that F_-= I Pr(n Zi) =
inf. X?.. 1 pr(x, zi), where zl, Z2, . .. , Zn is the sample.
Note that with M the real line, and p ordinary distance, r = 2 yields the

ordinary mean, and r = 1 yields the family of medians. As r tends to co, the
elements of C,. will tend to have (in a manner which can easily be made precise)
the property that they are centers for a spherical covering of the space with
minimal radius. In particular, on the line, the centroid will tend to the mid-range.
As r tends to zero, one obtains what may with some justification be called a mode,
for on a compact set, pr(x, y) is approximately 1 for small r, except where x and y
are very near, so that minimizing f pr(x, y) dp(y) with respect to x, involves
attempting to locate x so that there is a large amount of probability in its
immediate vicinity. (This relationship can also be made precise.)
We note that the optimum communication problem mentioned in section 1.1

now takes the following general form. Find a partition S = {Si, S2, * * Sk}
which minimizes w = _f- fsi pl(xi, y) dp(y), where x4 is the centroid of order
r with respect to the (conditional) distribution on Si. If there is any mass in
a set Si nearer to xj than to xi, j s! i, then w can be reduced by modifying
Si and Si so as to reassign this mass to Sj. It follows that in minimizing w we
can restrict attention to partitions which are minimum distance partitions,
analogous to those defined in section 2, that is, partitions of the form S(x) =
{S.(x), S2(x), * * *, Sk(x)} where x = (xI, x2, * * *, Xk) is a k-tuple of points in M,
and Si(x) is a set of points at least as near xi (in terms of p) as to xj if j # i.
In keeping with the terminology of section 2, we may say that a k-tuple, or
"k-point," x = (xl, x2, * * *, Xk) is unbiased if xi, i = 1, 2, * , k, belongs to the
class of points which are centroids within Si(x).

It is now clear how to extend the concept of k-means to metric spaces; the
notion of centroid replaces the more special concept of mean. The first
'k-centroid' (xl, xl, * * *, xk) consists of the first k points in the sample, and
thereafter as each new point is considered, the nearest of the centroids is de-
termined. The new point is assigned to the corresponding group and the centroid
of that group modified accordingly, and so on.

It would seem reasonable to suppose that the obvious extension of theorem 1
would hold. That is, under independent sampling, Ek 1 fs.(Xt)pt(z4) dp(z) will
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converge a.s., and the convergent subsequences of the sequence of sample
k-centroids will have their limits in the class of unbiased k-points. This is true,
at any rate, for k = 1 and r = 1, for if zl, Z2, .-- , zn are independent,
Es=i p(Zz, y)/n is the mean of independent, identically distributed random
variables, which because M is compact, are uniformly bounded in y. It fol-
lows (cf. Parzen [13]) that Et , p(Zi, y)/n converges a.s. to f p(z, y) dp(z)
uniformly in y. By definition of the sample centroid, we have E_t 1 p(Zi, x*)/n >
EJ-1 p(Zi, In)/n; hence, fp(z, x*) dp(z) 2 lim sup Et' I p(Zi, 1n)/n with probability
1. On the other hand, from the triangle inequality, F,. i p(zi, y)/n <
F-J- p(zi, 1.)/n + p(£, Y). Using this inequality on a convergent subsequence
Ilni -tn2, ... , chosen so that

ne ~~~~~~~n
(4.1) lim E p(zi, I.)/n, = lim inf L p(Zi, &n)/n,

t-*O ij1 i=1

we see that with probability 1,

(4.2) f p(z, x*) dp(z) < f p(z, y) dp(z) < lim inf L_ p(zi, x4)/n,

where y = limi, £.
Provided the necessary computations can be accomplished, the methods

suggested in sections 3.1, 3.2, 3.4, 3.5, and 3.6 can all be extended to general
metric spaces in a quite straightforward fashion.
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"Data analysis in the social sciences: What about the details?", Proceedings of
the Fall Joint Computer Conference, Washington, D.C., Spartan Books, 1965.
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