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1. Introduction
Four kinds of studies of learning might reasonably be discussed under the title of this

paper: (1) mathematical research on the theory of neuron networks, (2) the design of
self-organizing mechanisms such as robots or computing machines [16], (3) the parts of
information and communication theory that fall in the field of statistical behavioristics
[29], (4) stochastic learning models for simple psychological experiments. This paper
deals with the fourth topic.

There is a small but growing body of literature on statistical models constructed to
assist experimental psychologists in the design, analysis, and explanation of some com-
paratively simple trial-by-trial learning experiments carried out under highly controlled
conditions. In these experiments the response is either classified categorically or given
as a time measure.

Because these models emphasize both the step-by-step process of learning and its
statistical features, problems of time dependence, statistical estimation, and occasionally
problems in theoretical probability arise. Thus far, sufficiently little work both of an
experimental and theoretical nature has been done on the models and their extensions
that there is still considerable unity in the publications. Furthermore the notions in-
volved are quite elementary.

In this brief discussion two general categories of mathematical learning models have
been omitted. Thurstone [35] develops learning curves initially from an urn scheme, but
turns from this probabilistic model to differential equations. Similarly Gulliksen [201
and Gulliksen and Wolfle [21] and many others before and since work from differential
equations, rather than from the kind of trial-by-trial models that are principally dis-
cussed below. On the other hand, Hull's extensive work (for one example see [26]) has
been omitted, though it is sometimes related to the models presented here, because his
postulational system would require a review of its own.

Finally, Savage's theory of personal probability [32] can, as he points out (p. 44), be
regarded as a device for giving expression to the phenomenon of learning by experience.
He also notes that logic itself "can be interpreted as a crude but sometimes handy em-
pirical psychological theory" (p. 20). Such theories are omitted on the grounds that they
are oriented more normatively than empirically and would not be likely to describe well
the kind of behavior emitted in the experiments discussed here.

2. Beginning notions

For simplicity a situation with two response classes is discussed first, together with
the form of the operator used to change the response probabilities. In section 3, a general-
ization to more than two response classes is introduced. Discussion there helps explain
the choice of the form of the operators used.

I On leave from Harvard University 1954-55.
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In a particular experiment such as a T-maze, an organism may have only two. pos-
sible responses-turning right or turning left. These responses are mutually exclusive
and exhaustive (refusing to make a choice is disallowed). In general, let such a pair of
alternatives be called A1 and A2. At any particular trial it is assumed that the probability
of choosing alternative A1 is p, while that of choosing A2 is q(= 1 - p).

After an alternative is chosen there is some outcome such as reward, nonreward, or
punishment (examples: food, nothing, electric shock). The alternative chosen together
with the outcome defines an event. Different events have associated with them opera-
tors which change the probabilities of the responses A1 and A2. It is not essential that
the events be regarded as determined by alternatives and outcomes, but in the experi-
mental situations considered thus far, it has been convenient to so regard them (some-
times one or the other is suppressed). Learning is achieved by changes in the probabili-
ties of choosing alternatives. In the two-response situation it is adequate to describe the
effect of an operator on the probability of A1, because the sum of the probabilities of the
alternatives must sum to unity. Two general forms for writing the operators are worth
mentioning, the first for intuitive reasons, the second for computational convenience
and everyday use.

The first, called the gain-loss form, is written

(1) Qp = p + a(l-p)-bp, O.a, b < 1,
and the second, called the fixed-point form, is

(2) Qp = ap + (1-a)X, O_ a < 1, 0 _ X_ 1.
The conditions on the parameters guarantee that Qp, the new probability of alternative
A1, has a value between 0 and 1. For reasons discussed below in the paragraph containing
equation (8), negative values of a have been ruled out; consistency between the condi-
tions of equations (1) and (2) could be achieved by adding the condition a + b _ 1 to
equation (1).

The gain-loss form shows that the new probability is made up of the old probability
plus a quantity proportional to its maximum possible gain and less a quantity propor-
tional to its maximum possible loss. The fixed-point form shows the new probability as a
weighted sum of the old probability and a value X. The quantity X is a fixed point of
the operator because if p has the value X, operating with Q gives QX = X. In addition,
X is the limiting value obtained when the operator Q is applied repeatedly. This is easily
shown because
(3) Qnp = anp + (1- a)X.

If a < 1, then as n tends to infinity the right-hand side of (3) tends to X. In the special
instance where a has the value unity, we have the identity operator because Qp = p. The
quantity a measures the ineffectiveness of the operator. If a = 1, the operator does not
change the probability; if a = 0, the probability leaps immediately to the limit point X.
Negative a's are not considered for reasons mentioned below.
Two operators do not ordinarily commute. It can be readily shown that

(4) (Q1Q2 - Q2Q1)P = (1- al)(1 -a2)(X - X2)
where the subscripts on the operators correspond to those on the parameters. Thus a pair
of operators commute if and only if at least one is the identity operator, or if the opera-
tors have equal limit points. Commutativity does occur occasionally in experimental
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work. In Solomon and Wynne's escape-avoidance experiment, dogs jump over a barrier
after a signal and before an electric shock (avoidance, Al) or after both signal and shock
have occurred (escape, A2). In the analysis [6] of data from this experiment, it appeared
that there were two operators, one associated with each alternative, and that both
operators had limit points unity. The other condition for commutativity occurred in a
rote learning experiment analyzed by Miller and McGill [30]. On each trial the same list
of words was read (order scrambled between trials), the subject recorded all the words
he could remember. Remembering a word improved its probability of recall after next
reading, but forgetting a word did not seem to change its probability of being recalled
on the following trial. Thus the operator associated with forgetting was-within meas-
urement error-the identity operator. Commutativity is particularly convenient be-
cause it implies that the probability at the end of a sequence of trials depends only on the
number of times each operator has been applied and not upon the particular order in
which they were applied.

Implicit in the discussion up to this point is the independence-of-path assumption.
It has been assumed that the probability of a response on a particular trial depends on
the value of p that has been achieved by successive application of the operators and not
upon the detailed information about alternatives and outcomes that occurred on each
trial. What "memory" the model has is contained in the value of p. Such an assumption
is extremely drastic, and it is doubtful if it can long endure. By generalizing the notion of
an operator to include more than the alternative and outcome of a single trial, it should
be possible to widen the scope of the model. This has not been done thus far. The path-
independence assumption makes the process under discussion Markovian, but the states
of the system are not the alternatives, outcomes, or events, but the values of p assumed
at a particular instant. With two operators, at the close of n trials there may be as
many as 2n different states available for the organism.

3. The general model
In general there are r mutually exclusive response classes or alternatives A1, A2,

A,. The state of the organism at a given trial n is given by the vector p(n) = (pl, p2,
pr), pi > 0, Zpi = 1. An event E occurs which has associated with it the operator T.
The new probability vector after the operator is applied is

(5) p(n + 1) = TP(n) -

What should be the form of the operator? It has been reasoned as follows [8]. The identi-
fication between real classes of behavior and alternatives in the model is, to a certain
extent, arbitrary. It would be desirable to have the description of the behavior by the
model invariant under certain kinds of changes in classification. For example, in a bar-
pressing experiment with a rat as subject, the rat may press the bar with his left paw,
right paw, or with both paws. Yet an experimenter ordinarily does not distinguish among
these classes of responses, rather he combines them into one response category for the
record, and "treats" these responses in the same way, that is, all three classes have the
same consequences for the rat. It would be desirable therefore to be able to combine such
classes on any trial without altering the behavioral predictions. The form of the operator
that makes this possible results from the combining of classes condition. Let us now be
more specific.
We are clearly concerned only with stochastic operators, operators that send prob-
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ability vectors into probability vectors, that is, in equation (5) both p(n) and p(n + 1)
are probability vectors. A projection of a probability vector p = (PI, P2c * * , Pr) into a
probability vector p' is obtained by choosing a nonempty subset a of the elements of the
vector and replacing all but one of these elements by zeros, and replacing the remaining
one by the sum of the elements in the subset, while keeping unchanged the elements of
the vector not in a. [Example: (0.4, 0, 0, 0, 0.6) is one projection of (0.1, 0.11, 0.1, 0.1, 0.6),
where the subset chosen for projection consists of the first four elements.] Call an opera-
tor that performs such a projection C. Then a stochastic operator T is said to satisfy
the combining of classes condition if and only if

(6) CTCP = CTp
for all projection operators C and all probability vectors p. Then we have the follow-
ing [8]

THEOREM. A stochastic operator T (for r > 3) satisfies the combining of classes condition
if and only if it has the form
(7) Tp = ap + (1-a)X,
where p and X are probability vectors and a is a suitably chosen scalar.

Thus the innocuous sounding request that the model be such that an experimenter
be able to combine response classes (which he treats in the same manner) either before
or after he runs the experiment and still get the same result restricts the form of the
operators tremendously, and this form is like that previously displayed in equation (2)
except that p and X are now vectors.

The spirit of the combining of classes condition is that the number of response classes
is limited only by the imagination of the investigator. A lower bound on a can be ob-
tained from an extension of the combining classes condition. The bound is

(8) <1 a.

If we let r become arbitrarily large, then negative a's become inadmissible. This ex-
tension was suggested in conversation by L. J. Savage (see [7, section 1.8]). We have
seen no experiments where negative values of a seemed appropriate. Negative a's lead
to probabilities that oscillate above and below the limit point when the same operator
is applied repeatedly.

It should be noted that the combining of classes condition is automatically satisfied
for r = 2, and therefore that the theorem cannot be proved for that number of classes.
But if we regard r = 2 as having arisen from the projection of some higher dimension in
which the condition holds, the form of the operator required is that given in equation (2).

Estes [11] deduces equation (2) from set-theoretic considerations he regards as ap-
propriate to conditioning experiments (stimulus sampling). His reasoning is essentially
as follows. Let there be two response classes Al and A2 and a stimulus set S formed of
two disjoint subclasses C and -C. (Estes speaks of the numbers of elements in the vari-
ous sets, we will speak of the measures of the elements, a minor change.) All elements
in C are "conditioned to" A,, those in -C are conditioned to A2. An organism perceives
a subset of stimuli X such that the ratio of the measure of the elements in X n C to
the measure of C is the same as the ratio of the measure of C to the measure of S (homo-
geneity assumption). The value of this ratio is the probability of response Al. After an
event has occurred X breaks up into two disjoint subsets Y and Z. Whatever their
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previous state, all elements of Y are now "conditioned to" A1 and all elements of Z
to A2. Assuming the measures of the elements are invariant, equation (1) can now be
obtained after some algebra by letting a = m(Y)/m(S) and b = m(Z)/m(S), where
m( ) stands for the measure of the set named in the parentheses.
By extending Estes' stimulus sampling analyses in the natural way to r classes and

maintaining the corresponding kind of homogeneity assumption, it is possible to derive
the operator obtained from the combining of classes condition [7, section 2.5]. Estes and
Burke [14] also give attention to the problem of stimulus variability, that is, the measure
of a stimulus element is its probability of occurring on a given trial. Different elements
have independent probabilities of occurring on each trial.

The combining of classes condition has not had serious experimental testing. Most
experiments analyzed thus far by the general model have employed two response classes.
Some exceptions are the work of Neimark [31] who used three response classes, and the
model behaved rather satisfactorily; and Flood [18] who used nine classes. Though
Flood's analysis was not carried out in detail for the general model, it seems unlikely that
the particular specialized models used would be satisfactory. It may well be that more
strict experimental conditions are required as the number of response classes increases,
if indeed the model holds. The obvious alternative to the combining of classes condition
is that T should be a general r X r stochastic matrix. This means that each operator
used in an experiment is required to have r(r - 1) parameters estimated for it unless
some method of reducing their number is employed. It must be recalled that the basic
data are a sequence of responses (together with their outcomes) from which must be
gleaned the estimates of these many parameters, scarcely a tasty task. The combining of
classes condition reduces the number of parameters to r for each operator. But such re-
marks are not compelling, further tests are clearly in order.

Flood [17] has tried out models closely related to the ones presented here to see how
they perform in learning to play the von Neumann-Morgenstern types of games. By
assigning parameter values and applying the appropriate operators after every trial, one
can by use of a random number table compute the behavior of what might be called a
stat-rat, a mathematical organism that learns in exact accordance with the rules of the
particular model. When the model is used for such game-learning it becomes a self-
organizing system. Flood used parameter estimates based on experiments with real
rats, so with that slender tie to real learning, and because of its intrinsic interest to
statisticians, we quote from his summary (pp. 156-157):

"The experimental results consist of Monte Carlo computations for the stat-rat,
contests between stat-rat and a human subject, and comparisons of performance of
stat-rat and a human subject when playing the same static game. Very limited data
indicate that

(a) The stat-rat usually learns a good strategy when a constant mixed-strategy is
played against him. In Morra [a 9 X 9 symmetric game] and the other games played
the stat-rat seemed to settle on essentially the best strategy within 200 trials or so.

(b) A person proficient at games would win against the stat-rat in Morra.
(c) The stat-rat does reasonably well in a static game, in comparison with the human

subject, but a statistician would certainly defeat the stat-rat." He goes on to say that it
seems unlikely that a Markov process will be adequate to describe human learning. We
do not disagree. As we have said, the models are developed for quite simple situations-
for example, Estes and Burke [14, p. 279] say of one of their models "for experimental
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verification of the present theory we shall look to experiments involving responses no
more complex than flexing a limb, depressing a bar, or moving a key."

4. Experimental models and estimation
In this section some models for specific experiments are described, together with some

remarks about estimation, and occasionally the results of experiments.
Bush and Mosteller [7] classify models ordinarily used for choice experiments into

three categories: experimenter controlled, subject controlled, and experimenter-subject
controlled.

Experimenter-controlled models can well be illustrated by a prediction experiment
like that of Humphreys [27]. On a proportion ir of the trials a lamp lights, but on 1-r
of the trials it does not. After a signal that the trial is to begin, the subject predicts
whether the lamp will or will not light on the ensuing trial. There are thus two outcomes
01 and 02 corresponding to lamp "on" or "off." Let pn be the probability of the predic-
tion "on" (A1) for the nth trial. In this problem two operators have been used:

Probability
of

Event Operator Application
01 Pn+, = Qip = aip. + (1 - ai)Xi Ti

02 Pn+l = Q2Pn = a2p. + (1 - a2)X2 T2(=1 - Ti)

For the experiment described here the limit points are ordinarily chosen as X1= 1,
X2 = 0, the intuitive argument being that if 01 always occurred, the subject would
ultimately be practically certain to predict A1, and if 02 always appeared the subject
would be practically certain to predict A2 after many trials.

If there are many subjects, each starting with the initial probability p for an Al
response, then at the nth trial there is a distribution of values of p. Let this distribution
have mean Vi, n. Then it can be shown [7, section 4.3] that the mean is given by

(9) VI, = VI, - (Vlc p)anX

where
ai = (1-ai) Xi,X i = 1, 2,

a 7rlal+1r2a2,
7Lrlal+r2a2,

=ia.

Additional moments of the distribution can be deduced.
In the special light experiment described above, the symmetry between "on" and

"off" suggests a, = a2. This assumption together with the values of the limits mentioned
earlier yields V1c = rl. Thus with these special assumptions the model states that
asymptotically the subject will predict "on" for the lamp the same proportion of times
it comes on. Human subjects do this! The experiment has been performed often, with
different stimuli, different instructions, and in different laboratories. Statisticians and
mathematicians notice that the subject is not correct as often as he could be if he would
choose the prediction corresponding to max (ri, T2) and stick to it. (This experiment has
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not, so far as the author is aware, been performed with lower animals as subjects.)
References and discussion bearing on this experiment can be found in [7, chapter 13],
[8], Estes and Straughan [15], Estes [13], Flood [18]. The experiment has been extended
to three predictions by Neimark [311. Further, Burke, Estes, and Hellyer [3] used an
ingenious variation of this experiment to study, in association with a variation of the
model, the effect of stimulus variability upon rate of verbal conditioning. The stimulus
sampling approach was made operational in such a manner that from the results of two
experiments, the quantitative results of a third could be forecast.

This type of model is called experimenter-controlled (or noncontingent) because the
application of the operators is entirely in the hands of the experimenter.

In a subject-controlled experiment, the application of the operators is determined by
the response given by the subject. The Solomon-Wynne experiment [33] briefly described
earlier exemplifies this (p,n is the probability of avoidance on trial n):

Probability
of

Event Operator Application
A1 Pn+i = Qlpn = alp. + (1 - a)Xi pn

(avoidance
before shock)

A2 Pn+1 = Q2Pn = a2pn + (1 - a2)X2 1-pn
(escape after
shock)

In this experiment Xi = X2 = 1, and po = 0. The problem is to estimate the values of
the learning rate parameters a, and a2. Data from this experiment form a matrix of 1's
and O's corresponding to avoidance and escape respectively for 30 dogs for some 20
trials. As a first approximation, it can be assumed that all dogs have identical param-
eters (the experimenters take pains that the shock is adjusted to the dog, and that the
barrier to be jumped is adjusted to shoulder height for each dog). In principle, the likeli-
hood of the entire matrix can be written down and maximized for the two parameters
under discussion. The maximization would be a matter of exploring the al, a2 unit square,
not a small job. The procedure actually used in [6], [7] is to obtain an estimate for a2,
based on a maximum likelihood procedure using only trials to the first avoidance (this
yielded a value 0.92). Then this estimate was regarded as a fixed known value in the
further estimation of a,. The estimation of al can be sketched briefly. The probability
of escape after one previous avoidance is

(10) qn, 1 = aia2

This can be estimated from 1 - xn, I/N., 1, where N., 1 is the number of dogs on trial n
that have just one previous avoidance, and x", is the number of these dogs that avoided
on trial n. Since a2 is regarded as known, a, can now be estimated. Estimates like this
can be obtained for each number n, and for each number k of previous avoidances.
These estimates may then be pooled (the value obtained was al = 0.80). It is an open
question what the optimum method of estimating parameters is in all these applications.
Furthermore, it would be valuable to know among those methods leading to estimates at
reasonable computing costs which are to be preferred. To compare the behavior of the
model with that of the real dogs the experiment was replicated in a Monte Carlo manner
with 30 stat-dogs each of whom had the parameters mentioned above. A few of the
comparisons given between the stat-dogs and real dogs are shown in table I. The ob-
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served standard deviations of the statistics are more for the purpose of direct comparison
than for significance testing, because the model is designed to reproduce variability as
well as averages. Only half of the comparisons given in [7] are shown here, the author
arbitrarily chose every other one.

One result of the model is to show that one avoidance trial is worth about the same
as 2.7 escape trials in learning to avoid [because (0.92)2 7 0.80].

The Miller-McGill rote-learning study (30] is another illustration of subject-controlled
events. The data again form a matrix of I's and 0's (corresponding to recall and non-

TABLE I

COMPARISONS OF THE STAT-DOG DATA AND THE REAL DOG DATA
OF THE SOLOMON-WYNNE EXPERIMENT, 30 DOGS IN EACH SET

STAT-DOGS REAL DoGs
STATISTIC Standard Standard

Mean Deviation Mean Deviation

Trials before first avoidance. 4.13 2.08 4.50 2.25
Total shocks ............... 7.60 2.27 7.80 2.52
Alternations ............... 5.87 2.11 5.47 2.72
Trials before first run of four
ormoreavoidances ....... 9.47 3.48 9.70 4.14

recall), rows corresponding to words, columns corresponding to trials. The operators
take the form

Qlp = alp + (1 - a,)Xi (recall)
(11) Q2P = p (nonrecall)

where preliminary investigation indicates that approximately an identity operator is
associated with nonrecall. Here the problem is to estimate simultaneously po, the initial
probability of recall, al, and Xi. One proposal for such estimation [7, section 10.7] is to
let x, be the number of words recalled at least v + 1 times, and let N, be the number of
word-trials required for those x, words to be recalled v + 1 times after each has been
recalled v times. Formally this is equivalent to inverse binomial sampling, where sampling
from a binomial population continues until c successes are observed [here x, plays the
role of c, and p, = acPo + (1- a')Xi plays the role of the fixed binomial probability].
As an estimate of p, we could use

X- 1
(12) = x.-1

which has a variance roughly approximated by

(13) o2 ppv) , ( p')

This suggests the possibility of minimizing a x2-like quantity

(14) S = (p- 2
0 Q52
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where Q is the largest number of recalls used in the estimation procedure. It is possible
to write the three minimizing equations and solve them approximately by iterative
methods in a couple of days using a hand calculator. It may be of interest that in an
experiment with 32 words (scrambled between presentations), it was estimated that
Po = 0.23, a, = 0.85, Xi = 0.98 (not far from the intuitive estimate of unity). Roughly
speaking the subject recalls about a quarter of the words on the first trial and on each
successive trial adds to that number 15 per cent of the remaining words. For those who
have learned lists presented in the same serial order on each trial it should be mentioned
that it is rather more difficult to learn a scrambled list unless some specific preparations
are taken.

Turning now to experimenter-subject controlled events we take the example of the
T-maze, or the two-armed bandit. The description sounds similar to that of the Hum-
phreys experiment, but it is not identical. In the two-armed bandit experiment, the
subject is seated before an apparatus with two buttons, a left-hand button and a right-
hand button. After a light signals that the bandit is activated the subject may press one
or the other button. When the right-hand button is pressed a poker chip is delivered on
7r, of the trials. When the left-hand button is pressed a poker chip is delivered on 72
of the trials. The pay-off proportions need not add to unity; for example, in one experi-
ment ri = 1, 7r2 = 0.50, in another 7r, = 0.50, 7r2 = 0, and in still another 7ri = 0.75,
7r2 = 0.25. The sequence of decisions actually made forms the information for study.
Four operators seem to be appropriate to this experiment corresponding to four events
formed from the two responses (right or left) and the two outcomes (reward or non-
reward). The symmetry of the two sides suggests that reward following a right-hand
choice should yield the same improvement in the probability of choosing the right-hand
button that reward following a left-hand choice gives in improving the probability of
choosing the left-hand button (that is, the operators should have the same value of a).
Similar remarks apply for nonreward.

Four models have been suggested thus far for this type of experiment. These models
differ only in the restrictions placed on the parameter values. It is convenient to give
each in the form of a 2 X 2 table whose entries are the result of a single application of
the operator to p, the probability of choosing the right-hand side (for convenience in
discussion we assume 7r, > 7r2, so that the right-hand side is the favorable side).

REINFORCEMENT-EXTINCTION MODEL
Left Right

Reinforcement alp alp + 1 a-

Nonreinforcement a2p + 1-a2 a2p

Reinforcement increases the probability of choosing the rewarded side toward unity,
while nonreinforcement reduces the probability of choosing that side toward zero.

In psychological work the phenomenon of secondary reinforcement often affects re-
sults. A verbal description runs that the presence of stimuli associated with reinforce-
ment can itself be reinforcing. Such reasoning would suggest that choosing a side
that had previously been reinforced might improve the probability that that side is
chosen, though presumably the improvement would not be as great as when primary
reinforcement is present. This reasoning suggests the alternative secondary reinforce-
ment model.
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SECONDARY REINFORCEMENT MODEL
Left Right

Reinforcement alp alp + 1-a
Nonreinforcement a2P a2p + 1 -a2

The third model is obtained from the reinforcement-extinction model by equating
the a's, it might be regarded as an information type of model because reinforcement and
nonreinforcement have equivalent though opposite effects. In the literature it has been
called the equal-alpha model rather than the information model.

The fourth model assumes that nonreinforcement does not change the probabilities.
This can be achieved by setting a2 = 1 in either of the first two models, but the titles of
the tables then lose their meaning. This has been called the identity-operator model.

If the reinforcement-extinction model were appropriate, a2 id 1, 7r $ 1, then an
organism does not ultimately learn to go to the favorable side with probability unity.
Even if he were certain to go to the right, on some trial he would not be rewarded, this
would reduce his probability of going to the right, and he has a finite probability of
going to the left on a later trial. If a2 is nearly unity, however, this effect can be small. If
we think of a large number of identical organisms undergoing this experiment, then
after a large number of trials we anticipate a distribution of values of p for these organ-
isms which does not degenerate to a point distribution. In a reasonable sense the prob-
abilities 0 and 1 of going to the right-hand side are reflecting barriers. When this model is
specialized to the equal-alpha model a more definite prediction can be computed [13],
[8], namely that the asymptotic mean of the distribution of values of p is

( 15)l2-77r2

For example, if 7ri = 0.50, W2 = 0, Vi,o = 2. Generally speaking this result has not
been observed in T-maze or two-armed bandit experiments, but Detambel [10] did
observe this result in an experiment with flashing lights. The subject was told that he
had the choice of two telegraph keys to push, that one key was "correct" and the other
key "incorrect" on each trial (contrary to fact for the group of subjects of principal
interest), and that whenever he chose the correct key a light flash would appear.
For three sets of 7r's with values 1.00:0; 0.50:0; 0.50:0.50, the asymptotic results were
in accord with equation (15). The principal support for the equal-alpha model comes

from the 0.50:0 group. The data are readily available in [13].
The secondary reinforcement model gives a rather different prediction. The values

0 and 1 in that model act as absorbing barriers. Sooner or later the subject stabilizes
on one alternative. Furthermore, the alternative need not be the favorable one. By
chance alone the animal may ultimately stabilize on the wrong side. This phenomenon
has not occurred in any of the two-armed bandit experiments with human subjects re-

ported in [7, chapter 13], but in conversation Solomon Weinstock [37] reported that
2 of about 30 rats in a 0.75:0.25 T-maze experiment appeared to have stabilized on the
unfavorable side after a large number of trials.

Wilson and Bush [38] in a T-maze experiment with paradise fish attempted to repro-
duce some of the conditions of the experimenter-controlled event model by running an

experimental group in a maze that had a transparent divider so that the fish could see

that the caviar (reinforcement) was placed in the other side of the maze when he had
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made a choice that did not yield reinforcement. One and only one side was reinforced
on each trial. In the control group an opaque divider was used to correspond to the
ordinary two-armed bandit conditions. For the last 50 of 140 trials run under 0.75:0.25
conditions the number of fish in various class intervals is given in table II.

TABLE II

DISTRIBUTION OF NUMBER OF TURNS TO FAVORABLE SIDE
IN LAST 50 TRIALS OF 140 TRIAL T-MAZE EXPERIMENT
WITH PARADISE FISH (75:25). (WILSON AND BUSH)

TURNs TO FAVORABLE CONTROL GRouP EXPERMENTAL GRouP
SIDE (Opaque Divider) (Transparent Divider)

0-5 ............... 1 4
6-10 .............. 0 2
11-15 ............... 0 1
16-20 ............... 1 0
21-25 ............... 2 0
26-30 ............... 0 0
31-35 ............... 3 3
36-40 ............... 2 0
41-45 .............. 7 2
46-50 ............... 11 10

Number of fish ..... 27 22

The roughly U-shaped distribution for the experimental group would be in good accord
with the secondary reinforcement model or the identity operator model, but it seems not
to agree well with the equal-alpha model. From considerations of order of magnitude
one would not expect to find so many fish near the extremes in the equal-alpha model,
nor does one expect so many fish stabilizing on the unfavorable side in the reinforce-
ment-extinction model if a2 has a reasonable effect.
No very good suggestions other than maximum likelihood have been proposed for

estimating the learning parameters in such experiments (unless equal-alpha or identity
operator models are assumed). The author suggests the following possibility as an ap-
proximate method until a better one is proposed. From preliminary work with T-maze
and similar experiments, it would appear that both al and a2 are rather close to unity, say
0.95 or greater, in most experiments. Initially the value of p is near 0.50. In this neigh-
borhood the effect of an operator is to add or subtract about (1- a) to the value of p
(more precisely (1- a) (1 - p) or (1- a)p). It is proposed to ignore the fact that not
all operators commute and replace the model by an additive model for the early trials
as indicated by the additive operators.

ADDITIVE APPROXIMATION MODEL

Lcft Right

Reinforcement p- P + e

Nonreinforcement p-a p + 5

The probability on trial n would then be approximately

(16) pn = po+ao +b.5
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where a. and bn are the net numbers of times e and a have previously been added (where
e j(1 - a,), a-(1 -a2)). Maximum likelihood would suggest

(17) P =J p0'q.7Zn

where x. = 1 or 0 according as right or left is chosen on the nth trial. Taking logarithms
and differentiating gives for the likelihood equations

E X. Pn _an = 0,
(18) Pn Pna

Xn-(P1_p bn = ° -

Though these are tiresome to solve because pn depends on e and 5, it will be recalled
that pn is in the neighborhood of 0.50. Therefore the denominators Pn(l- p.) might
well be ignored, at least for the preliminary calculations. If this is done the equations
(18) reduce to

eZa2 + 5Zanbn = Za,,xn- Za.
9e2anbn + O2b2 = 2bxn- 2bn.

This approximation might be obtained more directly by minimizing

(20) Z(x, - pn)2.

After the first approximation is obtained, it might be possible to improve the estimate
slightly by taking some account of the value of p obtaining when an operator is applied.
One advantage of this additive model is that the four models described earlier can be
discriminated on the basis of the single estimation procedure. If e > 0, a < 0, the re-
inforcement-extinction model applies; if e > 0, 5> 0, the secondary reinforcement
model applies; if a = 0 the identity operator model applies; and if e = -5 the equal-
alpha model applies. Preliminary trials of this method with stat-rat data suggest it may
be useful. From calculations based on the first 40 trials, the secondary reinforcement
model appears to be appropriate to the fish data. The general idea, of course, is not
restricted to T-maze problems.
A few results from T-maze and two-armed bandit experiments assuming the identity

operator for nonreward may give some notion of the relative difficulty of discrimination
between the more favorable and less favorable side. For convenience, in table III we
give 0 = 1- a, a measure of the effectiveness of reinforcement in improving the prob-
ability associated with the reinforced altemative. Stanley's experiments [34] were per-
formed with hungry rats, reinforcement was food, nonreinforcement was lack of food.
Goodnow's data replicate Stanley's on Harvard students. In the "play free" situation
reinforcement was a poker chip exchangeable for one cent, nonreinforcement was ab-
sence of chip. For her "pay to play" condition reinforcement was as in "play free," but
nonreinforcement represented loss of one chip. Robillard used Harvard freshmen with
chips worth zero, one, and five cents. An additional experiment using a playing card
version of the two-armed bandit was performed by Bush, Davis, and Thompson with
reinforcement five cents, nonreinforcement zero cents. Further discussion of these and
other experiments is available in [7].
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5. Other applications
Contrary to the impression that might be created by previous sections of this dis-

cussion, early papers on this general model by Estes [11], [12] and Bush and Mosteller
[4] were oriented toward applications to problems of latency and rate. In the runway
experiment of Graham and Gagne [19], the times (latency or running time) taken by rats
to traverse a runway measured the learning. In a Skinner-box the rate at which a rat
presses a bar or at which a pigeon pecks a key under various schedules of reinforcement
measures performance. To bring the model to bear on such time problems requires a

TABLE III

SUMMARY OF ESTIMATES OF 9= 1-a FOR VARIOUS T-MAZE AND Two-
ARMED BANDIT EXPERIMENTS. THE GIVEN VALUE OF n REPRE-

SENTS THE NUMBER OF SUBJECTS IN EACH GROUP
Stanley: Rats in T-Maze (n= 7)

Schedule 100:0 50:0 75:25
Estimated parameter 0.039* 0.038 0.036
* An underestimate because of the special manner in which the experi-

ment was performed.

Goodnow: Harvard Students Using Two-Armed Bandit (n= 5)
100:0 50:0 100:50 75:25

Pay to play 0.112 0.038 0.072 0.033
Play free 0.049 0.021

Robillard: Harvard Freshmen Using Two-Armed Bandit (n = 10)
50:0 30:0 80:0 80:40 60:30

$.00 0.042 0.033 0.057 0.025 0.025
$.01 0.031
$.05 0.027
Bush, Davis, Thompson: High School and College Science Students Using

Playing Cards (n= 10)
50:0

High School 0.042
College Science 0.066

tie-up between time, the operators, and probability. Without going into details here, the
general approach has been to quantize time into small increments h, and to regard each
interval h as a trial offering an opportunity for the application of an operator. Then in
rate problems instead of sticking closely to the stated model one replaces the results of
the detailed step-wise application of the operators by an average value obtained by
weighting the possible outcomes by their probabilities of occurrence. One does still
further violence to the model by then turning from the approximate difference equation
to a differential equation approximation. The general technique is routine for the
physicist. In the case of latencies, the resulting curves usually fit the sequences of aver-
age latencies for several animals quite well. But the support for the model is not strong,
because the types of curves generated have the general shape a curve-fitter would have
chosen by eye and a reasonable number of parameters are available for the fitting. One
feels the model should do more than fit curves of means. In the case of rate problems the
model could in principle obtain a little support from its differential prediction [4] for
various kinds of partial reinforcement schedules, but technical difficulties about eating
time, recovery from eating, and activity level make it difficult to carry out the opera-
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tions. Furthermore with bar-pressing and key-pecking the response itself has a staccato
nature, and there is a question whether the model should attempt to describe the indi-
vidual pecks or presses or rather bursts of these. Thus in spite of the attention given it
thus far, the Skinner-box experiments cannot be said to be satisfactorily handled by
the model-at least the evidence suggests only that by various approximate devices it
generates a class of curves that can be used for fitting, but the kinds of further conse-
quences we wish a model to generate remain untested and in some instances ungenerated.
For latency in the runway, a somewhat more general model has been developed [7] for
Weinstock's runway data [36] which attempts not only to fit mean curves, but also to
generate the variances and percentage points of the distributions associated with
latencies on each trial. This attempt represents an improvement in the direction desired,
but the model still does not account for the extremely large latencies observed. The model
referred to visualizes the rat's progress down the runway as composed of forward move-
ments and intervals of standing still. A fixed number of forward movements is required
to complete the run. A forward movement requires a reaction time plus a random inter-
val of time, while standing still uses only a random interval. Random intervals are
drawn from gamma-type distributions. The notion of an experimental trial is retained,
with pn, being the probability of a forward movement throughout trial n, and 1 - pn is
the probability of standing still. A reinforcement operator adjusts pn after each experi-
mental trial. One possible improvement in this model to help account for large latencies
is to admit the fact (observed in experiments) that some activities cancel previous for-
ward movements. This complication has not been added to the latency model.

Making use of Estes' set-theoretic formulation for conditioning, Bush and Mosteller
[5] have attempted a model for generalization and discrimination, the notions of which
have been used further for discussions of psychoanalytic displacements [2], [9].

One direction in which the application of these models may well move is that sug-
gested by problems of social interaction among the participants of a group in group
decision. Bales, Flood, and Householder [1] have tried to use such a model to explain
who says what and to whom in a discussion, where, of course, the actual content of the
discussion is very grossly categorized. Hays and Bush [25] have regroomed the old war
horse, the Humphreys-type experiment, to study decision making in groups of three. As
before, following a signal, a light was turned on or not turned on (on in 75 per cent of the
trials). The group of three individuals was required to make a single guess whether the
light would or would not come on. Two models are proposed for test: (1) the group-actor
model in which a group as a whole behaves as does the single individual in the Hum-
phreys experiment described at the beginning of section 4; (2) the voting model in
which it is assumed that the individuals behave in accord with the prediction for Hum-
phreys experiment, but that the group decision is by majority rule. Model 1 would say
the group predicts "on" 75 per cent of the time after many trials, and model 2 predicts
(approximately) that the asymptote is P = r' + 27r2(1- r) = 3 2- 271 or about
0.84. The data, with the malice data often have, refused to choose between these models
after 100 trials. Both fit quite decently. If the experiment can be run for more trials
without fatigue factors, perhaps a decision can be reached.

Though time measures remain an outstanding problem other measures of intensity
seem even less tractable; no one has tried to bring amount of salivation, angle of knee
kick, pull on a leash, galvanic skin response, or blood pressure into this framework. Very
likely such measures require a more complicated model for the organism.
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6. Probability considerations
Problems in theoretical probability raised by these models have encouraged some au-

thors [22], [23], [24], [28] to investigate the nature of the distributions of values of p
generated by them, as well as to consider more general problems suggested by them.

Harris [24] considers a process generated by a starting probability row vector t(O)
(Z(O), Z), Z()), Z(O) > 0, ZZ = 1, together with three stochastic matrices:

1 0 0 l-p p O 1 0 0

(21) Al= a 1-a 0 , A2= 0 1 0 A,A= 0 1 0.

0 0 1-) 0 a 1k- Z S OA 1

where 0 < a, ,#, p, a- < 1. (Note that Al and A2 do not satisfy the combining of classes
condition.) One matrix A is selected, ZO0) being the probability that A i is selected, and
a new vector

(22) t(i) = V)B1
is computed where B1 is the one matrix selected from the three. Now another A i (named
for convenience B2) is selected, this time with probabilities given by the components of
t(1), and B2 postmultiplies t(1) to yield t(2). At the kth stage an A i is selected (Bk+l) in
accordance with the components of t(k) and premultiplied by t(k) to yield t(k+'). (The
matrix A3 corresponds to "no change" or standing still.) A sequence B1, B2, * * - is said
to conclude (Ai) if all Bj for j greater than some integer are equal to the same A i. A
sequence concludes if it concludes (Al) or concludes (A2). Harris proves the

THEOREM. For any t(O) $ (0, 0, 1) the sequence B1, B2, * - * concludes with probability 1.
Let r(t) be the probability that the sequence concludes (A1) if {(O) = t. Thenfor F (0, 0, 1),
7r(Q) is a continuousfunction of , which isO when t = (0, 1, 0), and 1 when t = (1, 0, 0).
Also 0 < 7r(Q) < l for t not equal (1, 0, 0), (0, 1, 0) or (0, 0, 1); and 7r(Q) satisfies thefunc-
tional equation
(23) 7r(Q) = Z17(rAl) + Z27r(A2) + Z37Q()
where t = (Z1, Z2, Z3).

Bellman [24] considers the functional equation
(24) f(x) = xf[a + (1-a)x] + (1-x)f(ax),
where his x can be regarded as our p in the case of two subject-controlled events, a +
(1 -a)x corresponds to an operator QiP = aip + (1- al)Xi with our a, = 1 - a,
X, = 1, and his ax corresponds to Q2p with a2 = a, ?A2 = 0. He shows that a limiting
continuous solution exists, is monotone in x, concave if a + a _ 1, convex if a + a > 1,
analytic, and unique. He extends the discussion to the two-dimensional case and states
that no new problems arise for still higher dimensions.

Shapiro [24] studies methods of solving the functional equation (24), and shows that
the method of successive approximations converges uniformly to the continuous solu-
tion if and only if the initial approximation fo(x), fo(0) = 0, fo(l) = 1, is bounded in
the interval [0, 1] and continuous at 0 and 1 (a very mild restriction, since fo(x) = x
is a natural initial approximation). The rate of convergence is studied. A necessary and
sufficient condition for x to be the continuous solution is that

(25) a = 1-a + o(a2) .
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Karlin [28] introduces a different method of attack for random walk problems leading
to functional equations like (24). He is able to deduce many of the results of Bellman and
Shapiro, as well as additional ones for the case of two reflecting barriers. The latter is
obtained when the coefficients on the right-hand side of equation (24) are interchanged.
Among other results is the extension to the three response experimenter-subject controlled
event situation where one response is that of standing still: (1) x -a ox with probability
-r(1-x); (2) x -* ax + 1 - a with probability 7r2x; and (3) x -+ x with probability
(1- 7ri)(1 - x) + (1 -7r2)X.
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