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1. Introduction

This is an expository paper on the evolution of opinion about the foundations
of statistics. It particularly emphasizes the paths that some of us have followed
to a position that may be called Bayesian or neo-Bayesian.

The intense modern growth of statistical theory of which this Symposium is a
manifestation has been strongly oriented by a certain view as to the meaning of
probability. I shall try to explain why another view seems now to be entering
upon the scene almost of its own accord and to suggest what practical implica-
tions it brings with it.

2. Our frequentist background

Those who earlier in this century helped to mold the present great burst of
activity in statistical thought seem to have been particularly concerned to adopt
a clear and rigorous definition of probability. They were right to be so concerned,
for the concept of probability has always been elusive and it lies at the heart of
whatever any of us understand by “statistical theory” today. The concept of
probability almost unanimously adopted by statisticians throughout the first
half of the century, and the one that still seems to be regarded as fundamentally
correct by the majority of statisticians today, is the frequency concept of prob-
ability, in which a probability is the relative frequency of some kind of event in a
certain type of sequence of events or, according to some, in a set of events (as
for example on page 109 of [12]).

It is completely understandable that a frequentist concept of probability
should have come to the fore. The best known alternative concept when the
modern renaissance of statistics was beginning was one I call the “necessary”
concept of probability. Traditionally, this concept—apparently inspired by
games of chance—represents an attempt to define probability of events in terms
of the symmetry of the context in which they arise. In some modern views,
probability is a logical relationship between one proposition (regarded as back-
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ground evidence) and another. According to such a view, to say that the prob-
ability of A on the evidence of B is 3/4 is much like saying that the proposition A
is three quarters implied by B. I have called such views necessary because
according to them the probability of A on the evidence B is a logical necessity
to be deduced from the logical structure of the propositions A and B. This sort
of view had been thoroughly and effectively criticized. It was utterly uncon-
genial to statisticians of the early part of the century, and so far as I know,
nothing has happened to make it more congenial to us today. Necessary prob-
ability, ably sponsored by Carnap [2], {3] as a philosopher in recent years,
though with considerable modification, is not altogether dead. Harold Jeffreys
[16], [17], who supports it, is recognized as a productive and stimulating stat-
istician by many of us. Nonetheless, necessary views have not been, and arc
not now, active in shaping statistical opinion.

The other main view of probability, competing with frequentist and neces-
sary views, is the personalistic view, but the concept of personal probability has
not, until recently, been ripe for acceptance by statisticians. In the personalistic
concept, probability is an index—in an operational sense that will be explained
later—of a person’s opinion about an event. At first glance, such a concept
seems to be inimical to the ideal of “scientific objectivity,” which is one major
reason why we statisticians have been slow to take the concept of personal prob-
ability seriously. Another reason is this. No matter how neat modern operational
definitions of personal probability may look, it is usually possible to determine
the personal probabilities of important events only very crudely, and the over-
hasty conclusion that such crude determinations are of little worth is often
drawn.

Rejecting both necessary and personalistic views of probability left statisti-
cians no choice but to work as best they could with frequentist views. As is
well known, this has drastic consequences for the whole outlook of statistical
theory. Once a frequentist position is adopted, the most important uncertainties
that affect science and other domains of application of statistics can no longer
be measured by probabilities. A frequentist can admit that he does not know
whether whisky does more harm than good in the treatment of snake bite, but
he can never, no matter how much evidence accumulates, join me in saying that
it probably does more harm than good. Whatever else a frequentist may do with
the results of investigation he cannot, as a frequentist, use them to calculate
probabilities of the uncertain propositions that are under investigation. Tech-
nically, this means that he is cut off from most applications of Bayes’ theorem,
the algorithm for calculating what the new probability of a proposition is on the
basis of its original probability and new relevant evidence. One’s natural incli-
nation to ask, “To what degree of conviction does this new data entitle me?”
usually must be, and has been, regarded as a nonsense question by the fre-
quentist. The frequentist is required, therefore, to seek a concept of evidence,
and of reaction to evidence, different from that of the primitive, or natural,
concept that is tantamount to application of Bayes’ theorem.
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Statistical theory has been dominated by the problem thus created, and its
most profound and ingenious efforts have gone into the search for new meanings
for the concepts of inductive inference and inductive behavior. Other parts of
this lecture will at least suggest concretely how these efforts have failed, or come
to a stalemate. FFor the moment, suffice it to say that a problem which after so
many years still resists solution is suspect of being ill formulated, especially
since this is a problem of conceptualization, not a technical mathematical prob-
lem like FFermat’s theorem or the four-color problem. We Bayesians believe that
the dilemma to which the frequentist position has led, along a natural and under-
standable path, is insoluble and reflects what is no longer a tenable position
about the concept of probability.

T'requentists, of course, disagree somewhat one from another, and their indi-
vidual views are subject to change and development with passing time. It is,
therefore, not really careful to speak of the frequent view, or the frequency
concept of probability, though I believe that what I have said thus far does
apply to all frequentists. The widest cleft between frequentists is that between
R. A. Fisher and those who side closely with him on the one hand and those
who more or less associate themselves with the school of Jerzy Neyman and
Egon Pearson.

3. The behavioralistic approach

One of the most valuable outgrowths of the frequentistic movement is the
behavioralistic (or one might say economic-theoretic) approach to statistical
problems. This approach undoubtedly has very early antecedents, but statisti-
cians were particularly wakened to it by Neyman’s suggestion in [22] that
inductive behavior is a more fertile concept for statistics than inductive inference,
a theme elaborately illustrated by Abraham Wald and many of us who came
under his influence.

It is a vexed question whether behavior rather than inference is the very
essence of statistical problems. R. A. Fisher (pages 100 and 103 of [12] and [11])
and some others maintain energetically that inductive inference serves the high,
free purposes of science and that inductive behavior, which is to say the eco-
nomic analysis of statistical problems, is adapted only to business and tyranny
if to anything. Personally, emphasis on behavior has seemed to me an unmiti-
gated advantage, and I believe it to be a stimulating framework for all parts of
statistics. Whether the conclusion is found valid or not, there are surely many
interesting, practical problems for which the behavioralistic point of view is
distinctly advantageous.

The traditional idea of inference as opposed to behavior seems to me to have
its roots in the parallel distinction between opinion and value. Since the Bayesian
outlook reinstates opinion in statistics—in the guise of the personal probabilities
of events—the concept of inductive inference has a meaning to Bayesians that
is usually closed off to frequentists. Inference means for us the changes in opinion
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induced by evidence on the application of Bayes’ theorem. For us, a problem in
analysis, as opposed to one in design, can conveniently and properly be separated
into two phases. First, compute the new distribution induced by the original
distribution and the data. Second, use the new distribution and the economic
facts about terminal actions to pick one of the terminal actions that now has the
highest expected utility. Of course, a full statistical problem typically involves
design as well as analysis. The Bayesian method for such a problem is, in prin-
ciple, to survey all designs, each followed by optimal terminal decision, and to
select one of those with the highest expected income, taking into account the
expected cost of experimentation as well as the over-all expected income of the
terminal act. Even the most natural of such problems can be forbidding ana-
lytically, as is illustrated by Herman Chernoff’s paper at the Symposium [5],
and such problems now seem particularly important.

4. Objectivity and subjectivity

The interplay between the ideas of objectivity and subjectivity in statistics
is interesting and sometimes confusing. Since frequentists usually strive for, and
believe that they are in possession of, an objective kind of probability (a partial
exception seems to be reflected on page 33 of [12]) and since personalists declare
probability to be a subjective quantity, it would seem natural to call frequentists
objectivists and personalists subjectivists. I myself have succumbed to this
temptation, but it is deplorable, for frequentists allocate much more to the
subjective than we Bayesians do, as will now be explained.

No matter how much statistical study and sophistication have to contribute
to the theory of design of investigations, the problem of design, I think everyone
agrees, depends largely on subjective choices and judgments. More important
for the moment, most frequentists are agreed that once the data is at hand and
the moment for final action (or analysis) has come, theory leaves room for a
great deal of subjective choice.

Fisher’s school, with its emphasis on fiducial probability—a bold attempt to
make the Bayesian omelet without breaking the Bayesian eggs—may be regarded
as an exception to the rule that frequentists leave great latitude for subjective
choice in statistical analysis. The minimax theory, too, can be viewed as an
attempt to rid analysis almost completely of subjective opinions, though not of
subjective value judgments. From this point of view, the minimax theory of
statistics is, however, an acknowledged failure. The minimax rule has never been
taken seriously as a philosophic principle for inductive behavior, and even as a
rule of thumb little if any good has been found in it; the strongest apology for
the rule is perhaps to be found in the latter half of my book [24], especially
chapters 10, 11, and 13. Studies of the minimax rule have been stimulating for
statistics, and modifications and outgrowths of the rule may prove of great value,
but those of us who, twelve or thirteen years ago, hoped to find in this rule an
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almost universal answer to the dilemma posed by abstinence from Bayes’ theo-
rem have had to accept disappointment.

I repeat, then, frequentists are rather well agreed that analysis is largely sub-
jective. The one clear guide to analysis to which they have come is the principle
of admissibility. This says roughly that statistical procedures that are capable of
improvement simultaneously at all values of the unknown parameter are not
satisfactory. I think that we all agree that the principle is basically sound,
though the demonstration by Charles Stein [29] that some favorite estimation
procedures are not admissible must make us circumspect in our statement and
application of the rule. The usual frequentist position goes on to say that any
admissible procedure might be the preferred procedure of some person, so statis-
tical theory cannot eliminate any admissible procedure. In all this, the Bayesian
agrees with the frequentist.

Both agree, too, that though they cannot eliminate any admissible procedure
as the preferred procedure of a given person, it may be possible to give sugges-
tions that will help the person to make his choice in an orderly and personally
satisfying way. The frequentist seeks to do this by inventing what he often calls
“nice properties,” exemplified by unbiasedness, stringency, minimum mean
squared error, symmetry (or invariance), a given significance level, and so on.
These properties of statistical procedures are felt by frequentists to be more or
less appealing, and they hope that, in a given problem, exploration of what sub-
sets of nice properties can be attained by admissible procedures will help the
person to know his personal choice.

It is just here that we Bayesians particularly hope to carry statistical theory
a step forward. Our approach is not to urge the person to ask himself what
qualitative properties he likes a procedure to have but to ask himself rather gen-
erally (usually going outside of the particular procedures that the experiment
actually contemplated happens to make available) when he would prefer one
procedure to another. A few strongly appealing principles of coherence often
succeed in making this task relatively easy. These principles can easily be com-
municated to a frequentist with no reference to any kind of probability that he
does not believe in. But, in fact, a person who succeeds in conforming to the
principles of coherence will behave as though there were a probability measure
associated with all events in terms of which his preference among statistical
procedures is such as to maximize expected utility under this measure. In par-
ticular, he will behave in accordance with Bayes’ theorem as applied to his
personal probability measure.

5. Simple dichotomy

The whole situation too abstractly described by the last paragraph is il-
lustrated in microcosm by the theory of a simple dichotomy. In this almost
oversimplified sort of problem, a statistical procedure is characterized by two
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numbers a and B, the errors of the first and second type. The essence of the
principle of admissibility here is that any change in « and 8 that increases
neither of them is a good thing. For a given experimental setup, the admissible
procedures (in this case, admissible tests) are, according to the Neyman-Pearson
lemma, the likelihood-ratio tests. What can be said to help a person in a given
situation choose one among the many likelihood-ratio tests available? A typical,
and thoroughly competent, frequentist answer is explicitly given by Lehmann
in a recent article [21]. He discusses various “nice properties,” shows that some
are not so nice after all, and mildly recommends a new one.

The Bayesian approach here is to inquire what a person’s preference scheme
might be for all pairs of points in the («, 8) square. Lehmann briefly considers
this possibility, but he yields to the discouraging conclusion that the indifference
curves describing the preference scheme might be practically any family of
curves running in a generally northwesterly to southeasterly direction. Actually,
the situation is anything but discouraging. Clear and simple arguments give
strong reason for concluding that the indifference curves of an ideally consistent
person are parallel straight lines. These arguments flow from the remark that
if a person does not care which of a certain pair of experiments and tests he does
then he would just as soon substitute for either of them the experiment and test
that consists in executing one of the two different programs at random. Thus,
where there seems at first to be freedom for a person to express his preferences
by any of a vast family of curves, it can be concluded that there is good reason
for him to express his preference by a single number, say the negative of the
slope of his family of indifference lines. A person whose preferences among (a, 8)
points are expressed by a family of parallel straight lines will use the negative of
the slope of these lines as his eritical likelihood ratio for any experiment refer-
ring to the simple dichotomy.

To put it differently, there is every hope of convincing a person concerned
with simple dichotomy that he has some rate of exchange between the two quan-
tities « and B; for a reduction in one, he will trade a suitable proportional in-
crease in the other. When the person sees this, he will want to adopt a critical
likelihood ratio equal to his eritical exchange ratio for any experiment that may
be done.

The idea that a person has reason to choose a fixed likelihood ratio for a sim-
ple dichotomy without regard to whether the experiment is large or small or,
indeed, without regard to what the errors associated with its various likeli-
hood-ratio tests are, seems never to have emerged from frequentist studies,
certainly never to have caught on and been propagated. In particular, it is not
referred to in the well-informed and thorough article [21] of Lehmann alluded
to above. Some of us Bayesians have been talking about this rule with many
people of diverse opinions for several years, and it seems solidly to stand the
test of criticism and counterexample.

To continue the Bayesian analysis a little further, suppose that the errors of
type 1 and type 2 occasion numerical losses, say L; and L,. It is then evident, on
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examination, that the person who adopts a fixed critical likelihood ratio is
behaving as though he attributed a certain probability to one hypothesis and
the complementary probability to its alternative.

The whole theory of simple dichotomy sketched here is easily extended to
cover any problem with finite parameter and action spaces. Many will agree
that this extension is basically adequate for a conceptual portrayal of the whole
of statistical theory, though of course exploration of continuous situations is
interesting and of practical importance.

The main purpose of this section has been to clarify the important point that
the Bayesian approach is more objectivistic than the frequentist approach in
that it imposes a greater order on the subjective elements of the deciding per-
son. We Bayesians have, in fact, sometimes been thought guilty of dictatorial
tendencies on this count. I hope that the language I have been using makes it
clear that Bayesians are not trying to tell anyone what he must do. We are of
course content to state what we think are acceptable principles of coherence and
let those who agree strive to comply with them.

A second important objective which has been served by this section is to
show how the Bayesian movement has a contribution to make even to those who
are disinclined to take seriously any but a frequency concept of probability.

The theory of simple dichotomy sketched here was worked out by Dennis
Lindley and me in the spring of 1955 under the impetus of his paper [22].

6. Personal probability

The preceding section brought out that the Bayesian theory of statistics can
be entered by a back door, so to speak, without challenging the propriety, or
even the exclusive propriety, of the frequency concept of probability, but once
the edifice is truly penetrated the theory of personal probability is seen to be
its main staircase. Let us then boldly enter the front door and take a brief look
at this theory.

If I offer to pay you $10.00 if any one horse of your choosing wins a given
race, your decision tells me operationally which you consider to be the most
probable winner. Working out the theory of this economically defined concept
of “more probable than for Mr. So-and-so” on the assumption that Mr. So-and-so
is ideally free of contradictory and self-negating behavior, leads to the conclu-
sion that his preference scheme is governed by an ordinary probability measure
on the class of all events. Details and references may be found in [24].

For many of us, it is more stimulating to think of the odds that Mr. So-and-so
would be just willing to offer in favor of an event as measuring his personal
probability through the formula, probability = odds/(1 + odds). This approach,
though vivid and useful once the theory is accepted, does not lend itself smoothly
to a rigorous foundation of the theory (compare page 176 of [24]).

The concept of personal probability sketched in the preceding two paragraphs
seems to those of us who have worked with it an excellent model for the concept
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of opinion. Of course, the concept has been subjected to much criticism and
elaboration, which cannot be entered into here. See [25] for details and references.

For the purpose of using the concept of personal probability to put statistics a
bit forward, it is enough to understand the concept to concede that it has some
sense and promise, and to explore the consequences for statistics with imagina-
tion and temperance. I will confess, however, that I and some other Bayesians
hold this to be the only valid concept of probability and, therefore, the only one
needed in statistics, physics, or other applications of the idea. In particular, we
radical Bayesians claim to demonstrate that all that is attractive about the
frequency theory of probability is subsumed in the theory of personal probabil-
ity. Before challenging that as preposterous, one ought at least study the chap-
ter on equivalent events in de Finetti’s paper [6] or in section 3.7 of [25], which
is derived from that chapter. A less radical position was recently taken by
Good [15].

A few words of history. The first formal mention of the concept of personal
probability seems to be by Frank Ramsey in 1926. His posthumous papers
in [24] present a theory of personal probability and of utility developed to-
gether. Ramsey seems largely to repudiate his creation in a brief note (on pages
256 and 257 of [24]) not written for publication, according to page viii of [24].

Bruno de Finetti developed the concept of personal probability in great detail,
beginning after, but independently of, Ramsey. De Finetti has many relevant
publications, but I particularly recommend [6], though it is not recent. A recent
and most stimulating work is [7], in Italian.

The work of B. O. Koopman [19], [20] is interesting also. It was done with
some slight knowledge of [6].

Ramsey, de Finetti, and Koopman developed their theories in detachment
from statisticians and did relatively little to explore possible application of
personal probability to statistics. I. J. Good in 1950 published a small book [14]
on personal probability with special reference to statistics, and I published a
book in 1954 [25]. In my judgment, Good and I were both too deeply in the
grip of frequentist tradition—he much less than I—to do a thorough job. In 1959
Robert Schlaifer published an elementary but important and stimulating text-
book [28] on statistics written entirely and wholeheartedly from the Bayesian
point of view.

Harold Jeffreys holds what I call a necessary view of the theory of probability,
but such a view is Bayesian in the broad sense that it makes free use of Bayes’
theorem and therefore demands a thorough practical exploration of Bayes’ theo-
rem for its application to statistics. In fact, Jeffreys’ books [16], [17] as well as
his many papers are at present invaluable in developing the theory of (person-
alistic) Bayesian statistics.

7. Implications of the Bayesian view

We Bayesians find that exploration of the Bayesian position stimulates our
insight into every part of statistical theory. Of course, many of the criticisms
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that flow from this position have been seen before. After all, the theory is but
an elaboration of common sense and it is to be expected that any of its important
conclusions can be referred rather directly to common sense. There is space for
only a brief mention of a few of the implications of the Bayesian position already
discovered. The discussion of these will perhaps bring out that many of them
have been discovered by frequentists but that the Bayesian position usually
allows an implication to be carried further, often supplementing a destructive
criticism with a positive suggestion. From the Bayesian position, heretofore
scattered ideas take on new unity and comprehensibility.

One of the most obvious, ubiquitous, and valuable consequences of the
Bayesian position is what I call the likelihood principle. This principle was, so
far as I know, first advocated to statisticians in a non-Bayesian work by George
Barnard [2]. It is supported in R. A. Fisher’s recent book [12], which is of course
non-Bayesian and ostensibly frequentist. Practically none of the ‘“nice proper-
ties” respect the likelihood principle nor apparently does Fisher’s concept of
fiducial probability in any of its revisions; see [1].

The likelihood principle says this: the likelihood function, long known to be a
minimal sufficient statistic, is much more than merely a sufficient statistic, for
given the likelihood function in which an experiment has resulted, everything else
about the experiment—what its plan was, what different data might have
resulted from it, the conditional distributions of statistics under given param-
eter values, and so on—is irrelevant.

Consider an illustration. A properly randomized and executed experiment to
ascertain the number of red-eyed flies in a population of flies will, for each pair
of nonnegative integers (r, n) and each frequency p, have some probability
P{r, n|p} of resulting in r “reds’”” and n “nonreds” for a given p. In fact, P{r, n|p}
will be of the form k(r, n)p (1 — p)», as shown in [13]. For a given outcome
(r, n) this function of p represents the likelihood function of p. I say “represents”
rather than “is” to emphasize that the likelihood function is defined only up to
an arbitrary factor that does not depend on p. Thus, equally, p"(1 — p)* repre-
sents the likelihood function, and applying the likelihood principle, we conclude
that the import of r “reds” and n “nonreds” is independent of the design of the
experiment and, in particular, independent of the function k(r, n). This conclu-
sion is out of harmony with much statistical thinking and effort, for example the
search for unbiased estimates of p, exemplified by [13]. The likelihood p"(1 — p)»
retains its import even if the experiment terminated merely when the experi-
menter happened to get tired or run out of time—always under the proviso that
the individual trials are independent under a fixed p, not for instance one that
changes with fatigue or excitement.

This same function even persists if the experimenter quits only when he
believes he has enough data to convince others of his own opinion. This leads
to the moral that optional stopping (as condemned in [8]) is no sin, but that
traditional methods of judging data in terms of significance level are misleading.
Frequentists have certainly had an inkling of the fact that significance level
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cannot safely be interpreted without regard to other information, but, so far
as I know, they have not been able to treat the matter systematically.

The likelihood principle, with its at first surprising conclusions, has been sub-
ject to much oral discussion in many quarters. If the principle were untenable,
clear-cut counterexamples would by now have come forward. But each example
seems, rather, to illuminate, strengthen, and confirm the principle.

Another principle of great practical value is an approximation that I call the
principle of precise measurement and that accounts for much practical “objec-
tivity”” in statistical inference. If prior opinion about a parameter (or set of
parameters) w is described by a density p(w), and if the probability of a datum D
given w is P{D|w}, then, according to Bayes’ theorem, posterior density of w on
the datum D is p(w|D) = kP {D|w} p(w), where k is determined by normalization.
The principle of precise measurement is the recognition that if p(w) behaves
gently as compared with the likelihood representation P{D|w} then p(w|D) will,
in the interesting part of the range of , be approximated by k'I’{D|w}, where k'
is also a normalizing constant.

To illustrate roughly, if your opinion about the weight of a certain sack of
potatoes is insensitive to shifts of half a pound or-so within some reasonable
interval—an assumption that can well be palpably satisfied—then after you
weigh the sack with a normal error of standard deviation one ounce, your opinion
will be a density nearly normal about the weighing with standard deviation one
ounce. In short, you will be justified, as an approximation, in drawing just the
kind of conclusion that the theory of confidence intervals is perforce careful not
to justify. It is not surprising that the theory of precise estimation illuminates
many questions that have been raised about confidence intervals.

A somewhat fuller statement of the principle allows for the possibility that
p(w) can be written as f(w)g(w), where f, but not necessarily g, is gentle. This
justifies, for example, approximating posterior opinion based on several normal
weighings of unknown variance by a t distribution.

One question about which frequentists have disagreed is the Behrens-Fisher
problem. The solution always championed by TFisher [12], for reasons inscrut-
able to most of us, is in fact appropriate as a good approximation in many
situations according to the theory of precise measurement. The demonstration,
like so many other valuable things in this area, has in effect been given by
Jeffreys [18] from a somewhat different outlook.

The principle of precise measurement is not new. It has, for example, been
well stated and well understood by Jeffreys (section 3.4 of [16]) and less well
stated and less well understood by Fisher (page 287 in [9]).

Many other examples of Bayesian implication could be offered if space per-
mitted; some are to be found in [26] and [27].

8. One present view

My own present view, which I feel safe in asserting agrees quite well with that
of other Bayesian statisticians, must be largely clear from earlier sections of this
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lecture, but I would like to draw the threads together here in a sort of provisional
credo.

Personal probability at present provides an excellent base of operations from
which to criticize and advance statistical theory.

The theory of personal probability must be explored with circumspection and
imagination. For example, applying the theory naively one quickly comes to
the conclusion that randomization is without value for statistics. This conclu-
sion does not sound right; and it is not right. Closer examination of the road to
this untenable conclusion does lead to new insights into the role and limita-
tions of randomization but does by no means deprive randomization of its
important function in statistics.

Exploration of the theory of personal probability is full of practical implica-
tions for statistics at all levels from that of the most elementary textbooks to
the most remote pages of the Annals.

REFERENCES

(1] F.J. AnscoMBE, ‘“‘Dependence of the fiducial argument on the sampling rule,” Biomeirika,
Vol. 44 (1957), pp. 464—469.

[2] G. A. BARNARD, “A review of ‘Sequential Analysis’ by Abraham Wald,” J. Amer. Statist.
Assoc., Vol. 42 (1947), pp. 658-669.

[3] R. Carnar, Logical Foundations of Probability, Chicago, University of Chicago Press,
1950.

[4] , The Continuum of Inductive Methods, Chicago, University of Chicago Press, 1952.

[56] H. CEERNOFF, ‘“Sequential tests for the mean of a normal distribution,” Proceedings of
the Fourth Berkeley Symiposium on Mathematical Statistics and Probability, Berkeley and
Los Angeles, University of California Press, 1961, Vol. 1, pp. 79-91.

[6] B. pE FiNETTI, ‘“La prévision: ses lois logiques, ses sources subjectives,” Ann. Inst. H.
Poincaré, Vol. 7 (1937), pp. 1-68.

(7] , “La probabilitd e la statistica nei rapporti con l'induzione, seconde i diversi
punti di vista,” Induzione e Statistica, Rome, Istituto Matematico dell’ Universita, 1959.

[8] W. FELLER, ‘Statistical aspects of ESP,” J. Parapsych., Vol. 4 (1940), pp. 271-298.

[9] R. A. FisHER, “Two new properties of mathematical likelihood,” Proc. Roy. Soc. London,
Ser. A, Vol. 144 (1934), pp. 285-307. (No. 24 in [10].)

(10] , Contributions to Mathematical Staiistics, New York, Wiley, 1950.

[11] , “‘Statistical methods and scientific induction,” J. Statist. Soc., Ser. B, Vol. 17
(1955), pp. 69-78.

[12] , Statistical Methods and Scientific Inference, New York, Hafner, 1956.

[13] M. A. GimsHICK, F. MOSTELLER, and L. J. SavaGe, “Unbiased estimates for certain bi-
nomial sampling problems with applications,” Ann. Math. Statist., Vol. 17 (1946), pp.
13-23.

[14] I. J. Goop, Probability and the Weighing of Evidence, London, Griffin, and New York,
Hafner, 1950.

[15] , “Kinds of probability,” Science, Vol. 129 (1959), pp. 443-446.

[16] H. JerrrEYS, Theory of Probability, Oxford, Clarendon Press, 1948 (2nd ed.).

[17] , Scientific Inference, Cambridge, Cambridge University Press, 1957 (2nd ed.).

[18] , “Note on the Behrens-Fisher formula,” Ann. Eugenics, Vol. 10 (1940), pp. 48-51.

[19] B. O. KooprmaN, “The axioms and algebra of intuitive probability,” Ann. of Math., Vol.
41 (1940), pp. 269-292.




586 FOURTH BERKELEY SYMPOSIUM: SAVAGE

[20] , “The bases of probability,” Bull. Amer. Math. Soc., Vol. 46 (1940), pp. 763-774.

[21] E. L. LeaManN, “Significance level and power,” Ann. Math. Statist., Vol. 29 (1958),
pp. 1167-1176.

[22] D. V. LinpLEY, “Statistical inference,” J. Roy. Statist. Soc., Ser. B, Vol. 15 (1953),
pp. 30-76.

[23] J. NEYMAN, “Raisonnement inductif ou comportement inductif,” Proceedings of the Inter-
national Statistical Conference, 1947, Vol. 3, pp. 423—433.

[24] F. P. RamsEY, The Foundation of Mathematics and Other Logical Essays, London, Kegan
Paul, and New York, Harcourt, Brace, 1931.

[25] L. J. SavaGE, The Foundations of Statistics, New York, Wiley, 1954.

[26] , “La probabilitd soggettiva nei problemi pratici della statistica,” Induzione e Sta-
tistica, Rome, Istituto Matematico dell’ Universita, 1959.

[27] , “Subjective probability and statistical practice,” to be published.

[28] R. ScHLAIFER, Probability and Statistics for Business Decisions, New York, McGraw-Hill,
1959.

[29] C. StEIN, “Inadmissibility of the usual estimator for the mean of multivariate normal
distribution,” Proceedings of the Third Berkeley Sympostum on Mathematical Statistics and
Probability, Berkeley and Los Angeles, University of California Press, 1956, Vol. 1, pp.
197-206.




