SEQUENTIAL PROCEDURES FOR
SELECTING THE BEST EXPO-
NENTIAL POPULATION

MILTON SOBEL
BELL TELEPHONE LABORATORIES, INC.

1. Introduction

A sequential procedure is considered for selecting that particular one of  exponential
populations with the largest expected life (or the smallest failure rate). A. Birnbaum
recently treated this problem [2], {3]. This paper extends his problem in two directions:

(i) The known guarantee period 4, before which no items of the :th population fail,
can be zero or of positive duration.

(ii) The number of populations % is assumed to be two or more.

In [3] it is assumed that A; = 0 and % = 2. The case in which all populations have the
same unknown guarantee period 4 is also treated. The effect of proceedingasif 4 = 0
when actually 4 > 0 is studied.

In life-testing experiments the problem is to utilize information provided by early
failures to make decisions without waiting for all the units on test to fail. Frequently,
it happens that even the expected lifetime of a single unit is longer than the experimenter
is willing to wait before reaching a decision.

We shall assume in this paper that failure is a well defined and clearly recognizable
phenomenon. We are interested in comparing the expected life (or the failure rate) of
two or more populations. There are two classes of methods of reducing the time needed
to reach a decision. One class consists of physical methods of accelerating the rate of
failure (without introducing new causes of failure). The other class, with which this
paper is concerned, consists of statistical methods.

One statistical method is to increase the initial number of units on test. Another is to
replace each failure immediately by a new unit. A third is to use an appropriate sequential
procedure to reach a decision. We shall consider some procedures which embody all
three of the above features.

2. Definitions and assumptions

Suppose there are given k populations ITIi(z = 1, 2, - - -, k) such that the lifetimes
of components taken from II; are distributed according to the delayed exponential
density

(1) J (55 Ag ) = eeai o 22 4,

(and f = O elsewhere), where the scale parameters u; > 0 are assumed to be unknown,
and also, since the location parameter 4; denotes a time delay, we shall assume that
A; =00 =1,2, -, k). Let the ordered values of the scale parameter u be denoted by

(2) 0,104 - - - 216 .
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The goal of our proposed procedures is to select the population with the largest scale
parameter, that is, with u = 6;. With regard to the location parameters 4; we shall
consider two cases:

Case 1: The A; are known. We shall be particularly interested in the special cases:

1a) The A; have the common value 4 > 0.
15) The A4; have the common value 0.

Case 2: The A; have a common, unknown value 4 = 0.

The special case in which the 4; have a common value A will be of particular importance
throughout the paper. The case in which the 4 ; are different and unknown is not treated.

It will be assumed in this paper that

(1) Experimentation is started with the same number # of components from each of

the k populations.

(2) All 2 components are put on test at the same time (say at time f, = 0).

(3) Each failure from II; is immediately replaced by a new component from II;( =1,

2, k).
The above assumptions are made mostly for convenience of exposition and because they
represent the method by which the test would most conveniently be carried out in
practice.

It should be noted that, for any strictly monotonic function X = A(s) of g, the pro-
posed procedures can also be used to select the population with the largest N if N(u) is
strictly increasing, or to select the population with the smallest \ if A is strictly decreas-
ing. For example, the expected component life for the sth population is u; 4 4, and if
there is a common A then the problem of selecting the population with the largest scale
parameter is equivalent to the problem of selecting the population with the largest ex-
pected life. For another example, the equilibrium failure rate [defined below between
(37) and (38)] for the ith population is given by

n
N=——
it A

and if there is a common 4 then the problem of selecting the population with the largest
scale parameter is equivalent to the problem of selecting the population with the
smallest A-value.

At any time ¢, measured from £, each population has a number of failures associated
with it. Let the ordered values of these integers be denoted by r; = 7.(¢) so that

(4) rSr,<---Srg.

(3) (G=1,2,---,k

Equal values (or, more precisely, the populations associated with equal values) are to be
ranked by a random device which gives equal probability to each ordering. Then each
subscript refers back to one of the %z populations. For any component we shall denote the
A-value as the guarantee period. The total amount of aging beyond the guarantee
period will be designated as the Poisson life. Let the total Poisson life from the population
with r; failures be denoted by Li(z = 1, 2, - - -, k). By definition we have L; = 0(; =1,
2, -, k).

3. Specifications for case 1b

It will be convenient to consider first the case 15) in which the common A-value is
zero. Before experimentation starts, the experimenter is asked to specify two constants,
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Py and ao such that %<Po< 1 and ao > 1, which determine the proposed rule. For

simplicity, we shall assume that Py > § for any k. The resulting rule then has the prop-
erty that ¢¢ will correctly select the population with the largest scale parameter with probability
at least Py whenever

(5) LI,

Another related property is that after experimentation is completed one can make,
at the 100P; per cent confidence level, the confidence statement

(6) 6, = olé 0-00. )

where 6, is the scale parameter of the selected population.
If we let e = (1 — Py)/ P, then the proposed sequential rule can be stated as follows:
Rule Ryp.—*“Continue experimentation until the inequality

(7 a e T4 e 2

is satisfied. Then stop and select the population with the smallest number r; of failures
as the one having the largest scale parameter.”

The problem of two or more populations having the same value r; at stopping time
is omitted above since, assuming Py >3%, we have ¢ < 1 and hence from (7) no two
populations can have the same value r; at stopping time. For £ = 2 the inequality (7)
reduces to the simple form

(8) 2= s

where s is the smallest integer not less than log (1/€)/log ao.
It should be noted that the above procedure stops only at a failure time, never be-
tween failures, since (7) depends on ¢ only through the quantities 7(z).

4. Numerical illustrations

Suppose the preassigned constants are Py = .95 and ao = 19"/ = 2.088 so that ¢ =
1/19. Then for £ = 2 the procedure is to stop when r, — r; = 4. For £ = 3 it is easy to
check that the procedure reduces to the simple form: “Stop when 7, — 7, = 5.” For
k > 3 either calculations can be carried out as experimentation progresses or a table of
stopping values can be constructed before experimentation starts. For # = 4and k = 5
such tables are shown below.

TABLE 1

TO CARRY OUT THE SEQUENTIAL
RULE FOR Py = .95, ao = 19/4

(k=4
r2—n 3—71 1"
5 5 9
5 6 6
6 6 6 *

* See note to Table II, p. 102.
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TABLE II

To CARRY OUT THE SEQUENTIAL RULE
FOR Py = .95, ao = 19V/4

(k=75
ro—1r1 r3—n f4—11 fs—n
5 5 9 10
5 5 10 10 *
5 6 6 8
5 6 7 7
5 7 7 7 *
6 6 6 6

* The rows marked with an * could be omitted without
affecting the test since every integer in these rows is at least
as great as the corresponding integer in the previous row.
They are shown here to illustrate a systematic method which
insures that all the necessary rows are included.

In the above form the proposed rule is to stop when, for at least one row (say row j)
in the table, the observed row vector (r — 1, r3 — 11, - * -, rx — 1) is such that each
component is at least as large as the corresponding component of row j.

Properties of the procedure. For k = 2 the above procedure is an example of a Wald
sequential probability ratio test [5] as modified by Girshick [4]. A. Birnbaum [2], [3] has
remarked that we can regard the successive failures as independent binomial observa-
tions with the probability of the next failure arising from the population with parameter
0; constantly equal to 1

9 1"=ﬁ (t=1,2).
—
0; 6
The problem then is to select the population associated with the smaller probability.
Using Wald’s formulas one can easily compute the OC and ASN functions for the pro-
cedure. Both of these depend only on the true value of the ratio 6,/6, which we will
denote by a. The OC function P(a) gives us the probability of a correct selection and the
ASN function E(F; a) gives us the expected number of failures needed to complete the
experiment. Since there is no excess over the boundary we have the following exact
results:

a!
(10) P(a) —m—'
(11) P(1) =%, P(e)2Py, P(»)=1.
For the ASN function, we compute
. _ at+1 at—1
(12) E(F; a) _S(T—_f)(m for a>1,

(13) E(F; 1) = s*.

The time intervals between failures are independent identically distributed chance vari-
ables that do not depend on the stopping rule. The time interval between failures for a
single population is an exponential chance variable. Hence, the time interval between



EXPONENTIAL POPULATIONS 103

failures is the minimum of two exponential chance variables which is again exponential.
We then obtain, letting 7 denote the interval between failures,

1 Bza

nl+4a’

Hence, letting T denote the fotal expected time for the experiment we have by multiply-
ing (12) and (13) by (14).

(14) E{7 a, 8} =

abys (a*— 1)

E(T; a, 02}=n(a'+1)(a—1) fora>1,
(15) bus
. — 23
E{T: 17 02} = n

For the numerical illustration treated above with 2 = 2 we have

at
(16) P (a) =T¥a
\ . - at+1at—1 4(a+1)2(a24+1)
(17 E(F;a) =4 a—1at+1 " at+41 !
(18) E(F; 1) =16.0, E(F; ap) =10.2, E(F;, ©») =4,
(19) E@ 1,00 =22 ETya0 00 =20% BT, 0) =22

For k > 2 the proposed procedure is an application of a general sequential rule for
selecting the “best” of k populations treated in [1]. Proof that for £ > 2 the probability
statement associated with (5) holds, and bounds on the probability of a correct decision
can be found there.

b. Specifications for case 1: Known location parameters
Before experimentation starts, the experimenter specifies three constants Py, ao, Bo,

such that % <Py<1, ap>1and By >0. To simplify the discussion we shall assume

that Py > % for any k. The resulting rule R, has the property that it will select the popula-
tion with the largest scale parameter with probability at least Py whenever we have both

(20) 154 ana L-lsg,.
5T,

The rule can now be stated in terms of ao, Bo, €6 = (1 — Po)/Poand 4* = maximum
Ai=1,2,--, k).
Rule R,. “Continue experimentation for at least A* units of time until the inequality

k
(21) E ao—'(r;‘—rl) e_ﬂﬂ(Ll—Li) é &

i=2

is satisfied. Then stop and select the population with the smallest number 7, of failures
as the one having the largest scale parameter. If, at stopping time, two or more popula-
tions have the same value 7, then choose one of these by an independent experiment giv-
ing equal probability to each.”
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For & = 2 the inequality (21) reduces to
(22) (fz"fl)log ao+ (Ly—Ly) ﬁo%log(l/éo)-

Remarks.

(D) IfA:=A@=1,2,- -, k) then the instruction to wait at least A* = A units
of time is redundant since, with ¢ < 1, the inequality (21) cannot be satisfied before 4.

(2) The procedure based on (21) may result in termination not only at failures but
also between failures.

(3) The same rule can be used if different populations start at different times, if the
number # of units from each population is different, or even if experimentation is carried
out without replacement. The instruction would in general be to continue until each
population had at least one unit aged past its guarantee period.

(4) The main disadvantage of this rule is that it requires more bookkeeping than a
rule based only on the number of observed failures.

(5) The terms of the sum in (21) represent likelihood ratios. If at any time each term
is less than unity then we shall regard the decision to select the population with r; failures
as optimal. Since ¢ < 1 each term must be less than unity at termination.

Properties of rule Ry. The OC and ASN functions for R, will be approximated by com-
paring R; with another procedure R}. We shall assume a common value 4 for the loca-
tion parameters. Since

(23) Li~nT—r;Aforalli,

then at stopping time
(24) LI—L,"—\_:" (f.'—fl)A .

Substituting this in (21) and letting

(25) vo=aod*4

gives us a new rule which we denote by R}.
Rule R}. “Continue experimentation until the inequality

k

(26) vz

=2

is satisfied. Then stop and select the population with 7, failures as the one with the largest
scale parameter.”

For rule R, the experimenter need only specify Po and the smallest value v, of the
single parameter

_ 6
@n 7_-0— (02 01

that he desires to detect with probability at least Po.

We shall compute the OC and ASN functions for RY and use these as an approxima-
tion to the OC and ASN functions for Ry. For any time values 6, = 6; we have only to
replace ao by o specified for rule R} or computed from (25) for rule R; and a by v com-
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puted from (27) in the formulas derived for the rule Ry;. We thus obtain (omitting P,
in the notation for the rules)

(28) P(vRiCan B0 } ¢ PUv; RY (00) } = 1

L J
. (7+1)(7“ i fory>1
(29) E(F;Ri(ao, Bo) } = E{F; RY (v0) } = LA

fory=1
where s* is the smallest integer not less than

log (1/e)) _ log(1/e)
(30) logvo  log ap+ BoA

6. Alternative procedures

It is often desirable to make a test simpler even if a certain amount of efficiency has
to be sacrificed. The question arises whether the simpler rule R, which depends only on
the numbers of observed failures can also be used when 4, =4 > 0@ =1,2,---, k%)
without seriously invalidating the probability requirement. To examine this we shall
define two other rules R and R;’ which have a higher probability of a correct selection
than R, and then we shall compare R; with Ris.

Rule R,. “Continue experimentation until the % inequalities

k
(3 1) Z aa—(ri—r‘) e_ﬁo(l‘l—l'i) éfo,

i=2
(32) LizL; (6=2,3,"", k)

are simultaneously satisfied. Then choose the population with r, failures.”

Since R; and R{ both take the optimum terminal decision and R; requires at least as
much experimentation as R; then the probability of a correct selection is greater for R;
than it is for Ry, regardless of the true situation.

Rule R;’. “Continue experimentation until the & inequalities

k

(33) Mo zq

=2
(34) LizL; (¢=2,3,-"", k)

are simultaneously satisfied. Then choose the population with 7; failures.”

Since L; = L;at stopping time the terms in (33) are at least as large as the correspond-
ing terms in (31). Hence the rule R;’ always requires more experimentation than the rule
R} Tt follows that the probability of a correct selection is greater for the rule R;’ than
for R;.

To go from R;’ to Rys it is only necessary to delete the inequalities (34) but it cannot
be shown that these inequalities are redundant. However, it is reasonable to suspect that
the effect of introducing these inequalities in Ry is of the same order of magnitude as the
effect of deleting them from R;’. This argument is nonrigorous; it should be clear, how-
ever, from the above that the rule Ry can be used without seriously affecting the prob-
ability requirement.

We can obtain OC and 4ASN functions for Ry, when 4 > 0 and 2 = 2 by comparing
Ryp with RY. Since these two rules have the same form we can obtain the OC and ASN
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functions for Ry, by replacing v, in (28) and (29) by ao. The resulting formulas are func-
tions of 4 which is computed from (27). If we disregard the error introduced by the
approximation (24) then we can write (again omitting Pq)

(35) P{v;Rw(ao) } =P{v; R} (a0) } ZP{v; R} (v0) } =P{v; Ri(ao, Bo) }

thus providing another nonrigorous “proof” that R, satisfies the required probability
condition. In fact, we can now estimate the increase in the probability of a correct selec-
tion as well as the increase in the expected number of failures due to using R;; instead
of R;. Defining s and s* as in (10) and (30), respectively, we have

(36) P(y;Ru) =P (y;R) & — Y — "

T++ T+~
ey gy YL [SGP=D) st =)
37) E (F; Ry) E(F:R1)=7_1[ 1 1 ]

7. Equilibrium approach

Consider first the case of # items on test all # and their replacements from a single
delayed exponential population with parameters (i, 4). Let T; denote the length of the
time interval between the jth and j + 1st failures (j =0, 1,2, - - ) with the con-
vention that the Oth failure denotes the starting time. As time increases to infinity the
expected number of failures per unit time clearly approaches n/(u 4 A4), which is called
the equilibrium failure rate. The inverse of this is the expected time between failures “at
equilibrium,” say E(T»). The question as to how the quantities E(T) approach E(T»)
which interests us now is also of considerable interest in its own right. It is easy to see
that

(38) ETy) = A+§

2 ”—t-‘i=E(Tm).

In fact, since all units are new at starting time then
(39) E(T)) = E(To) (G=1,2,--).

If we compare the replacement procedure with 4 > 0 with the special case 4 = 0
we obtain

(40) ET)z 4 G=1,2,"")
and if we compare it with the nonreplacement case we obtain
(41) ET) st G=1,2,---,n—1).

These comparisons show that the difference of the two members in (40) is small when
A/u is small and the difference in (41) is small (for i < 1) when 4/p is large. Straight-
forward but tedious computation gives the exact results

- # 121 e
(42) E(T) =45 [1 = et xw.] forn>1,
B (n+2)(n—-1) _
(43) E(Ty) =t [1— - (=D A/u
’ n—2 . ("_2)
—(n—1) A/ — ) ,—2(n—1) A/,
+n— e~ 4/ R=1 ¢ 2(v—1) “] forn>2.
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It can be shown that the polynomial formed by subtracting (42) from (43) and setting
y = exp (—A/p) has for n > 2 a double root at y = 1. Then, using Descartes’s rule of
signs, it follows that forz > 2and 0 < y < 1

(44) E(T) =E(Ty),

equality holding only for 4 = 0.
For n = 2 we obtain

(45) E(T) = Atul—1+ e ah—3et4k]

and comparing this with (42) for » = 2 we obtain again the inequality (44), equality
holding only for 4 = 0. For #» = 1 the result is trivial since equality holds. On the basis
of these results one is tempted to conjecture that for any »

(46) ETY)SET)=E - -SETw-)SETy,
but this has not been shown.

For the case of two populations with the same #, with scale parameters 6, = 6 and
a common location parameter 4, we have similarly

016, o (6:+ 4)(6:,+ 4)

(47 ET) = A+ 5Ty 2wt ont2a L=
(48) E(T) S ETy) (=1,2,--7),
0102 0102 . L.
0102 01 ; == e —_—
(50) méE(T;)ézn_i (z—n+1,n+2, ,2n l),

where the first inequality in (49) and (50) holds for all 7. The extension to the case of
k populations is straightforward.

Duration of the experiment. For the sequential rule R, with # = 2 we can now write
down upper and lower bounds as well as approximations to the expected duration E(T)
of the experiment. From (47), (48) and (49)

0:0,E (F; v) !
(51) A+ n(ol_‘_m—éE(T)éE(To)E(F, 7.
As an estimate of E(T") we would use
(52) E(T) = E(T=)E(F; v) .

The upper bound in (51) can be improved by bounding E(T) in the equation E(T) =
F—1
E[EE (T.-)] by the minimum of E(T) and the right members of (49) or (50), or by

=0

use of the appropriate exact expression (42), (43) or (45).

8. Case 2: Common unknown location parameter

In this case there are several reasonable sequential procedures that can be used. The
most conservative procedure is to use Ry, that is, to act under the assumption that
A = 0. Then by the discussion in case 1 the probability requirement is satisfied for all
A = 0. The OC and ASN functions, which are now functions of 4 also, were already
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obtained above. Of course, we need not consider values of 4 greater than the smallest
observed lifetime of all units tested to failure.

9. Comparison of sequential and nonsequential procedures

We shall now compare the sequential procedure R;; and a nonsequential, nonreplace-
ment procedure R; which will now be defined.

Rule R;. “Continue without replacement until each population has produced  failures.
Then stop and accept the last population that produced r failures.”

It is immediately evident that we need only wait until # — 1 populations each have 7
failures since the population to be selected is then determined. Let R; denote the rule
Rj; so altered.

For k = 2 the probability of a correct decision using R; is

53 ‘R = "f(y,, 8 . 0,) dy,dx,
(53) P(a; R} ff 7 5 02) £ (2, 6y) dy,da
where

(54) S (@ ) =2 Co (1= emohe) i gmslugmome,

This reduces to

(55) P(o; R)—l—(rC")’E (= r+]C;’_‘{{B[r,n—r+l+a(n—r+j)]}‘l
J-l

where B(x, y) is the (complete) beta function. Although equation (53) is derived under
the assumption that 4 = 0, it is clear that the result (55) holds for any 4 2 0.

The expected time necessary to come to a decision for the rule R; is for 8; = 6, = p,
say,and k = 2

(56) EM) = [ 25f (5 w(1=F(z, wdz,
where f(x, u) is the density given by (54) and F(x, u) is its c.d.f. This reduces to

. (— 1)+
(57) E(T) =2u (rc"ﬂz_; ;c_:c._i =7+ P2Z=—n) Fit It

For A > 0 we need only add 4 to the right member of (57).

For a = ao the expected time using rule R; is obtained from an expression similar to
(57) derived for the case 8 # 6. For a = ao the expected time using rule R;; is obtained
from (47) and expressions similar to (42) and (43) derived for the case 8; # 6.

Forn=10,7 = 3, ao = 2, k= 2 and any 4 2 0 the probability attained is .789
when the true a = ao. If we set Po = .789 and ao = 2 in the sequential rule Ry;, the rule
takes the form

(58) Stop when ro—7r,2 2.

For a = ay the sequential rule Ry; attains a higher probability which is easily shown to
be .800 for A = 0 and is greater than .800 for 4 > 0. The following table gives the ratio
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of the expected times of the experiment for the two rules. The lower entry in each cell
is the ratio of the probabilities of a correct selection for the two rules.

TABLE III
E(T; Rw) P(Ry)
THE RATIOS E(T; ) AND P(RS)
(n = 10; ag = 2, Py = .789)

A=0 A/=1

0,=0; .867 .989

1% 1.000 1.000
a=1=%
2

0,=20, .809 .942

a=2=aqp 1.013 1.160

fy= o .595 .906

q= © 1.000 1.000

The sequential rule Ry, gives an expected time at least as small and a probability at
least as large as the nonsequential rule R; for each of the true situations considered and
appears to be better for all true situations.

By comparing Ry, (%) with R;(n,7), averaged over =3 and r=4 so that the probability
is exactly .800 for a = ao, we obtain an efficiency measure which varies continuously with
Py. This efficiency factor can be broken up into a product of two factors, one showing the
efficiency gained by the replacement feature alone, and the other showing the efficiency
gained by the sequential feature alone. The results are given below for ao = 2, Py =
.800, 4 = 0, four values of # and three values of a.

TABLE IV
PER CENT REDUCTION IN AVERAGE EXPERIMENT TIME
. . Per Cent Reduction
Per Cent Reduction Per Cent Reduction
'3 » Due to Replacement  Due to Sequential D“:ntg Slle;ﬁl::teir;ent
Feature Alone Feature Alone Features
4 29.5 12.7 38.5
1 10 13.7 12.7 24.6*
20 6.3 12.7 18.2
© 0.0 12.7 12.7
4 30.1 17.8 42.5
2 10 13.9 17.8 29.2
20 6.6 17.8 23.2
© 0.0 17.8 17.8
4 31.5 38.8 58.1
10 13.6 38.8 47.2*
20 6.3 38.8 42.7
® 0.0 38.8 38.8

* Slightly inconsistent with columns 1 and 2 because of rounding.

Thus the advantage of a replacement technique is greatest for small values of # and
is essentially independent of a while the advantage of a sequential procedure is greatest
for large a and is independent of .
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