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1. Introduction

This article deals with the theory of genetic changes in natural populations. It
does not review the extensive and rapidly growing body of experimental and obser-
vational data, but is restricted to the mathematical theory.

Natural selection differs from that in populations under human control in two
important respects. (1) The plant or animal breeder can select his stocks on the
basis of any character he chooses; in nature the only criterion is the probability of
surviving and leaving descendants. (2) The plant or animal breeder can select on
the basis of performance of relatives as well as on individual traits; natural selec-
tion (insofar as it is intrapopulational) is typically on an individual basis.

The process of genetic change from generation to generation is stochastic, since
the factors directing the change (selection, migration, mutation) are usually not
constant and because of the process of random sampling of gametes in reproduction.
However, it is much simpler to treat the process as deterministic, and for large
populations with constant environmental factors this model is satisfactory. Under
other conditions a more realistic stochastic model must be introduced. We shall
deal here first with deterministic models (J. C.) and, in the second part, introduce
mathematically more involved stochastic models (M. K.).

The deductive theory of population genetics and microevolution is due almost
entirely to three men: J. B. S. Haldane, R. A. Fisher and Sewall Wright. Haldane
has dealt mainly with deterministic processes, especially the rate of change of gene
frequencies with natural selection under a wide variety of circumstances. Most of
his early work is summarized in the mathematical appendix to his book, “The
Causes of Evolution” [10], where references to this work are given. See also [12].
Work on stochastic processes is due mainly to Wright and Fisher. Fisher has been
especially concerned with the theory of natural selection and his earlier results are
summarized in his book, ‘“The Genetical Theory of Natural Selection’ [5]. He has
dealt with a stochastic process in connection with the probability of persistence of
a mutant gene in a population. After earlier work on the consequences of various
mating systems, Wright has been especially concerned with the steady state distri-
bution of gene frequencies under increasingly general conditions [25], 28], [30].
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PART I. DETERMINISTIC PROCESSES
2. Measurement of fitness or selective value

From the standpoint of evolution, fitness is measured by the number of descend-
ants in future generations. Thoday [23] has argued that the descendants should be
counted after a long period of time and the “unit of evolution’ should be the entire
body of individuals that have common descendants; this may range from a single
individual in nonsexual organisms to the entire species in sexual organisms or even
larger units where hybridization followed by polyploidy or introgression is possible.
But, in practice one is constrained by both experimental and mathematical limi-
tations to take a narrower view. We consider fitness as measured by representation
in the next generation. This is misleading for some characters (for example, the
mutant “grandchildless” in Drosophila obscura which renders the daughters sterile),
but usually is reasonably satisfactory. Furthermore our unit is the individual and
we shall deal mainly with intrapopulation selection.

Wright has measured fitness by the coefficient, w, the selective value, defined (in
his words) as follows: “the selective value of a given type of zygote (fertilized egg) is
assumed to be measured by its average contribution under the prevailing conditions
to the array of zygotes produced a generation later in such a way that @ is the ratio
of the effective size of the population in the following generation to that in the one
under consideration.” Haldane [10] has used a similar definition. Fisher {5], [8]
has measured fitness in terms of the “Malthusian parameter,” m, defined by the
relation

@.1) f e Lbdz = 1,
1]

where [, is the probability of surviving to age x and b, is the probability of repro-
ducing at age z. In populations with overlapping generations and unstable age dis-
tributions it is convenient to weight each age group by its reproductive value [5];
otherwise it makes relatively little difference what system is used. Overlapping
generations have been studied specifically by Haldane ([10], and earlier references
given there).

8. Effect of deterministic factors on individual genes

This problem has been considered by Haldane, Fisher and Wright. In a series of
early papers Haldane discussed in detail the course of selection acting on genes of
various types (sex-linked, autosomal, dominant, recessive, heterotic, favored in one
sex, etc.) and under various assumptions ([ 10] and earlier references given here). In
general the problems are not difficult in principle, though the actual process may
involve some tedious algebra.

The most comprehensive formula for the rate of change in frequency z; of a gene
A, is Wright’s equation (see [30], p. 378), which includes mutation to and from a
series of alleles, migration, and genotypic selection with variable coefficients. In
our terminology, the formula for a locus with k alleles is

3.1 dw
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where z; is the proportion of 4; among the alleles at this locus, u;; is the rate of
mutation from A; to A;, m is the immigration coefficient, z;; is the frequency of
gene A; among the immigrants, and w is the genotypic selective value.

4, Effect of selection on population fitness

In nature, as well as in the laboratory, we are often concerned with the aggregate
effect of a number of genes on some measurable character. In the theory of natural
selection the character of most interest is the selective value or fitness. In this sec-
tion we consider the effect of selection on the average fitness of the population.

Let P;; be the frequency of the homozygous genotype A:A4; and 2P;; be the fre-
quency of the heterozygous type 4:4; (z # 7). No distinction is made between 4;4;
and A;A;. Let y.; be the average phenotypic measure of genotype 4:4;in the popu-
lation under consideration. Then the average measure of the population will be

4.1) =2 Piyi.
17

It is convenient to express the genotype frequencies in terms of gene frequencies
and Wright’s coefficient of inbreeding, F [24], [33]. Letting z; be the frequency of
the gene A ;, we have

Pii=xixj(1_F); 7'#.7:
4.2)
P“‘=$C2i(1 —F')+Z.'F.

This introduces some restrictions when there are more than two alleles since a
single parameter F, together with the gene frequencies, is insufficient to specify all
the genotype frequencies. This could be especially troublesome if there were assorta-
tive mating. However, with any system of inbreeding the expected frequencies of
all genotypes are expressible with a single value of F.

If the population is large and with overlapping generations it is reasonable to
regard the change in average phenotype as continuous. Then the change in mean
measure with selection may be written by differentiating the expression for §. Since
7 is a function of the z/’s, of F, and of the y,,’s,

d_g _ Qg dx. 6y dF a'g} dy.-,- y
4.3) it~ > (Ga),ai tora T 2 v dt

where (@—) means that the derivative is taken as if the y;/s were constants.
X/ y
But, ay/ay., = Pii [from (4.1)] and

(4.4) Py dgt” (dy)

Hence, we arrive at the fundamental equation for the change in the average pheno-
typic measure,

i (o9 o dF
(4.5) il (ax.),, at Torar T (dy)
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In (4.5) the three terms on the right measure the change in average phenotype
due to, respectively, changes in gene frequencies, changes in inbreeding coefficient,
and changes in the phenotypic measure of individual genotypes. Explicit expressions
for the quantities d7/dz; and dy/dF can be obtained by differentiating the expres-
sion for § [see (4.1) and (4.2)], dF/dt is determined by the mating system and
(dy/dt) depends on the way the phenotypic values of the various genotypes change
with time. The value of dz;/dt depends on the system of selection as shown below.

Equation (4.5) is true for any measured character. In a natural population we
wish especially to consider the character fitness. Following Fisher [5], [6], we
measure fitness by the Malthusian parameter, m. This is the rate of geometric
increase such that, if m is the fitness of a particular class, its contribution to the
next generation is proportional to em. We obtain an explicit formula for dz;/dt as
follows.

Let N stand for the population number, and 7; stand for the number of A; genes.
The increment of increase in population size in one generation due to the contribu-
tion from A;A; parents is NP;mm;, which is therefore also a measure of the increase
in A; genes due to contributions from A;4; parents. Likewise for any genotype
A;A; the increase in A; genes due to contributions from this genotype is NP;m;;.
(Only half the total frequency of A:A; and A ;4 ; genotypes is used, since only half
the contributed genes are A;.) Thus, dn; = >_ NP;smdtand, since ) P;; = z; (and
N2 Pi; = ny), i d

7

ma s T =, sy,

(4.6) dn; dN
do;  dmyN) Nat "™
et~ at N? :

Substituting from (4.6) and noting that dN/N = 7 dt,

4 —
4.7 % = Mi—;ﬁn'ﬂ = :c.-(a: — M) = Ta;.

Following Fisher [5], [6], we call the quantity a;: (= a; — ) the average excess
in fitness of the gene A ;. Fisher used the term average excess to designate the excess
due to substituting one allele for another, whereas we measure the excess of an
allele from the average for the population. The quantity a; has also been used by
Kempthorne (personal communication).

We may now rewrite (4.5) specifically for the character fitness (measured in Mal-
thusian parameters) as follows:

dm am am dF
“.8) T ki (a—x—) tor et T (

The total rate of change in fitness is given by summing the above equation over all
relevant loci.
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The first term measures the effect on fitness of gene frequency changes, holding
constant the fitness coefficients and the inbreeding coefficient. The second term
measures the effect due to the change in inbreeding coefficient. This may be written,
by differentiation of (4.1) using (4.2), and replacing y,; with m;;,

4.9) g—;} = E mixi(l — z3) — Z ML

7]

Z (m;,- - 2’”1«,’,’ + m,-j)x,-:cj .

<j

When m;; — 2m;; + m;; = 0 for all 7, j (that is, no dominance) the above expression
becomes zero as it should; in the absence of dominance, inbreeding has no effect on
mean fitness.

The last term in (4.8) represents the effects of changes in the selective value of
the genotypes with time. This may be due to changes in the environment. For
example, the rise of a competing species might lower the adaptive value of all the
genotypes, or a change in climate might increase the fitness of some genotypes and
decrease that of others. Even with a stable environment, the fitness of the different
genotypes may change with their frequency.

For two alleles (4.8) reduces to

4.10) sz = 2101 (37”—:) + z202 (3 > +z1$z(mu—2mn+mzz) i + (

or

dm

(4.11) at = z(1— x)(al"‘az)( ) +z(1— x)(mu—zmn'i'mzz) dt (‘fi—‘rf ,

where z = 2, and 1 — 2 = z,. The quantity (a; — a,) is the average excess of the
gene substitution, 4, for 4,, as used by Fisher.
Equation (4.8) is considerably simplified when random mating can be assumed.
When F = 0, P;; = zz;and 97/dz; = 2 ), zym;; = 2a’. Thus (4.8) becomes,
7

dm ’ ! gﬂz_
4.12) a = 2 2 wdai — mai + (dt
and, since 7 = ), %;a{,2 3 zi(a, — M)a), = 2 (D za2 — @) = 2y xzia), — M)t

This quantity is clearly a measure of the variance in fitness due to gene differences
at the A locus, since a; is the average fitness of the A4 -containing genotypes weighted
in accordance with the frequency with which A4; enters into these genotypes. It can
also be shown, by the usual least-squares methods, to be the (additive) genetic
variance at this locus. Thus we obtain, for a randomly mating population

W ()

where V. is the genetic variance in fitness. As before, this can be extended by
summing over all independent relevant loci.

(4.13)
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Wright [34] has independently derived an analogous formula for the change in
fitness in one generation

V., dw
(4.14) Aw_—;b~+(dt ,

where w is the selective value as defined in section 2. Roughly, w=e™. If the fitnesses
of the genotypes are constant, (4.13) reduces to

(4.15) =V,

which is Fisher’s elegant “Fundamental Theorem of Natural Selection.” In his
words, ‘“The rate of increase in fitness of any organism at any time is equal to its
genetic variance in fitness at that time” [5].

Although Fisher’s theorem depends on the constancy of the fitnesses of the various
genotypes, it does not, as the previous section might imply, depend on random
mating. Fisher measures the extent of departure from random mating genotype
frequencies by a quantity \, defined as

P2
(4.16) A= PP, @=)).

The necessary condition that the rate of change in fitness be equal to the genetic
variance is that N\ be constant as Fisher has shown explicitly for the two-allele
case [6]. Extension to more than two alleles has been made by Kempthorne (per-
sonal communication). The theorem holds as long as the population changes in
such a way as to maintain constant \’s.

A difficulty in the utility of A is that, except for random mating (A = 1), A is not
invariant with changes in gene frequency. In this respect Wright’s F is more useful,
for it is a function of the mating system and independent of gene frequencies. For
example, one generation of sib mating in a previously randomly mating population
leads to F = .25. But it leads to a value of \ of 9/25 when z = .5 and 27/91 when
z =.751

The Fundamental Theorem of Natural Selection would imply, since the variance
must always be positive, that fitness can never decrease. Usually the direction of
gene frequency change under natural selection is such as to increase the fitness,
but this is not necessarily so. If the system is such that the most fertile organisms
produce progeny of lowest fitness, the average fitness of the population will be
lowered. An examination of the terms in equation (4.8) shows that decrease in
fitness can happen either by a change in the level of inbreeding or by a change in
the value of the selection coefficients.

The following example illustrates that average fitness can decrease under selec-
tion. Consider for simplicity a single pair of alleles in a haploid organism. Gene A,
is progressively less favored as it becomes more common as might happen, for
example, in a heterogeneous environment.

1 The X referred to here is the symbol used in Fisher’s 1941 paper. The remarks do not apply to

the \ introduced in his 1949 book [7] as the dominant latent root of the generation matrix for a
specific inbreeding plan and which, like F, is independent of the gene frequency.
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GENE FREQUENCY FITNESS
A, x m; = s(1 — 2z)
A, 1—2 me = 0

m = xm

o

<£>m =m = sl — 2z)

dx ’ ’ ’ ’

Pl (1 — x)(ay — a2), a1 =s(1 — 2zx), a: =0

dm, dms\ dz

(%’:i) =<x R 7;) = =2l — 01 — 21).

Then, from the relevant terms in (4.11)

4.17) dd_ntz = s2z(1 — 2)(1 — 22)(1 — 42)
which is negative when 1/4 < z < 1/2. In this range natural selection acts so as to
lower the population fitness. Other examples have been given by Wright ([30], and
personal communication).

Fisher {6] has considered selection of a hypothetical mating habit gene that,
although changing frequency under selection, has no influence on population fitness.
An actual example, similar in some respects, has been studied by Crosby [1]. In his
case a gene that is disadvantageous to the species spreads because of its immediate
advantage to the individual. Haldane [ 10] and Wright [30] have considered several
other possibilities, such as selection for characters useful in intraspecies competition
but lowering the average fitness of the species, intrabrood competition, self sterility
factors in plants, and models that lead to eyclic changes in gene frequencies.

The general conclusion is that natural selection always acts in such a way as to
increase those factors that cause the greatest probability of leaving progeny. Usually
this results in increased fitness of the species, but not necessarily. When interpopula-
tion selection is included the situation is, of course, more complicated.

5. The effect of mutation on fitness

The formulas given previously may be modified to include the effects of mutation
and migration by using the appropriate terms from (3.1). Since migration and mu-
tation can both be regarded as linear pressures on the gene frequency, they are
interchangeable in the theory and we shall consider only mutation.

As long as the effects of mutation and selection are both small, we may write

(5.1) %xt—i = z.a; — (JZ%:) z; + Z (wijxs) ,

which for two alleles reduces to

(5.2) Z—f - 2( — )@, — ab) — ux 4+ o(l — 7) ,

where x = 2,1 — & = X, ¥ = uy and v = u;. These formulas may then be sub-

stituted into (4.5).
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The effect of recurrent mutation on fitness may then be measured by comparing
the average fitness, 7, of a population at equilibrium with and without mutation.
By setting (5.2) equal to zero the equilibrium frequencies may be found, and by
omitting the mutation terms the equilibrium in the absence of mutation is obtained.
Then by substituting these values in (4.1) we find the effect of mutation on fitness.

The interesting result is that the effect of recurrent mutation on fitness is depend-
ent almost solely on the mutation rate and hardly at all on the fitness of the mu-
tant genotype. This was first pointed out by Haldane in 1937 {11].

We shall illustrate this for the case of two alleles. For this purpose there is no
loss of generality in assuming that one genotype has fitness zero, measured in
Malthusian parameters.

GENOTYPE FREQUENCY FITNESS
A1A1 x2(1—F) + zF 0
A4y 2e(1—2) (1—F) . —h
Ay (1—2(1—F)+ (1—2)F  —m.

Assume that the rate of mutation from A; to A, is u per generation. Assume that
the reverse mutation rate, v, is zero. (Mutation acting in the same direction as
selection has a very minor effect.)

Then, from (4.6) a;, = —h(1—2z)(1—F) and a, = —hz(1—F)—m[(1—2)(1—F)
+ F]. Substituting these values into (5.2) and setting the expression equal to zero
gives the equilibrium value of the gene frequency, x. Examination of the region
around the point of equilibrium shows that it is stable. In this example, the average
fitness if there were no mutation would clearly approach 0. The average fitness with
mutation is given by 77, which is therefore a measure of the effect of mutation on
fitness. If we designate this reduction in fitness due to mutation by A, we obtain

(5.3) Am = =221 - 21 —-FPh - [0 - 21 -F+ A~ Fm
=—u—hl—-F){1-132.

We shall consider four genetically interesting cases:

(a) Deleterious factor recessive,h = 0. A7 = —u

(b) Deleterious factor dominant, h = m. Am >~ —u(2 — F)
With random mating; F = 0. Am > —2u

(¢) Complete homozygosity, F = 1. A= —u

(d) Incomplete dominance. A = —u[l +m ;(—ll—; f ;F_u’(lr(’:F— 33772;’)?’1) +.. ]

With random mating; F = 0. A &~ —2u |:1 — u_(m?;z_%)] .

Aslong as 2h% >> u(m — 2h), the effect on fitness is approximately twice the muta-
tion rate. Hence the effect of mutation to any gene which is not almost completely
recessive is as if the gene were dominant. Only when % is small enough that A2 is of
the order of the mutation rate and m is large does the gene act effectively as a re-
cessive, unless there is considerable departure from random mating.
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The total effect of mutation at all loci is the sum of the mutation rates weighted
by a factor of 2 if the mutant is not recessive, or (as Haldane has shown) by 3/2 if
the factor is sex linked. If fitness is measured in Malthusian parameters this is
exactly the weighted sum, because the Malthusian parameter is additive in this
respect.

This fact has been used in three ways:

(1) Haldane [11] has noted that > ku, where k is a weighting constant between
1 and 2 inclusive, is the loss in fitness that a species suffers because of mutation.
Prevailing estimates of gene number and average mutation rate would lead to a
value of 5 or 10 per cent for this figure, and Haldane suggests that this is ““the price
paid by a species for its capacity for further evolution.”

(2) Muller [20], using a somewhat different approach, likewise concludes that
the total genetic damage due to mutation is proportional to the total mutation rate
and warns against the dangers of increasing this by unnecessary exposure to radia-
tions. This problem has also been discussed by Wright [32].

(3) Crow [2] has used this as an argument against the assumption that much
heterosis in fitness can result from the removal of deleterious recessives during in-
breeding. If heterosis were due entirely to concealment of recessives, crosses between
inbred lines should not on the average exceed the equilibrium populations from
which they were derived by more than the total mutation rate. He has suggested
that, although inbreeding decline and recovery on outcrossing probably depend
largely on loci with deleterious recessive alleles, differences between various hybrids
and variance in randomly mated populations are principally due to genes of inter-
mediate frequency, of which the simplest explanation is overdominance. The ap-
plicability of this analysis to yield characters depends on the extent to which yield
can be equated to fitness, which in turn depends on the extent to which these
characters have had a long history of selection so that approximate equilibrium has
been reached.

PART II. STOCHASTIC PROCESSES

In Part I we have treated the process of change in gene frequency as determinis-
tic, but only as a simplification. The process of organic evolution, which proceeds
over enormous periods of time under ever fluctuating natural conditions is likely
to be stochastic rather than deterministic. Furthermore, in a finite population the
segregation of genes intrinsic to the Mendelian mechanism of inheritance introduces
a random element into the process even when everything else is constant.

We classify the factors which cause the random fluctuation in gene frequency into
two groups: (1) Random sampling of gametes in reproduction in finite populations.
(2) Random fluctuation of systematic pressures (that is, intensity of selection, rate
of migration and the rate of mutation). The first is prominent in smaller popula-
tions, while the second is important in larger ones (Kimura, [13]). The biological
significance of these factors, Wright [25], [29], [31] has advocated, consists in
adding a trial and error mechanism to the process of change of the genetic constitu-
tion of local populations, thus making the process of evolution less shortsighted.

Corresponding to each of these factors listed above, we can associate various fac-
tors with directional effect such as mutation, selection and migration. Our chief
task is to investigate how the population undergoes genetical changes with the
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passage of time. As will be seen in the following treatments, the solution of each
problem is often rather difficult and our results are not general enough to cover all
cases. It is hoped however that the presentations cover some important cases and
stimulate mathematicians to work further so that more powerful techniques will
be introduced.

6. Fundamental differential equations

In natural populations, the number of individuals is usually large and the process
of gradual change covers enormous periods of time. This enables us to regard the
process of the change in gene frequency as a continuous stochastic process. Then we
can apply the Kolmogorov equations [17].

Consider n loci each containing an arbitrary number of alleles such that the Ith
locus has m; alleles, say A{V, AP, - - -/ AP1 =1,2,- - -, n). Let (¥ be the fre-
quency of sth allele in the Ith locus, i.e., A{¥, and let éx{" be the amount of change

mi
of z{¥ per generation. Here > x{¥ = 1foralll.
=1
If we denote by ¢(x§”: T xr(nlxlb ] xin)’ ) xr(rﬁ.)—lr p{])y ] p;nlx)-h ]
™ ... piy; t) the probability density that the frequencies of 4("’s lie between
z(P and z(Y 4 dz(P after ¢ generations, given that the initial frequencies of 4("’s
are p{¥ (where ¢ = 1,- - -, my — 1), then ¢ should satisfy the following partial
differential equation:

i) 1 92 ’ ’
6.1) é)dtJ ) IE; Z' 3z Doz an {E[(62'” — E(s23"))(62%"’ — E(52" )}
AR i )

- ; Z 0;1” {E(axil))gb}

where 7 and ¢’ go from 1 tom; — 1 and I, I’ go from 1 to n. (6.1) is a direct applica-
tion of Kolmogorov’s second (or forward) fundamental differential equation giving
the law of forward progression of the state of gene frequencies. In applying this,
of course, we must be careful that the assumptions underlying (6.1) are met in the
actual situation.?

In our case z{¥ takes on values from 0 to 1 and

E{(sz(" — B(sx{")(82$" — (o))

vanishes at the boundaries (singularity at boundaries) and ¢ should be defined on
thedomain I: 0 < 2P <1 (@ =1,- - -m,l=1,- - - n).If the nontrivial steady
state distribution exists, as in the case of reversible mutations and selection in
finite populations, the distribution at the steady state should satisfy d¢/dt = 0,
Jreoda’s = 1 and (6.1) seems to be sufficient. Unfortunately, if the processes of
fixation and loss are irreversible, the information from (6.1) may be insufficient to
describe the whole processes and additional devices are necessary. In such a simple
case as random genetic drift in a triallelic locus, the probability density of the classes
containing two alleles when the third is lost does not satisfy the Kolmogorov equa-

2 The effect of the previous generation has been studied by Patlak [21] for some simple cases.
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tion, as will be seen later. If the only factor causing random fluctuation is random
sampling of the gametes,

E{(52$" — E(z") (62" — E(z8")} =0, forl = 1.

Let us now consider the simplest case of one locus (n = 1) containing only a pair
of alleles denoted by A; and A,. Then we have

(6.2) % _ 1 —az—{Vm} - j—x (M0},

where M, = E(8x), V,, = E(6z)* — (E(éz))? and z is the frequency of A,. This
equation was first introduced in population genetics by Wright [28] and is equiva-
lent to the Fokker-Planck equation in physics. When random sampling of gametes
is the only source of the random fluctuation, V,, = x(1 — z)/2N. If the systematic
pressures are linear (that is, mutation, migration) M ;_has the form 8 — (a + 8)z.
For this case (6.2) has been studied by Malécot [18]. Also it has been investigated
by Feller {3] and Goldberg [9] from pure mathematical interest. From the stand-
point of population genetics, the solution of (6.2) for a steady state (d¢/3t = 0) in
which recurrent mutation, migration, selection and random factors balance each
other, is quite important and was obtained by Wright [26] before he introduced
(6.2). Thisis

_c M, ]
(6.3) o(x) = V.. &XP [2 Vo dz

in our terminology. The constant C is chosen such that [} ¢(x)dz = 1. In the present
paper, however, we will not be especially concerned with this steady state distribu-
tion.

7. Random sampling of gametes as a factor causing random fluctuation

In the following discussion, we assume that the mating is at random and genera-
tions do not overlap.

(1) Pure “random drift” with a pair of alleles.—This was first studied by Fisher
[4], who called it the Hagedoorn effect. The correct solution for the probability
distribution of frequency classes at the state of steady decay was first obtained by
Wright [25]. The complete solution has been obtained very recently [15] and will
be summarized briefly.

Let A, and 4, be a pair of alleles and let p(0 < p < 1) be the initial frequency of
A; in the population with N breeding individuals mating at random. Under the
assumption that mutation, migration and selection are absent, the frequency of
gene A,, denoted by z, fluctuates from generation to generation until the gene is
irreversibly fixed or lost.

The probability f(1, ¢) of the gene 4, being fixed in the population by the tth
generation is

@) fQ,0=p+ 2 (—1)¢ 2(12(2_:11% (1 — ) T Pexp [_ i Z—Nl)t} ,
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wherer = 1 —2p (—1 < r < 1), and T?_(r) is the Gegenbauer polynominal [19]
which is related to the hypergeometric function F by

2 rg= T30 p (i 421 -42,157),

so that
Tyr) = 1, Ti(r) = 3r, Ta(r) = 3(5r* — 1)/2, Ts(r) = 5(7r* — 3r)/2,

ete. The probability of the gene A, being lost from the population by the {th genera-
tion, f(0, £), can be obtained by replacing p with ¢ and r with —r in the above
formula (7.1).

Next let us consider the probability distribution of unfixed classes. Let ¢(x; p; t)
be the probability density that the gene frequency in the {th generation is between
z and z 4+ dz(0 < x < 1), given that the initial frequency of 4, is p. Since V,, =
z(1 — z)/2N and M, = 0 in this case (6.2) becomes

1 92

(7.3) % 5 % (a(l — )

The pertinent solution of this equation with the initial condition of ¢(z; p; 0) =
8z — p)is

@9 oo = 3 EL=L L o @ew [— d le)t] :

where T represents the Gegenbauer polynomial as before, andz = 1 — 2z (—1 <
z < 1). The series is uniformly convergent for ¢ > 0, and for large ¢ we have the well
known formula

7.5) Weipi 0~ Comp | = g t], o =)

where the constant C is equal to 6pg.

We shall next consider the process of random drift in a multi-allelic locus. Though
the complete solution has not been obtained, the asymptotic behavior of this proc-
ess has been investigated successfully [16]. Especially in the case of a tri-allelic
locus a detailed analysis of this process has been carried out and we can construct
graphs illustrating the process of change after about N generations.

(2) Random drift with three alleles.—Consider the random mating population con-
taining three alleles A,, A4;, and A; with frequencies z, yand z (z + y + 2z = 1).
Let ,? be the m, nth moment of distribution of z and y at the tth generation such
that x,(9 = E(27y7%), then we obtain a system of differential equations:

dunld  (mAn)mAn—1) 1 , mim=1) 1 nn—1)
(7-6) dt = - 4N B n 4N Mm—1,n + 4:N MHm ,n-1
(m)n“—‘ 1,23, - '):

where N is the number of breeding individuals in the population which is assumed
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to be sufficiently large that terms of order 1/N?% 1/N?, etc., can be neglected without
serious error.

If the initial frequencies of A1, A, and A; in the population are p;, ps, and p;
respectively (p1 + p2 + ps = 1), 1,9 = p7p} and the asymptotic formula for the
moment y,(* is obtained from (7.6). From this moment formula, we can obtain the
asymptotic formulas for various probability distributions of all classes.

First consider the classes which contain three alleles (0 < z, y, 2z < 1). Let
o(z, y; p1, Pe; t) be the probability density that the frequency of A, lies between z
and z + dz and at the same time A, lies between y and y + dy in the ¢tth generation,
given that they start from ¢ = p,and y = pyat ¢ = 0, then

3¢ 71 1
(7.7) oz, y; p1, P2; £) = 5!pipaps exp [— ﬁ] + 57 PiPeps {(pl - 5) z

1 1 6t 3 3
+(pz—§)y+ (ps—g)z}exp[ 3 N] +—p!2 P1D2Ds {(pf—zpﬁ-ég)x’
. 3 3 3 3
+(P:—sz-i-%)yz"l‘(pz—zpa+%)zz+3(mpz 2i—+1 4)xy

+3(p1p3"'ui 3+11—4)xz+3(pzps—uz 3+11—4>yz}

10¢
'exp[—‘z‘ﬁ]+"

It can be shown by direct substitution that (7.7) satisfies the following partial
differential equation derived from (6.1):

d 1 9?2 _ 9 i
(18 5= i o 50— D) — g7 e (a6} + g7 s (WL — U} -

Figure 1 illustrates the distributions given by (7.7) in triangular coordinates.
Figure 2 illustrates the state of steady decay in the distribution of gene frequencies.

Next, we can also obtain the probability density ¢:.2(z; £) in the {th generation,
that the frequency of gene A, lies between z and z 4+ dz (0 < z < 1), with 4, and
A, coexisting but with A; lost from the population. The explicit expression of ¢y,
has been obtained but it does not satisfy the Fokker-Planck equation since a con-
tribution to the probability distribution also comes from the classes where three
alleles coexist. Also, using (7.1) we can obtain the probability that gene A; has
become fixed in the population by the ¢th generation.

(3) Arbitrary number of alleles. We shall merely state the following theorem.

If we start from the population which contains m alleles, say, A1, As, - - - and Am

with frequencies py, P2, * + + and Pm (Z Pi = 1), the probability density that it con-
1
tains k of them, say, Ay, As, - - - and Ay with respective frequencies 25, %3, - - - and
k

Tk (Z zi = 1) in the tth generation s given asymptotically by
1
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k

(t'—')mly

where k < m. The validity of this formula depends on the assumption that the
population size N is sufficiently large as compared with m, the number of the alleles
in question.

Ficure 1

The distribution of unfixed classes in a tri-allelic system. The frequency of the three alleles, 4,,
As, and A, are given in triangular coordinates on the abscissa; for example, the corner labeled A
represents fixation of gene A,. The ordinate is the probability density, ¢. The distribution surface
is given for two values of time measured in generations, ¢ = N, and ¢ = 2N. The initial gene
frequencies are p; = 0.1, p; = 0.3, and ps = 0.6

Here it will be noted that amount of heterozygosis decreases exactly at the
rate of 1/2N:

(7.10) H, = Hyexp [— —2%,] :

where H, is the frequency of heterozygotes in the population at the {th generation.

(4) Transformation of the population under linear pressures.—Under the term
linear pressure, we include the pressures of gene mutation and migration. Usually
the rate of mutation is so low that although supplying the raw material for evolu-
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tion, it can hardly determine the course of change of gene frequency. On the other
hand, migration between subdivided populations may be of considerable significance
for determining the gene frequency as will be found in Wright’s theory. Consider a
population of size N. If we suppose that this population exchanges individuals
with a random sample taken from the total species at the rate m per generation,

d !

FiGURE 2

Diagram illustrating the distribution when a state of steady decay has been reached. In the
center is the surface where the three alleles coexist; the three margins illustrate classes where one
allele has been lost; and the corners represent states of fixation of one of the allelels. As indicated,
the distribution surface where three alleles coexist is reduced by 3/2N per generation. The margins,
which are equivalent to a di-allelic population, have a rate of decay of 1/2N per generation. The
relative proportion of areas and the volume are not exact in the drawing.

then the amount of change of the frequency of gene A, per generation is 6z =
m(¢ — z) where £ is the frequency of 4, in the immigrants.? Using the system of
differential equations, as in the case of random genetic drift, we can obtain the
moments of the distribution about the origin at the {th generation. The general
formula is

1) L0 = 3 (n> T(B + n)I(A + 2)T(A — B+ )T(4A + 1 — 1)
’ (. i/ (A +n+ 9)TB + 9)T(4 — B)T(4 4+ 2% — 1)

1=0

+F(A+i—-1,—-4,A—B,1 —p)exp [‘i (m + i4;vl>t]’

3 If mutation rates are not negligible, we replace m by m + w + v and m¢ by m& + v, where u
and v are respectively the mutation rates of A, to and from its allele 4.
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where A = 4Nm, B = 4Nm ¢ (1 > ¢ > 0) and p is the initial frequency of A. Putting
n — o, we obtain lim g ¥ = 0, showing that under this continuous model there
are no fixed classes in the distribution. The partial differential equation for the
probability distribution of gene frequencies is

(7.12) 2 e T tat — 2} — m (€ — )

Equation (7.11) suggests that (7.12) must have the solution of the form:

(7.13) o(z;p; t) = g Xi(x) exp I:—i (m + L;IV—I-) t:l .

By comparing [} ¢z"dz with (7.11), we can show that pertinent solution of (7.12)
is given by (7.13) with

(7.1 X)) =220 - 2“ P 'FA4+i-1,—i, A - B, 1~ 1)
T(A—B+49)T(A+2)T(A+3i—1)
tIT%(A—B)T(B+4)T(A+2i—1)

It must be noted that this agrees with Goldberg’s [9] “fundamental solution with
flux zero boundary condition,” (4 = « + 8, B = B, = 4Nt in Goldberg’s formula)
while his “absorbing barrier solution” has no genetical meaning under recurrent
mutations.

- F(A+:i—-1, —¢{, A—B, 1—-p)

2.0

4Nm=0.2

0.0 0.5 1.0

F1Ggure 3
Distribution curves for a finite population with migration or other linear pressure. The gene
frequency of the immigrants is assumed to be 0.5, and the initial fre(ﬁxency in the population, 0.2.
The abscissa is the gene frequency, z; the ordinate is the probability density, ¢. 4Nm = 0.2.
At t = o, our formula (7.13) converges to Wright’s well known formula which
can be derived from (6.3). Figures 3, 4 and 5 show the asymptotic behavior of the
distribution curve for three different cases: 4Nm = .2, 4Nm = 2, and 4Nm = 6. In
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all these cases the gene frequency, £, of the immigrants is .5 and the initial gene
frequency, p, of the population is .2.

2.0

0.5

1

0.0 0.5 ' 10

FIGURE 4
Distribution curves for 4ANm = 2

2.0p

O.5F

[
0.0 0.5 1.0

FIGURE 5
Distribution curves for 4Nm = 6

We should like to point out here that from the genetical point of view the present
treatment leading to solution (7.13) is not completely satisfactory, because the
present solution gives [} ¢(z; p; t)dx = 1, while fixed classes must exist if the popu-
lation size is very small or the mutation rates are extremely low. In other words, if
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4Nm < 1, fixation of the genes dominates mutation and migration so that the
population contains only one of the alleles A; or 4, most of the time.* Mathemat-
ically speaking, the present treatment regards z = 0 and x = 1 as reflecting barriers,
while they should act as elastic barriers under the actual situation.

(8) Process of genic selection in a finite population.—This process has been studied
recently by Wright and Kerr [35] in connection with the selection experiment done
in very small populations of Drosophila. The partial differential equation in this
case is

(7.15) B L2 o — ) — s (el — 2],

where s is the average excess in fitness of the gene substitution 4, for A,. Using an
ingenious method of his own, Wright successfully analyzed this process assuming
the state of steady decay. Recently the junior author has found that the problem
can be solved completely. Since the details will be published elsewhere, only a brief
report will be given here.

Putting ¢ = e2=V,(x)e™, (7.15) yields

vy, 4V
de? 2z

wherec = Nsandz = 1 — 2z (—1 < z < 1). The crucial point is that (7.16) is the
oblate spheroidal wave equation [22].

(7.16) 1 —2% + [ANN — 2 =)+ 2]V, =0,

(7.17) A=V =2(m+ 1)V + b+ =)V =0,

withm = l,bz = 4N)\z —2—=c%

We need the solution V;; which is finite at z = &1 and reduces to the Gegenbauer
polynomial if there is no selection, that is, if s = 0 and therefore ¢ = 0. This is
because if there is no selection the process should reduce to the process of pure
random drift studied in section 7 and V1:(z) should reduce to T(2). In fact such
expansion of Vi, into the Gegenbauer polynomials has been studied by Stratton
and others [22],

(7.18) Vi) = 3TN

Here the primed summation is over even values of n if [ is even, over odd values
if I is odd. Coeflicients f! and eigenvalues 4N\, can be obtained from the tables of
spheroidal wave functions [22]. In the table quoted here B;,; = ¢ — 4N\ is listed
for various values of ¢ from 0 to 5.0 [22, p. 107].

We can write the solution of (7.15) in the form

(7.19) o(x;p; t) = Zﬂ Ce* Ve ™" .
=

4 It is interesting to note how Wright [25] managed this problem in his studies of gene frequency
distribution at a steady state. He calculated the frequency of fixed classes by the relations:

© = 1 (=) .S1) = LY and S 5() =1

= — —_— = — - — n —} =

0= (2N) ’ 4Nu (1 2N) and 3 (2N) :

where f(i/2N) is the frequency of classes with gene frequency /2N and is put proportional to
&(2/2N) /2N if ¢ is neither O nor 2N.
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The coefficients C; can be obtained from the initial condition, ¢(z; p; 0) = é(x — p)
by using the orthogonal relations of the eigenfunctions {V,}.
Ast— o, the distribution curve decreases its height at a constant rate,

(7.20) o(x;p; t) ~ C®™™V (et
So Ao gives the rate of constant decay which is denoted by K in Wright and Kerr’s

paper [35]. In this paper Wright found empirically the following formula giving
2NK

(2Ns)® _ (2Ns)' _(2Ns)®
10 7000 1,050,000

(7.21) 2NK =1+ .000,000,004(2N’s)* .

It is impressive that 2NAg = (¢2 — Bi,0)/2, which should be equal to 2N K, gives a
very good numerical fit to the results obtained from (7.21), as is shown below:

(20)*
¢ = Ns 2NXo = (¢*—B1,0)/2 2NK =1 + o 4.
0 1.00000 1.00000
1 1.39765 1.39770
2 2.55927 2.55926
3 4.36529 4.36370

8. Random fluctuation of systematic evolutionary pressures

In order to compare the effect due to random fluctuation of the systematic pres-
sures with that due to random sampling of gametes discussed above, we assume
here that the population is sufficiently large that the random sampling variation is
negligible. In the following, random fluctuation of selection intensity and of migra-
tion rate will be investigated separately.

(1) Random fluctuation of selection intensities.—Let A, and A, be a pair of alleles
and assume that there is no dominance. If s is the selective advantage of 4;, defined
as before, 6z = sz(1 — x).

Consider the simplest case in which the gene A, is selectively neutral on the aver-
age such that the mean value of s over a very long period is zero. The Fokker-
Planck equation becomes

8.1) % _

V.
at = 2

02
7 1281 — 2’8},
where V, is the variance of s.

Putting

Ve

u = %exp |:§ t] 22?1 — 2)** ¢ and £ = log z

1—=z

we get the heat conduction equation

u _ ¥, u (—w S¢< =),

8.2) =2 o
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and we can obtain the solution of (8.1),

z1 —p) |’
o 1 v, [log( x)p] [p(1 — p)]'*
8.3) o(z;p; ) = m exp) — ] 2Vt [x(1 — x)]3/2

where p is the initial frequency of A, in the population [14].

The maximum of the distribution shifts towards the two terminals of the distri-
bution as time goes on. The striking difference from the case of random drift due
to random sampling of gametes is that in the present case no fixation is possible in
the strict sense. In this connection the process of the change in the terminal part of
the distribution is important and precise investigation has been made [14]. For
large ¢ the distribution curves appear to be U-shaped, since the classes with the
highest probability shift toward the terminals indefinitely with time. But it is not
a true U-shaped curve since its value at the terminal is always 0.

Here we shall merely state the properties of the change without giving the proofs:

(1) Let Zmaz(<1/2) be the gene frequency giving the relative maximum of ¢
near 0, then Zmez, —> 0, Prugn, —> © a8 L —> ©.

(2) Let A be the probability that the gene frequency in the population is lower
than Tmez, then A -0 ast— .

(3) Let B stand for the probability that the gene frequency in the population is
larger than Z..., but smaller than ¢, where e is an arbitrarily chosen gene frequency
larger than Zm.s,, then

~V,¢/8

vz)——)(l—p) as t— o .

Bau—m—oc

Similar relations hold for the other terminal part of the distribution where the gene
frequency is close to 1.

(4) Let 2n:n be the gene frequency giving the relative minimum of this pseudo-
U-shaped distribution curve, then Zmi» — 1/2 as t — o, irrespective of the initial
gene frequency.

(5) ¢min—>0ast— . Finally,

1-¢

(6 }gn R 2 t)dzx =

showing that the random fluctuation of selection intensity by itself cannot lead to
complete fixation or loss, in the strict sense, contrary to the case of random drift.
But as shown above there exists a strong tendency for the gene frequency to move
toward either terminus with increasing time. In other words, after a sufficient
number of generations almost all populations will be in such a situation that the
gene is either almost fixed in the population or almost lost from it. To distinguish
this from the fixation or loss in the case of drift due to random sampling of gametes
in finite populations, the terms “quasifixation” and ‘“quasiloss’ have been proposed.

(2) Random fluctuation of the migration rate.—Consider a pair of alleles A, and
A, and let 2 be the frequency of A;. If £ is the frequency of A, in the immigrants,
then éx = —m(z — £) where m is the rate of migration. Suppose m fluctuates
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randomly from generation to generation with mean /% and the variance V,, (= E(m?)
— m?), then we have

8.4) 1 (TR Pog (R

By applying the method which Kolmogorov [17] gave in his paper (the second
example of section 17), we can solve (8.4) easily. If the initial gene frequency of
the population denoted by p is higher than that of the immigrants, that is, p = £,

: 2
1 [logx:§+(%+m)t]
8.5  ¢;p; 1) = exp | — E 2V
(x — VTV nt/2 b
(xz¥ -
Thus
(8.6) lim ¢(x;p;t) = 8(x — &), where 6 represents the delta function.
t—o

This shows that the frequency of the gene A, in the population finally becomes
the same as that in the gene pool from which the immigrants come and no frequency
distribution, in the usual sense, exists at this state. This seems obvious on intuitive
grounds. .

Wright [29] studied the steady state distribution of gene frequency when there
is selection and random fluctuation in the rate of migration. His formula, however,
does not reduce to (8.6) when s = 0, since it becomes

8.7 é(x) = C/{(a: - 5)2'7"’,}

in our terminology. This discrepancy must be investigated now.

If we seek the steady state distribution by putting M,, = —m(z — £) and
V. = Va(z — £)*in (6.3), we at once obtain (8.7). So this satisfies d¢/0t = 0. But
this does not guarantee that ¢(z; p; {) > ¢() at the limit of { — «. This may serve
as & warning against the mechanical application of Wright’s formula (6.3) though
it is very useful and applicable to a wide variety of important cases.

For the other case of p < £, a formula similar to (8.5) can be obtained easily.
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