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1. Introduction

It is interesting to compare the current state of industrial experimentation with the
situation in experimental agriculture twenty years ago. The distribution of statistical
knowledge among workers in the two fields seems to be about the same. The two groups
would agree that their problems are of great complexity; that many factors are opera-
tive; that no detailed analytic theory of process operation is available; and that in addi-
tion to the effects of the “known’ factors, large amounts of unpredictable variation are
present.

Industrial experimentation, at least in the process industries, differs strikingly from
agricultural work in the speed with which experimental results can be obtained. Experi-
mental units are often successive runs on the same piece of equipment, but even quite
large designs rarely take more than a few weeks to complete. A further difference, I be-
lieve, lies in the number of dependent variables that must be measured or calculated.
The important properties of a type of rayon, or of a new kind of steel, or of an improved
cake-mix, cannot be summarized by a single number. More usually, from five to ten
dependent variables are required. Finally, the usefulness of blocks of homogeneous ex-
perimental material appears to be less in industrial work, but this appearance may be
due to our not knowing how to specify blocks.

Industrial experimentation may be viewed as a continuum extending all the way from
slight modifications of existing operation to the development of entirely new processes.
Balanced designs of the type to be discussed are easier to use near the ‘“‘existing process”
end of this scale, but experience is rapidly being gained with the development of new
processes.

Factors whose first-order effects are large, say of the order of 3 or 4 standard devia-
tions, are usually discovered by making a few runs. The symbol o£ will be used for the
standard deviation of runs made under ‘‘fixed” conditions. If we must estimate a first-
order effect of the order of o with say a 959, confidence interval of half-width oz/2,
then

4
(1) 1.960‘3 ‘J—]—V—I; '=%UR

from which Nz, the number of statistically independent runs required, is roughly 64.
This number is conservative for two reasons. Chemists and plant engineers are likely to
underestimate their oz, often by a factor of one-half. In the second place, since a con-
siderable number of effects are usually measured in the same experiment, the usual 95%,
level of confidence is often not high enough. To reach the 999, level (per effect), roughly
(2.58/1.96)2 or 1.7 times as many runs must be made as at the 959, level.

At least 64 runs are required, then, half at each of two levels of a particular factor,
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in order to estimate main effects of magnitude oz to +50 per cent. There will be no loss
in precision, but a great gain in generality, if a 2° factorial is substituted. Indeed, there
is little risk in planning to study 8 two-level factors (and all their two-factor interac-
tions) in a “quarter replicate of a 28, abbreviated here 282, This scheme measures each
main effect along with (confounded with) three higher order (four- or five-factor) inter-
actions. It also measures each two-factor interaction, abbreviated here 2 {.i., along with
three higher order (three- or four-factor) interactions. Such a design will be called a “two-
factor interaction clear” design, or 2 f.i.c. for short.

Larger designs are necessary, and are frequently run, if more factors must be studied
(with all 2 f.i.c.), or if the error standard deviation has been underestimated. If p factors
are to be studied, then p(p + 1)/2 degrees of freedom must be available to estimate
all main effects and all 2 f.i. It will be shown below that for values of  from 7 to 16,
roughly two to three times that number of runs must be made.

2. Fractional replication of factorial designs, 27-¢, with all two-factor interaction
clear

Fractional replication was introduced by Finney [1], [2], discussed and extended by
Kempthorne [3], [4]. A wide range of useful cases was tabulated by Brownlee, Kelly,
and Loraine [5]. More recently a very complete atlas of designs up to 2!2-® has been pre-
pared by Clatworthy, Connor, and Zelen [6]. An extended discussion suitable for

TABLE I
REPRESENTATIONS OF THE ONE-HALF REPLICATE OF THE 22 FACTORIAL
Represen-
tation 1 2 3 4 5 6
Factors e b ¢ a b ¢ a b ¢
Run Num-
beli 110 1 1 1 ab
- + + - . o
2 101 1 -1 1 + - 4 ac ' ‘Eve)xsxv’v,xth
3 011 -1 1 1 - 4+ 4+ b C ABC
4 0 00 -1 -1 -1 - - = (1) N
®
A —

engineers is given in {14]. Most of what follows is only adaptation from the work of these
writers.

Six equivalent methods of representation of fractional replicates are in use. They are
shown for the 2% in table I. The symbols ad, ac, bc, and (1) are also used to indicate
the responses to runs made under the respective conditions. It is obvious that [ab +
ac — bc — (1)]/2 measures the average effect of changing the factor 4 from its “low”
to its “high” level. It is less obvious that the B X C interaction, that is, the difference
in the effects of B at high and at low C, is measured by the same number. The effect of
B at high C may be taken as (bc — ac), and the effect of B at low C, as [ab — (1)]. Half
the difference between these two effects may be written {—ab — ac + bc + (1)]/2 and
this is the negative of the quantity used to measure 4. Thus the contrast given measures
A — BC. The effects 4 and —BC are said to be confounded; each effect is called the
alias of the other.

Similarly for the four runs given in table I, B and —AC are confounded, as are C and
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—AB. Finally, the average of the four runs is confounded with —ABC. (Use of the
complementary set of four runs, ¢, b, ¢, and abc, gives + BC as the alias of 4, +AC as
the alias of B, and so on.)

The use of any other set of four runs will confound main effects with the grand mean,
or, avoiding this, will confound main effects with each other.

All these relations can be summarized quite compactly. The symbols for all effects
and interactions, in the present example, 4, B, C, AB, AC, BC, and ABC, together
with the identity I constitute a group, if we define multiplication in the usual way, and
add the “cancellation rule” 4% = B? = C? = I. The alias of any effect, for example,
4, is now found by multiplying the effect by —ABC. The product is — BC. Similarly,
the alias of —ABC is I, and so the mean of the eight members of the full 22 is estimated
by the four runs specified, confounded with —A4BC. The entire system of aliases can be
seen in summary from the so-called defining contrast, I = — A BC. Multiplication of both
sides of this ‘‘equation” by any set of letters in the effect group, produces a pair of effects
that are those measured together. The two terms I and —ABC are called the alias
subgroup.

The alias subgroup is also used to specify the run conditions. It is only necessary to
write down all the combinations of lower-case letters that have an even number of letters,
or none, in common with every member of the alias subgroup.

In similar fashion, one alias subgroup for the 2%! could be written

(2) I = —ABCDE,

meaning that 4B is measured along with —CDE, etc. The 16 run conditions are easy to
write down: abcd, abce, abde, - - - , de, (1).

The confounding patterns for the quarter replicates for 5, 6, 7, 8, 9 factors can be
visualized by the scheme of table II. Each line is to be read three times; the first time

TABLE II

CONDENSED ALIAS SUBGROUPS OF THE
QUARTER REPLICATES, 2°2

($» = number of factors; Nz = number of runs)

P N Alias Subgroup
5 .8 ABCDE*

6 16 ABCDEF

7 32 ABCDEFG

8 64 ABCDEFGH**
9 - 128 . ABCDEFGHJ

* Read: I = ABC = CDE = ABDE.
** Smallest 2 {.i.c. design for 8 factors.

through the underlined letters, then starting with the underlined letters, and, finally,
excluding them.
Thus for eight factors, p = 8, the line ABCDEFGH is read

I = ABCDE = DEFGH = ABCFGH .

Any one of the latter three members can be viewed as the product of the other two, which
are then called the generators of the alias subgroup. It can be seen from this table that
the 252, requiring 64 runs, is the smallest quarter replicate with all 2 f.i.c.

Any one of four sets of run conditions can be used. The first set is even with respect to
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the two generators. Its first few members are, then, abcdfgh, abcdf, abcdg, abedh, abeefgh.
Another quarter replicate is even with respect to the first generator, but odd with respect
to the second; thus abcdfg, abcdfh, abcdgh, are members of this fraction. The first set
measures A — BCDE — ADEFGH + BCFGH, etc. The second set measures 4 +
BCDE — ADEFGH — BCFGH, and so on.

Writing out in alphabetical order the full alias subgroups for several of the published
fractional replicate designs reveals, if it was not already obvious, that the order of ap-
pearance of each letter in the successive members of each subgroup follows the regular
patterns familiar in specifying treatment combinations in the 27 series.

Thus for the quarter replicate just mentioned, the full alias subgroup might be written:

A B CDETFGH

A B C D E 11111 0 00O
4 B C F G H 111 00 11 1

D EF G H 0 00 1 1111
I 0 0 0 000 0O

The numbers in the right panel are written out first in rows, but are then viewed in
columns. The three types of columns that appear, which represent here the presence of
a factor by a 1 and its absence by a 0, are the three that appear in the first representa-
tion in table I. Each column allocated to a new factor (and letter) adds members in
only two positions. Each row is a symbol for a member of an alias subgroup. The columns
headed S, (p goes from 2 to 9) in table IIT show the number of letters in each member

TABLE III

GENERATION OF THE QUARTER REPLICATES, 2°%,
FORp=6,7,8,9

A B C D E F ‘G H* J S: S5 S¢ S5 S5 S St S **
1 1.0 1 10 1 10 2 2 3 4 4 5 6 6 | ABDEGH
1t 01 1 0 1 1 0 1 1 2 3 3 4 5 5 6 | ACDFGJ
0 11 0 1 1 0 1 1 1 2 2 3 4 4 5 6 | BCEFHJ
0 0 0 0 0 0 0 0 O 0 0 0 0 0 O 0 O I

* Smallest 2 f.i.c. design for p = 8. ** Alias subgroup for 292,

of the alias subgroup, after p columns have been accumulated. The first column in which
all entries, except, of course, the last, are 5 or greater is Ss, and so the 252 is the smallest
2 f.i.c. design for eight factors.

At the right of table IIT the alias subgroup for the 292 is returned to the literal sym-
bols. The smaller 272 can all be read from the same column by dropping letters in re-
verse order, starting with J. The treatment combinations can be derived from the
generators: (1) abe, ad, be, cf, dg, eh, fj, using only the first p of the eight given.

In the alias subgroup, repeated use of the same columns is permitted. This repetition
merely states symmetry of the alias relations for two or more letters. Repetition of this
kind in the treatment specification part of the design would enforce full confounding of
the letters repeated.

Table IV shows the analogous generation of the 27-3, the “‘eighth replicates.” The
210-3 in 128 runs is the smallest 2 f.i.c. ten-factor design.

In table V the same procedure is used to derive the 27-¢ series. To facilitate smooth
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accumulation of letters, the matrix of zeros and ones is written in symmetrical form and
the zeros have been left blank. The successive sums are written below the matrix. The
211-4in 128 runs has all 2{.i.c. This design will then usually replace the 2!%3 since one more
factor together with all its interactions can be studied, with no increase in the size of the
experiment.

TABLE 1V

GENERATION OF THE EIGHTH REPLICATES, 2°7-3,
Forp=17,8,9,10, 11

A B C D E F G H J K* L S Ss S Sh Su **
1 1 1 0 0 0 1 1 1 1 1 4 5 6 17 8 ABCGHJKL
1 1.0 0 1t 1 0 1 1 0 0 4 5 6 6 6 ABEFHJ
1 0 1 1 0 1 O 1 01 0 4 5 5 6 6 ACDFHK
1 0 0 1 1 0 1 1 0 0 1 4 5 5 5 6 ADEGHL
0 11 1 1 0 O 0 1 1 0 4 4 5 6 6 BCDEJK
0 1 0 1 0 1 1 0t 0 1 4 4 5 5 6 BDFGJL
0 0 1 0 1t 1 1 0 0 1 1 4 4 4 5 6 CEFGKL
0 0 0 0 0 0 O 0 0 0 O 0 0 0 O 0 I
* Smallest 2 f.i.c. design for p = 10. ** Alias subgroup for 2113,
TABLE V
GENERATION OF THE SIXTEENTH REPLICATES, 274,
For p < 13
A B CD EF G HJ KIL*M **
A 1 1 1 1 1 1 1 1 ACEGJL generator
B 1 1 1 1 1 1 1 1 BDFHJL generator
C 1 1 1 1 1 1 1 1 ACFHKM generator
D 1 1 1 1 1 11 1 BDEGKM
E 1 1 1 1 1 1 1 1 ADFGJ M generator
F 1 1 1 1 1 1 1 1 BCEHIM
G 1 1 1 1 1 1 1 1 ADEHKL
H 1 1 1 1 1 1 1 1 BCFGKL
J 1 1 1 1 1 1 1 1 ABEFJK
K 1 1 1 1 1 1 1 1 CDGHJK
L*| 1 1 1 1 11 1 1 ABGHLM
M 11 1 1 1 1 1 1 CDEFLM
1 1 1 1 1 1 1 1 ABCDJKLM
11 1 1 1 1 1 1 EFGHJKLM
11 1 1 1 1 1 1 ABCDEFGH
SUCCESSIVE SUMS
2{1 1 1 1 1 1 1 1 2 0 2 0 2 0 2 O
312 1 2 1 1 2 1 2 2 1 2 1 3 0 3 O
41 2 g 2 2 2 2 2 2 2 2 2 2 40 40
5| 3 2 3 2 3 3 2 3 2 2 3 41 5 0
6/, 3 3 3 3 3 3 3 3 4 2 2 4 4 2 6 0
714 3 3 4 4 3 3 4 4 3 3 4 4 3 7 0
8| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 8 O
9/ 5 5 4 4 5 5 4 4 5 5 4 4 5 5 8 0
105 5 5 5 5 5 5 § 6 6 4 4 6 6 8 0
11* 6 6 5 5 5 5 6 6 6 6 5 5 7 7 8 0
12/ 6 6 6 6 6 6 6 6 6 6 6 6 8 8 8 0

* Smallest 2 f.i.c. design for p = 11, ** Alias subgroup for 2174,
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Because of their bulk, the corresponding tables for the 1/32 and 1/64 replicates are
not reproduced. The 2135 and the 2'#% are the resulting smallest 2 f.i.c. designs.

Table VI gives sets of generators of alias subgroups up to 2!%7, The last column has
been adapted from Brownlee, Kelly, and Loraine [5]. In each case letters may be dropped
from the end of each generator until five-factor interactions appear. The generators
diminished in this way will give the smallest 2 {.i.c. design for that number of factors.

TABLE VI

GENERATORS OF ALIAS SUBGROUPS FOR FRACTIONAL REPLICATES
2r-2

(p = number of factors; ¢ = degree of fractionation)

P 6-9 7-11 8-12 11-14 14 15-16
q 2 3 4 5 6 7

ABDEGH  ABCGHL  ABGHLM  ABCDMO ABINO  ABCDOQ
ACDFGJ  ACDFHK ACFHKM  ADFGHLO  ACEGJ  ABEHPQ
ADEGJL  ADFGJIM  BDEGHKO  ADFGM  ACKLNQ
BDEGKM  EFGHMNO BDFHJ  ADEGN

HIKLMO CDILN  ADJKP

CDKMO  BDJMNQ

CDFGPQ

TABLE VII

SMALLEST FRACTIONAL REPLICATES IN 2P¢ SERIES WITH ALL
TwO-FACTOR INTERACTIONS CONFOUNDED WITH HIGHER

ORDERS
# = number of factors Nz = number of runs
g = degree of fractionation E = degree of freedom efficiency*
f = fraction f, 272 n¢ = maximum number of four-
level factors
? q S Nz E m
5 1 1/2 16 1.00 0
6 1 1/2 32 0.68 1
7 1 1/2 64 0.4 2
8 2 1/4 64 0.56 1
9 2 1/4 128 0.35 3
10 3 1/8 128 0.43 2
11 4 1/16 128 0.52 1
12 4 1/16 256 0.31 4
13 5 1/32 256 0.36 4
14 6 1/64 256 0.41
15 7 1/128 256 0.47

*E = p(p+ 1)/2(Ng ~ 1).

(The 2135 given has 30 2 f.i. confounded with 3 f.i. The alias subgroup given by Brownlee,
Kelly, and Loraine for the same situation has 44 such 2 f.i. All other designs for p < 16
given by these writers are reproduced by the present method.)

Some elementary properties of the 2 f.i.c. designs, for 5 to 15 factors, are set forth
in table VII. The number of runs required Nz and the ‘“degree-of-freedom efficiency”
E are of some interest. This efficiency gives the fraction of the total degrees of freedom
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used in estimating main effects or 2 f.i. For the most-used designs (for p greater than
seven), this efficiency is seen to vary from 56 to 31 per cent; it is locally maximal for the
282 the 24, and for the 2'57, requiring 64, 128, and 256 runs, respectively.

By its construction, it is clear that a fractional replicate, 27-¢, corresponds to a single
block of a full factorial, 27 confounded in 2¢ blocks. The members of the alias subgroup,
that is, the interactions confounded with the population mean in the fractional replicate,
are the confounded interactions in the full factorial if done in 2¢ blocks. In an unpub-
lished note, A. Birnbaum has pointed out that, following R. A. Fisher [15], and R. C.
Bose [16], it must be possible to derive balanced incomplete block designs which
confound only five-factor interactions (and higher) with blocks. If as an important
example it proves practicable to derive the design for the 22 in blocks of (hopefully) 29,
each of these blocks could be used as a 221!, This design, requiring 512 runs, will be put
to wide use as soon as it is available.

3. Calculations

Yates [7] has given a compact means of computing simultaneously the desired (Vz— 1)
effect-contrasts from a 27 design. This can be adapted to the 27-¢ series by ignoring ¢
letters in carrying out the calculation. The ignored letters must be ones occurring in
only one alias subgroup generator. The details of this calculation are more easily avail-
able in Kempthorne [4], in Bennett and Franklin [8], or in Davies [14].

With Nz as large as 32, Yates’ computational form may be split into two forms of
size 16, using sums and differences of pairs over the last factor, instead of the original
single results. This subdivision may be continued further for Ng larger than 32.

4. Error estimation

Confronted with the large number of contrasts provided by a 27-¢ design, the stat-
istician must have some means of deciding which of the contrasts represent real effects,
and which are “error contrasts.” If none of the factors varied produces any effect then
the whole collection of contrasts, Q = (%; — %_), will behave like a random sample of
(Ng — 1) independent drawings from a normal population (by central limit theorem)
with mean zero and variance 4¢%/N. Since the signs of the effects are the result of the
arbitrary definitions of the two levels of each factor, the absolute values of the Q contain
all the information available about the standard deviation of the distribution. This
“half-normal,” or A/2, distribution can be plotted on ‘‘arithmetic normal probability
paper” with the probability scale rewritten as |100-2P| where P is the printed proba-
bility in per cent.!

A collection of plots of actual experiments is offered in figure 1. Plot a is that of
Yates’ 25 factorial on beans [7]. The four largest contrasts were judged real in that
paper. Plot b shows the results of varying eight factors thought to influence the yield
of gasoline in a certain catalyst system [9]. Plot ¢ uses data taken from an experiment
published by Bennett and Franklin [8]. Plot d is from a 2'*7 (unpublished).

For comparison, figure 2 gives the empirical cumulative distribution for the first
four sets of 30 random normal deviates (one from each column) given in Dixon and
Massey [10]. The arbitrary practice has been followed of calculating cumulative per
cents as 100 (1 — 3)/n, where » is the number of degrees of freedom as ¢ runs from

1 The writer had been graphing this distribution as a set of ranges-of-pairs until the much more con-
venient half-normal plot was suggested by A. Birnbaum.
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1 to n. The estimated standard error, Gq, of the quantity Q, whose absolute values are
plotted, is read off at the 689, point of the best line forced through the origin.

Generalizing somewhat prematurely from twenty such plots, it seems that if only the
largest contrast appears to be off the line, then one must be quite conservative in judging
its reality—about 1.5 &g being a rather common deviation. (Such a deviation occurred
twice in twenty plots.) Equally roughly, two contrasts are judged real only when they
are both off the line by 1.0 é¢; and if three or four are off the line plotted, the required
minimum deviation should be 0.5 4. Larger sampling experiments are in process and
will be reported shortly. (See Note at the end of this paper.)

If more than one of the contrasts estimated appear to be real, then the assumption
being made, that few effects are large, is somewhat vitiated. A re-plotting of the “error
contrasts” is suggested on the same graph, to correct for the deflation of the ordinates
by the excessive denominator.

5. Limitations

Four difficulties in using fractional replication have appeared repeatedly. Inoperable
sets of conditions may destroy the required balance. No unbiased error estimate is ob-
tained. The 277 series are almost intrinsically first-order designs, that is, curvature of
response surfaces cannot be measured. Sequences of fractional replicates are not easy
to integrate to arrive at general conclusions.

The risk of running into inoperable sets of conditions may be reduced by preliminary
experimentation. It has often proved practicable to assemble all of the experimenter’s
judgments about risky sets of conditions into a fraction of the intended fractional
replicate, which is then run first.

A more interesting suggestion, due to H. Robbins [11], is to choose a set of, say, 25
random points in the proposed (bounded) factor space for a preliminary set of “oper-
ability runs.” The proportion of these points that proves operable estimates the oper-
able fraction of the region chosen with standard error £0.1. It may be reasonable to
inflate the convex region determined by the points found operable, to the extent indi-
cated by the operable fraction, thus getting an indication of the actual boundary of the
operable region.

The second shortcoming mentioned is the absence of an unbiased error-estimate. This
lack appears more serious in the short run than it does when we remember that a frac-
tional replicate is generally only the first stage in two simultaneous campaigns. The first
is the campaign of the engineers and technical men to locate and estimate the influential
factors in a new field. The other is the campaign of the consulting statistician, teaching
the research men the elements of statistical design. From the point of view of the former,
the 27-¢ designs are far more precise than the work to which they are accustomed, often
by a factor of p. From the statistician’s standpoint, the inflated error that he reports
often serves the beneficial—and provocative—purpose of persuading the engineers to
run some real duplicates, in order to prove the statistician wrong. The revisions down-
ward of the inflated estimate are rarely very great, and so both campaigns are advanced
at the same time.

For more sophisticated engineers, who will want an unbiased estimate of the error
built directly into the first set of runs, a compromise was suggested to the writer by
W. A. Griffith [12]. It consists in duplicating some runs of the balanced design but not
all. Unpublished work by H. Scheffé, extended by A. Birnbaum, has shown that the
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resulting normal equations are quite manageable in full replicates of factorial designs,
and for small numbers of factors. It is hoped to extend these results to produce designs
for the “partial duplication of fractional replicates” that will have easily computable
analyses. In the meantime, it appears, judging from work of G.E.P. Box [13], that little
information will be lost if the duplicated values are simply averaged and treated like
single values. It is obvious that a considerable number of duplicates must be run, never
less than 16, and it is plausible that they be chosen to comprise a “block” of the fractional
replicate so as to guarantee a tolerably uniform spreading over the region of factor
space being explored.

The criticism of the 27-¢ series implied in calling them intrinsically first-order designs
may be partially covered by including some factors at four levels. This is done by reserv-
ing two two-level factors, now called pseudo-factors, and their interaction for the three
degrees of freedom required. The column headed 7, in table VII shows the number of
four-level factors that can be crammed into a 2 f.i.c. design.

The difficulty in organizing sequences of fractional replications will be discussed in
the next section.

6. Sequences of fractional replicates

If the effects of some factors are unexpectedly large, it will be well to learn this as early
as possible. This desideratum is not taken into account in the designs discussed so far,
since the whole sequence must be completed before any conclusions are drawn. It is
possible, however, to plan a sequence of fractional replicates so that the initial fraction,
and the final 2 f.i.c. design if it turns out to be required, are both “best.” There are then
some restrictions on the path taken through the intermediate fractions that may be used.

To study the main effects of seven factors, one might start with the 27-4 in eight runs.
The alias structure can be deduced from table VI, column 3, by dropping all letters after
G. The generators of the alias subgroup may be taken as —ABG, —ACF, ADFG, and
BDEG. Taking all products and arranging in alphabetic order, give

—ABCDEFG ACEG —BCE CEDF
ABCD —ACF BCFG —-CDG
ABEF —ADE BDEG —EFG

—ABG ADFG —BDF I

This alias subgroup is well balanced in the sense that thfee 2 f.i. are confounded with
each main effect.

The corresponding set of eight runs is advantageous in the further sense that all are
from one half replicate. In choosing fractions to separate effects that need separating it
is necessary to remember that it may prove desirable to go all the way to the 27, since
the latter is the smallest 2 f.i.c. design for p = 7. It will generally be best then to retain
the interaction — A BCDEFG in the alias subgroup. This prevents the use of some inter-
mediate fractions that would appear, by themselves, to be best. For example, the 27-3
generated by —ACF, ADFG, and BDEG has three 3 f.i. in its alias subgroup and so
appears inferior to that generated by A BCD, ADFG, and BDEG, which has only 4 f.i.
in its alias subgroup. But the former subgroup still contains the 7 {.i. and so its runs are
all in one half-replicate. Such is not the case for the latter subgroup, and this fact must
be weighed in deciding between the two. If sufficient sensitivity is going to be achieved
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with 16 runs, then the second alternative will usually be preferred. If the sensitivity still
leaves much to be desired, and if several large contrasts not clearly unconfounded have
already turned up, then the first, more conservative, alternative should be chosen.

Similarly a campaign may be planned from the 2111 in 16 runs, to the 27 in 256
runs, the latter being the smallest 2 f.i.c. design. It will be important to keep all the
members of the alias subgroup of the latter design in the subgroup for the intermediate
stages. This condition is met if any seven generators of the 257 are present in the 21®-1
and are retained in the intermediate designs.

7. Summary

The 27-¢ series of fractional replicate designs is beginning to find wide application in
industry. Since small effects (of the order of magnitude of the error standard deviation)
are often industrially important, large numbers of runs are required in any case. The
useful range so far is from five to fifteen factors, and from 16 to 256 runs. A method of
deriving all the designs in this range is applied to complete the published lists of frac-
tional replicates. Suggestions are made for simplifying the calculation and interpretation
of fractional replicates.

Some limitations of these designs are: their sensitivity to missing data, their failure
to provide strictly unbiased error-estimates, and their intrinsic first-orderedness. Some
means of relaxing these limitations are proposed.

Certain sets of fractional replicates that have been found useful in sequential experi-
mentation are discussed.

¢ 0 ¢ Y Y

Note added in proof: At the suggestion of A. Birnbaum, A. Bowker arranged to have 2500
sets of thirty-one standard normal deviates produced and ranked by machine in order of
absolute magnitude. The statistic #; = %3 /%22 was computed from each set, where #; is
the ith absolute value order statistic of a set of thirty-one. The distribution found for
logieh1 was noted by the writer to be very nearly normal, with mean 0.35 and standard
deviation 0.11. The distances off the “half-normal line”’ corresponding to Type I error
rates per experiment of 0.1, 0.05, and 0.01 are 0.65, 0.94, and 1.54 &4 units, respectively.
Special thanks are due to G. Lieberman and to J. Carter for carrying through the ma-
chine computations. Bounds on both types of error, also for larger experiments, are being
prepared by A. Birnbaum.
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