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1. Introduction
A recurring problem in medical statistics is the determination of the relative risks

of developing a disease, say lung cancer, among two or more subclasses of a popula-
tion, say, smokers and nonsmokers. Ordinarily, the risk for any subclass is estimated
as the ratio of the number of cases of the disease developing in that subclass to the
total number of persons in it, while an estimate of the risk for one subclass relative
to another is provided by the ratio of the estimated absolute risks. Studies which
start in this fashion with populations classified into subgroups, for each of which one
counts the number of new cases of a disease which develop during some subsequent
period of time are ordinarily referred to as "forward-looking" or "prospective"
studies.
One may also be concerned with other types of relative risk, for example, the

relative risk of dying from a disease or of having a disease. These different relative
risks need not be the same for any one disease, and in cases where they are not it is
customary to attempt to estimate all three. The relative risk of developing a disease
is usually referred to as the relative incidence, the relative risk of dying from it as
the relative mortality, and the relative risk of having it during some specified inter-
val of time as the relative prevalence. In diseases, such as lung cancer, where the
outcome is usually fatal and the interval between detection and death is relatively
constant, the difference between these three different measures of relative risk will
be small. In such cases it is common to choose that relative risk which can be
estimated most easily. Thus, in prospective studies of lung cancer an estimate of
relative mortality is usually preferred to one of relative incidence or prevalence
because (a) the death registration system provides a complete enumeration which
is lacking for newly developed or for existing cases and (b) diagnosis of cause of
death is usually more accurate.
The risk of developing, having, or dying from any one disease in any one year is

small. For this reason prospective studies designed to supply estimates of any one
of the three relative risks must cover large numbers of persons, usually kept under
observation for several years. An alternative method of gathering data, which
avoids the necessity of observing large numbers of persons without the disease, but
which, as usually done, supplies only estimates of relative prevalence is now com-
monly referred to as a retrospective study. In such a study one starts with a popu-
lation (or a sample of it) classified into groups having and not having the disease,
and determines for each group the proportion belonging to some subclass. Thus,
one might classify a population into those having and not having lung cancer and
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then determine the proportion of smokers in each group. The studies are termed
retrospective because the determination of the subclass into which an individual
falls requires looking back at his past behavior. If we denote by P the proportion
of the population falling into the diseased group (that is, the prevalence rate), by
pi the proportion of the diseased group falling into a subclass, and by P2 the pro-
portion of the nondiseased group falling into that subclass then the prevalence rate
for that disease for members of the subclass is

(1.1) plP/[plP + P2(1- P)]

for nonmembers of the subclass

(1.2) (1 - pI)P/[(1 -p)P + (1 - P2)(1 -P)]
and the prevalence among members of the subclass relative to nonmembers is

(1.3) Pi (1 - p1)P + (1 - P2)(1- P)
(l-pI) PIP + p2(1-P)

For most investigations P is sufficiently small relative to P2 and (1 - p2) to write
for (1.3)

(1.4) Pi (1 - P2)
(1 -P) P2

We shall henceforth refer to (1.4) as the relative risk of having the disease. In a
retrospective study in which a sample of n1 individuals with the disease and n2
normals are studied to yield X1 diseased and X2 normals falling into the subclass,
it seems natural [ 1 ] to estimate the relative risk (1.4) with the statistic

(1.5) 1XI n2 -X2
n-x1 X2

It is the purpose of the present paper to consider the problem of obtaining single
and simultaneous interval estimates of the relative risk, (1.4). This problem leads
to the familiar ground of chi-square and the contingency table, but because the
point of departure is interval estimation, and not hypothesis testing, the route may
be new.

2. Exact confidence limits
The unconditional probability that samples of n, and n2 individuals from popula-

tions in which proportions pi and P2 have some characteristic will yield X1 and X2
individuals with that characteristic is

Xi n

/fl 2\ n-X

(2.1) PXl) (X2) q

where q = 1 - p. The conditional probability of the observations for the subset of
samples in which all marginal totals are fixed by the condition

(2.2) X1+ X2 =m
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is then, as can easily be verified,

(2.3) C()(m )x
\XJ1\ - XI

where z = piq2/p2qi, the relative risk, and

C X-o (X1)(m-XI)ZX

a distribution which has also been considered by Patnaik [2] and Stevens [3]. The
conditional probability of the sample observation X1, given the marginal totals
thus depends only on z, the unknown parameter which we wish to estimate. An
interval estimate now follows immediately by a well-known argument [4, p. 234].

Denote by z2 the solution for z of the equation

xi fnl\ n2
(2.4) (lCY)(_yz=az

and by z1 the solution for z of
nm MA n2\

(2.5) (C )Y ) zv a
Then the probability that the statement

(2.6) z19 z : Z2

is correct is equal to or greater than 1 - a.' This result is of course closely related
to Fisher's exact test of independence for the 2 X 2 table (see section 21.02 in [5]),
the relation being that the test of significance will reject the null hypothesis for a
given set of data when and only when the confidence limits (2.6) computed from
the same set of data fail to include unity (both computations being of course at
the same significance level). Using tables of the binomial coefficients, such as Fry's
appendix table III [6] it is possible to solve equations (2.4) and (2.5) by numerical
methods and obtain the desired confidence limits. Except when min (n, m) is quite
small, however, this is a difficult computation, the attempt to avoid which leads to
the investigation of asymptotic approximations.

3. Large-sample confidence limits
In seeking the limiting distribution for (2.3), which we now denote by P(X), we

are faced with an initial difficulty arising from our inability to evaluate the constant
C, in consequence of which we are unable even to derive exact expressions for the
expectation and variance of X. We avoid this difficulty by seeking instead the
limiting distribution of the ratio

(3.1) P(X)
P(X)

1This defines equal-tailed confidence limits, which in view of the skewness of the distribution
(2.3) may be biased. There is no difficulty in defining unbiased limits, if they are desired.
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where X is the mode of the distribution (2.3) and is defined by the inequality

(3.2) (X + 1)(n2-m+ X + 1) > > X(n2-m + X)
(n.-X)(m-X) (n-X +1)(m-X +1)

For large samples it is sufficient to write

X(n2 - m + X)

(nl - X)(m-X)
If we substitute Stirling's formula for factorial n in (2.3), expand all terms of the

form log (1 + X) to the quadratic and set terms of the form

(34) X+~ni-X+2 m-X+ 2 n2-m+X+

X ni-X m-X n2-m +X
equal to unity, we have as a limiting expression

(3-5) -2 log P(X)= (X X) [1+ 1
+

1
+

1

P(X) ni -X m-X n2-m+XJ
To obtain the value of the maximum ordinate we use (2.3) to write

(3.6) 1= E

P(X) X_0 P(X)
and using (3.5), and approximating the summation in (3.6) with an integration
from - o to + - we obtain

(3.7) P(X) = + + +
\/27r X n-X m -X n2 - m +

We thus conclude that the limiting distribution for (2.3) is normal with mean
defined by (3.3) and variance

(3.8) F 1 + 1 +kl

n- m - X n2 -M+
Denote by X2 the largest real root of the quartic in X

X _F i 1 11a2(3.9) (X X 2 [ + + +
n -X m-X n2-m+Xj

and by Xl the smallest real root of

(3.10) (X-X+D2 [ + 1 + 1 +]

X ni-X m-Xk n2-M+X
where x2 is the upper a per cent point of the chi-square distribution with one degree
of freedom, the 1/2 arises as the usual approximate correction for the discontinuity
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of the distribution (2.3), and X is the sample observation. Denote by z' and z' the
values of z obtained by substituting X2 and Xl in (3.3). Then the probability that
the statement

(3.11) l k_X <X2

is correct is asymptotically equal to 1 - a, and since z is a monotonic function of X,
the asymptotic probability that the statement

(3.12) zl < z . z2

is correct is also 1 - a. The conceptual similarity between the limits (3.11) and
those derived by E. B. Wilson [7] in 1927 for a single binomial variate should be
noted.

4. Application 6f approximate limits to small samples
We now consider a single example designed to throw some light on the numerical

adequacy of the approximate limits (3.12) when applied to small samples. The data
are given in table I. It will be noted that the smallest marginal total is 14 and the

TABLE I

DISTRIBUTION OF PHYSICIANS WITH AND WITHOUT LUNG
CANCER BY SMOKING STATUS

Smoking Status Lung Cancer ControlsPatients

Nonsmoker .............. 3 11
Smoker ............................. 60 32

Total.63 43

(Souaca: Wynder and Cornfield [8]).
* To keep the numbers small we have used only one of the three control groups given

in the original article.

observed value of X is 3, so that the sample is small and the distribution skew. The
test of the approximate procedure would consequently seem to be a stringent one.
To obtain 95 per cent confidence limits about the sample result we set xI = 3.841

and find2 as the solution of equations (3.9) and (3.10)

X2= 6.905
(4.1)

= 0.815
so that

z' = 0.6229
(4.2)

z' = 0.0296.
2 The most convenient numerical method that we have found for solving the quartic is iterative

One starts with an initial approximation to the root and uses it to estimate the variance. This
gives an improved estimate of the root. When one of the cell entries is small, relative to others as
in table I, a good initial approximation is given by using only the two smallest cell entries, thus
reducing the quartic to a quadratic, which is easily handled. When all cell entries are of the same

magnitude, substituting X for X in the variance gives a good initial approximation.
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Thus at the 95 per cent level of confidence the risk for nonsmokers is at most 62
per cent of that of smokers and may be as little as 3 per cent. The adequacy of this
approximation may be determined by substituting z2 in equation (2.4) and z' in
equation (2.5) and noting the extent to which the left-hand side of each equation
differs from .025. This calculation is shown in detail in table II, from which it may

TABLE II
ESTIMATION OF TAIL AREAS CORRESPONDING TO APPROxiMATE 95 PER CENT CONFIDENCE

INTERVALS Z1' = 0.0296, z2' = 0.6229 AND APPROximATE 99 PER CENT CONFIDENCE
LIMITS Z1' = 0.0209, Z2' = 0.8790.

X (Z))63)( (2) (.6229)' (2) (.0296)X (2) (.8790)' (2) (.0209)'
(1) (2) (3) (4) (5) (6)

0. 7.83810 7.83810 7.83810 7.83810 7.83810
1. 2.30512 1.43612 6.823 2.02612 4.817
2. 2.99613 1.1621' 2.624 2.31513 1.309
3. 2.28414 5.520 5.9169 1.55114 2.0859
4. 1.14215 1.71914 0.877 6.818 0.218
5. 3.964 3.717 0.090 2.08015 0.016
6. 9.853 5.755 0.007 4.544 0.001
7. 1.78316 6.488 ..... 7.228 .....

8. 2.361 5.350 ..... 8.415 .....

9. 2.278 3.217 ..... 7.137 .....

10. 1.577 1.387 ..... 4.343 .....

11. 7.59915 4.1631' ..... 1.839 .....

12 .2.409 8.22012 ..... 5.12614 .....

13 .. 4.502'4 9.56711 ..... 8.41913 .....

14. 3.73913 4.95010 ..... 6.14712 .....

Total .0-14 28.82414 17.975'° 37.05115 14.19710
0-3 6.83413 ..... 1.804'4 .....

3-14 ..... 6.8909 ..... 2.3209

Per cent in tail.... ..... 2.37 3.83 0.49 1.63

Each entry should be multiplied by 10 raised to the power given in the upper right hand corner.

be noted that one tail area is 2.4 per cent, the other 3.8 per cent. For 99 per cent
confidence limits we set x2 = 6.635 and find as solutions of equations (3.9) and (3.10)

X2= 7.94
(4.3)

X, = 0.59
so that

z' = 0.8790
(4.4)

z' = 0.0209.

As shown in table II one tail area is at the 0.5 per cent level, the other at the 1.6
per cent level. For this set of data therefore the effect of the approximation is to
place us at the 6.2 per cent level when we wish to operate at the 5 per cent level and
at the 2.1 per cent level when we wish to operate at the 1 per cent level.
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The agreement between the actual and estimated tail areas would appear to be
closer than one might expect in view of the considerable departure of the exact
distributions from normality. Thus, the distribution yielding the 3.8 per cent tail is
violently skewed and has the bulk of the probability concentrated at 0 and 1, in
view of which the disagreement between 3.8 and 2.5, while perhaps larger than one
might wish, is smaller than one has any right to expect. Wilson's quadratic approxi-
mation to confidence limits around a single binomial proportion [7] has this same
property. Thus, with a sample of size 1 yielding none with the characteristic the
exact 95 per cent confidence limit is, of course, 0 < P < .95, while the approximate
one (with a continuity correction) is 0 < P < .76.

5. The r X s contingency table
In practice one is rarely satisfied with a single interval estimate of relative risk,

but wishes instead to have several simultaneous estimates. The problem is illus-
trated by the data in table III, which shows the distribution of lung cancer and

TABLE III
DISTRIBUTION OF PERSONS WITH AND WITHOUT LUNG

CANCER BY SMOKING STATUS

With Lung Cancer

Smoking Status _ _
Adenocarci- Epidermoid Controls

noma Carcinoma

Nonsmokers .4 15 56
Smokers:
Pipe and cigar only .2 13 68
Cigarettes only .31 298 240
Cigarettes plus pipes and cigars 9 146 154

Total .. 46 472 518

(Souacz: Breslow et al. [9]).

control patients by smoking status and a simultaneous breakdown of lung cancer
patients as between two histologic types. It has been suggested, first that smokers
have an excess risk of developing epidermoid, but not adenocarcinoma, and secondly
that cigarette smokers have a greater excess risk of developing lung cancer than do
pipe or cigar smokers. We propose to consider, from the point of view of interval
estimation, what evidence the data in table III contain on these points.

Perhaps the most common way of attacking questions like this with data like
those in table III is a chi-square test using independent single degree of freedom
contrasts, each at the same predetermined level of significance. Such a procedure
does not seem appropriate here because (a) we do not know which of the many
possible orthogonal breakdowns to use, (b) we wish to have interval estimates of
relative risk, and not tests of hypotheses, (c) we are not concerned with six inde-
pendent questions, each to be separately tested, but rather with several facets of the
single question of tobacco as a possible factor in the etiology of lung cancer.
We propose instead to consider the question from the point of view of confidence

regions. We shall seek a closed region in the parameter space which we may, with a
known probability of error, assert encloses all the parameters that determine the
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distribution of the observations in table III. We may then, in a fashion indicated
by Scheffe in connection with the analysis of variance [ 10], enumerate as many of
the particular sets of parameter points falling inside this region as we please, and
the probability that the totality of these enumerations is incorrect in any respect
is the probability that the region itself does not include the true parameter point.
To obtain this region we note first that the unconditional probability that samples

of ni individuals (j = 1, 2, *- *, s) from populations in which proportions pi,
(i = 1, 2, *, r) have some characteristic will yield Xii individuals with that char-
acteristic is

F r Xfj

(5.1) llnj! II P'j
j=l i-l Xij-

where

Xij =nj,
i=1

E pij = 1.

The conditional probability of the observations for the subset of samples in which
all marginal totals are fixed by the conditions

a

(5.2) EXij = Mi
j=l

is, as can easily be verified,
J a-i r-l

C II nj! II(5.3) C I f f1 rI 1 i=l if

where
PijPr.ziij =

and C is determined by the condition that the sum of (5.3) over its range is unity,
and the rs variables Xi, are subject to the r + s - 1 linear restraints imposed by
the fixed margins. The physical interpretation of zi; is as follows. Let the sample of
size n8 be control patients and the rth category in each sample be nonsmokers.
Then zii is the risk that smokers of the ith category will have the jth disease relative
to that for nonsmokers.
We find the limiting distribution for (5.3), which we denote by P(Xij), exactly

as in section 3. We denote the values of Xii at the point of maximum density of
(5.3) by ±i, where, in large samples

Xij [ns- mmi + Ei] -

(5.4) l l l[=Zjj .

[ i El ij] [ni El ij]
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Then, by substituting Stirling's formula and making the other approximations of
section 3, we obtain

-2lg( ij) =EE(Xij - Xi ),(5.5) -2 logP(t)-i:~(i
P(Xi,) 1 1 xij

We conclude that the limiting distribution of (5.3) is multivariate normal and that
in consequence the positive definite quadratic form given by the right-hand side of
(5.5) is distributed as chi-square with (r - 1)(s - 1) degrees of freedom. In that
case the required confidence region in the Xi, is defined by

(5.6) E E (X=j-Xi,)< x [(r-1)(s-1)1
1 1

xii

where Xi, are observed values, ±ii are the variables of the parameter space and the
right-hand side is the upper a per cent point of the chi-square distribution with
(r - 1) (s - 1) degrees of freedom. A corresponding region about the zi; is obtained
from (5.4) in view of the fact zi; is monotonic in Xlk for all i, j, 1 and k.

Thus, if we return to table III and set a = .05, the confidence region becomes

(5-7) (4-Xi)2 + + [9-(46- ll-±2l1X31)]2+
K11 46 - Xkl -X21 -X31

[56- (75-X1i - X12)]2+ . . .< 12.59.
75 - -ll- 2

At the 95 per cent level of confidence therefore we shall reject any hypothesis
specifying values of X11, ** *, X32 for which the expression set out above exceeds
12.59 and will accept all hypotheses for which it has a lower value.3 One such set
is obtained by setting X;s = X±i for ij F6 12 and solving the quartic

(5.8) (15- X12)2 + 1 + 1 + 1 1=12.59
Lx-2 71 - X12 161 - X12 139 + X12=

for X12.
The smallest and largest root of this are X12 = 6.49, 29.2, leading to correspond-

ing values of Z12 of 10.2 to 1.33. If we assert that the risk that a smoker will have
epidermoid carcinoma of the lung exceeds that for a nonsmoker by at least one-
third and by no more than tenfold, the chance that this statement is wrong is less
than .05. These limits are of course broad, but we may continue to investigate
other relations in table III and enumerate as many sets of Xii satisfying equation
(5.7) as are of scientific interest. We have assembled 11 such statements in table IV.
The chance that there is any error in these 11 statements is still less than .05. We
now see as far as epidermoid carcinoma is concerned we can assert that smokers
have a higher risk than nonsmokers (line 1), that cigarette smokers have a higher

3This sentence is an almost verbatim quotation from Fisher [11, p. 210]. I am indebted to
Fairfield Smith for calling this passage to my attention.
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risk than pipe and cigar smokers (line 6), that there is no evidence that pipe and
cigar smokers have an excess risk, but that if there is one it is less than threefold
(line 4), and that the cigarette smoker has a risk at least 2.5 times and perhaps as
much as 11.9 times that of the noncigarette smoker (line 7). As far as adenocar-
cinoma of the lung is concerned, the confidence limits are all too broad to support
any kind of useful statement (lines 2, 3, 8, 9, 10).
A numerical investigation of the adequacy of the approximate regions for small

samples like that of the preceding section for the 2 X 2 table would be useful but
it is a difficult calculation and we have not been able to undertake it.

6. The 2 X 2 X N contingency table
Another aspect of this problem is illustrated by the data in table V, which sum-

marizes the findings of 14 retrospective studies. All studies agree in showing a

TABLE V
SUMMARY OF FINDINGS OF 14 RESTROSPECTIVE STUDIES ON THE ASSOCIATION

BETWEEN SMOKING AND LUNG CANCER

Lung Cancer Patients Control Patients
Study Number _ __ _ eRa.tkRisk

Total Nonsmokers Total Nonsmokers

1 .................... 86 3 86 14 5.4
2 ................... 93 3 270 43 5.7
3 ................... 136 7 100 19 4.5
4 ................... 82 12 522 125 1.8
5 ................... 444 32 430 131 5.6
6 ................... 605 8 780 114 13.0
7 ................... 93 5 186 12 1.2
8 .................... 1357 7 1357 61 9.4
9 ................... 63 3 133 27 6.1
10 ................... 477 18 615 81 3.8
11 ................... 728 4 300 54 36.4

12.518 19 518 56 3.312.......................... 11958633
13 .490 39 2365 636 4.2
14.......................... 25527214.265 5 287 28 5.5

Total . 5437 165 7949 1401 7.5

(8ouRc1B: Dorn [12])

greater excess risk for smokers, but do not agree as to the magnitude of the differ-
ence. While methods exist for deciding whether the differences among the studies
are significant, this is not a question of any great interest. Rather we should like an
interval estimate of the extent to which they do differ, and a way of combining the
results for those which do not appear to differ.
The unconditional probability of N studies each yielding a 2 X 2 table with fixed

marginal totals and Xi nonsmokers is
Nv n%i/ ni2

X

(6.1) II t Xi
where zi is the "true" relative risk implied by the definitions and procedures of the
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ith study. The conditional probability given the additional restraint
N

(6.2) Xi = r
. ~~~~~~~~~~~~~~~t= 1

is

(6.3) K (rN-1'X)(mN- 1 I ()( X i)
- Ex mN-r + EX Ill VX/mi-xJ

where
= Zi

ZN
and

1 E nN n2
N 1

I n AK Xl X2 XN-1 \-EXJmN-r+EXJ i=l \i/mi-xi/
The parameters of the distribution (6.3), the Di, are ratios of relative risks, so that
we may proceed to the derivation of a large sample confidence region which will
permit simultaneous statements about the Di. We denote the values of Xi at the
point of maximum density of (6.3) by Xi, where, in large samples

(6.4) Xi(ni2 - mi + Xi)(Nl - r +
j X5)(mN - r + E Xi)

(nil - X1)(mi- Xk)(r - E X1)(nN2 -mN + r - E xi)
The large sample confidence region in the ki is then obtained as before as

N

E (X, i- j2
1 ~~~~~~~2(6.5) =X [(N1)]

Xi

where the Xi are the observed values, the Xi are the variables of the parameter
space and the right-hand side is the upper a per cent point of the chi-square distri-
bution with N - 1 degrees of freedom.

If we return now to table V we note that the least relative risk shown is 1.2, the
largest 36.4, so that the two most extreme studies differ in their estimates by thirty-
fold. To compute 95 per cent confidence limits we set Xi = Xi for i $6 7, and set

(6.6) (Xi 5)2 + 1 * 1 1 -22.36
Xi 17-Xi 719 + Xi 251-XJ

for i = 7. The smallest root of this octic is X7 = 0.85, so that from (6.4) we estimate
the lower 95 per cent confidence limit on 07 as 1.71. Although the two studies appear
to differ in their estimates of relative risk by thirtyfold the most we can claim at
the 95 per cent confidence level is that the procedures and definitions adopted in
the two studies differed sufficiently to lead to differences in computed relative risk
of at least 70 per cent.
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To compare the next two most extreme studies, 4 and 6, we set

i=Xi for i$! 4
and

(6.7) (Xi
-

12)2 [ + 1 + . 1 + 15X22.36
Xi 137-X, 585 + Xi 557-X

for i = 4. The smallest root is X4 = 4.05, so that from (6.4) we compute the lower
95 per cent confidence limit on 04 as 1.08. Thus, although studies 4 and 6 appear
to differ by sevenfold in their estimate of relative risk the most we can assert is that
they differ by more than 8 per cent. For all remaining comparisons confidence limits
on the Oi include unity, so that as far as the evidence of table V goes, 10 of the 14
retrospective studies could be supplying the same estimates of relative risk, even
though the lowest and highest differ by threefold.

If now we combine these 10 studies we obtain 136 nonsmokers among the 3,929
lung cancer patients and 1,096 nonsmokers among the 6,161 control patients. The
95 per cent interval estimate of relative risk can now be obtained from equations
(3.9) and (3.10). This calculation gives

X2= 158.3
(6.8)

Xl= 116.4
so that

-1 5.03

(6.9)
1

- 7.24.

We thus on the basis of table V make the composite assertion that (a) studies 7
and 11 are not samples from the same populations, (b) studies 4 and 6 are not sam-
ples from the same population, (c) all the remaining studies could be samples from
the same population, and (d) these remaining studies indicate a risk of having lung
cancer for smokers relative to nonsmokers of not less than 5.0 and not more than
7.2. The chance that this composite assertion is wrong in any respect is at most
.95 X .95.
We remark parenthetically that if the published data for all ten studies had per-

mitted that estimation of relative risk for cigarette smokers, and particularly
heavy cigarette smokers, these risks as calculated would be considerably larger.
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