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1. Introduction
The basic equation of the kinetic theory of dilute monatomic gases is the famous

nonlinear integro-differential equation of Boltzmann. In the simplest case when the
molecules of the gas are hard spheres of diameter t, which are allowed to exchange
energy only through elastic collisions, the Boltzmann equation assumes the form

(1-) af(r,v,t)+ v * Vrf + X(r) Vf = fdw fdl
at 2_f
* {f(r, v + (w -v) * I, t)f(r, w -(w - v) * II, t) - f(r, v, t)f(r, w, t)}

* J(w - v) *j;
here f(,, t)dr dv is the average number of molecues in dr dv at r, ;, V-,f the gradient
of f with respect to r, V-f the gradient of f with respect to ;, 1 a unit vector and
di the surface element of the unit sphere. X(r) is an outside force (for example,
gravity) acting on a particle at r. If the gas is enclosed in a container of volume V
and if there are no exterior forces (X(r) 0) we can set

(1.2) f(r, v, t) = V f(v, t)

where n is the total number of molecules, and note that it will be a solution of
(1.1) if f(v, t) is a solution of the reduced Boltzmann equation

(1.3) at f(v, t) = 2V fdw dlI {f(v + (w-v) *1, t)f(w- (w-v) - 1, t)

- f(v, t)f(w, t)} I(w - v) l

Equation (1.3) governs the temporal evolution of the velocity distribution while
the spatial distribution remains uniform.

If the molecules are not hard spheres but are considered as centers of force,

(1.4) -82_(1.4) ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- j(w - v)
has to be replaced by an expression depending on the nature of the force.
The most famous example is that of a Maxwell gas in which the molecules are
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172 THIRD BERKELEY SYMPOSIUM: KAC

assumed to repel each other with a force inversely proportional to the fifth power
of their distance. In this case (1.4) has to be replaced by

(1.5) y ((w -v) *
jw - VI

where y is a certain physical constant and F(x) a rather complicated function re-
lated to elliptic integrals.
The reduced Boltzmann equation (1.3) is of great interest and importance espe-

cially since from it Boltzmann derived his celebrated H-theorem to the effect that

(1.6) fd Vf(V, t) log f(v, t) _ O,

the equality occurring only for the Maxwell-Boltzmann distribution

(1.7) fo2v) = (22)32 exp [ 221

Mathematically, the reduced equation is probably the simplest natural example of
a nonlinear integro-differential equation.
The purpose of this exposition is to reexamine critically the derivation of (1.3)

and the conclusions drawn from it. The reader should be warned at the outset that
more questions will be raised than answered. However, we hope to provide sharp
formulations and thus perhaps pave the way toward further work on this fascinating
borderline between mathematics and physics.

Several colleagues and friends helped with various parts of this exposition. Their
specific contributions are acknowledged in the text. Dr. G. E. Baxter assisted me
during the summer of 1954 and contributed greatly both in the large and in the
small. Above all, my thanks are due to Professor G. E. Uhlenbeck for the many
discussions and suggestions.

2. The "master equation"
Denote by v,, - * *, V, the velocities of the n molecules and combine them into a

"master vector" R(3n-dimensional)

(.2.1) R vl, * ,Vn)-

Consider now a Poisson-like process in which during time dt a "collision" can occur

between the ith and jth particles (i < j), while the direction of the center line
(that is, the line joining the centers of the ith and jth sphere, in the direction from
i to j) is I within dl. The probability that such a collision takes place is assumed to
be of the form

(2.2) 1i,dl dt = P&((vj -v1) * 1, jvj -vil)dl dt .

For the case of hard spheres

(2.3) = a I(Vj - vi) * 11-(vj- v) *l(2.3) ij =

v 2
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which corresponds to Boltzmann's "Stosszahlansatz."'
If an (i, j, I) collision takes place R changes into A ii(l)R, where

(2.4) A ij(tR = (v1, *,* * Vi + (v;- v,) * *,* - (vj- V,) E, -v.)
otherwise R remains unchanged.
We can thus say that

R Aij()R with probability ii dl dt

R ? with probability 1- dt E fd ij

Since each collision preserves momentum and energy we have

(2.5a) v = constant2

(2.5b) v vj = constant = no2

We may as well set the constant in (2.5a) equal to 0.
Thus R is always confined to a (3n - 3)-dimensional sphere Sn(o0) of radius a-

If, at time t = 0, we start with a distribution of points R given by the density 0(R, 0)
it is easily seen that this distribution will evolve in time according to the equation

(2.6) at ) < f, JdlI4(A j,(l)R, t) - 0(R, t) } ij .
This is the "master equation"3 which is recognized as the Kolmogoroff equation
for the Markoff process described above.

1 Boltzmann's original formulation of the "Stosszahlansatz" was not framed in probabilistic
terms. He simply asserted that the number of collisions in time dt between A-molecules (those
whose velocities are v within dv) and B-molecules (those whose velocities are w within dw) which
take place while the center line is in the direction [within dl is

nA n 2 I(W - V) * i - (W - v) *1 dtdt
where nfA and nB denote the numbers of A and B molecules, respectively.

This formulation led to the well-known paradoxes which were fully discussed in the classical
article of P. and T. Ehrenfest. These writers made it clear (a) that the "Stosszahlansatz" cannot
be strictly derivable from purely dynamic considerations and (b) that the "Stosszahlansatz" has
to be interpreted probabilistically. The recent attempts of Born and Green, Kirkwood and Bogo-
liubov to derive Boltzmann's equation from Liouville's equation and hence to justify the "Stoss-
zahlansatz" dynamically are, in our opinion, incomplete, inasmuch as they do not make it clear
at what point statistical assumptions are introduced.
The "master equation" approach which we have chosen seems to us to follow closely the inten-

tions of Boltzmann.
2 This is incompatible with the presence of the container since collisions with the walls do not

preserve momentum. This is, however, a minor point which can be circumvented by assuming
that whenever a molecule collides with the wall, it is reintroduced somewhere in V without change
of velocity. The origin of this slight difficulty is the fact that the reduced Boltzmann equation is
not strictly valid inasmuch as the container introduces an exterior force and we cannot claim
thatX(r) = 0.

I The term "master equation" first seems to have occurred in a paper by A. Nordsieck, W. E.
Lamb, Jr., and G. E. Uhlenbeck [1]. A more recent discussion of the approach to statistical equi-
librium through a "master equation" was given by A. J. F. Siegert [2].
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3. Connection with the Boltsmann equation (1.3)
The derivation of the "master equation" (2.6) with ,ii given by (2.3) embodies

the basic assumption ("Stosszahlansatz") of Boltzmann. Yet (2.6) is linear while
Boltzmann's equation (1.3) is not. Clearly, to pass from (2.6) to (1.3) additional
assumptions are needed.

In order to discuss these assumptions as well as to exhibit more clearly many
other points we shall construct a simplified mathematical model which embodies
many (if not all!) of the essential features of our problem. Let

(3.0) R = (xl,.* * Xn)
be subject to the condition

(3.1) IIRi2 x2+ * + x, = n

and let

(3.2) Ai(O)R = (xi, * * *, xi cos 0 + xisin 0, * *,-xi sin 0

+ xj Cos 0, * X)

Let furthermore4

(3.3) = = constant.

The "master equation" assumes now the form

(3.4) atnRt) = n 21 {k(Aii(0)R, t) -O(R, t)}dO
and the analogue of (1.3) is

(3.5) af(,) = vJ dy I f(x cos 0 + y sin 0, t)

* f(-x sin 0 + y cos 0, t) - f(x, t)f(y, t)}dO .

The changes we made are
(a) we dropped the conservation of momentum (2.5a)
(b) we simplified the form of 4vij
(c) we replaced the more complicated six-dimensional rotations Aij(l) by two-

dimensional rotations Aij (0).
Let us now assume that 4(R, 0) is symmetric in all variables xi, * , x,. It then

follows that O(R, t) is also symmetric.
Let us now introduce the following abbreviations

(3.6a) ff )(x, t) = f 4(R, t)dai,
2... +zx2=-z2

4 Somewhat more generally we could set ki i = vf(o) /n where f( -6) = f(0) ("microscopic reversi-
bility") and fTvf(O)dO = 1, f(O) 2 0. The theory would then go through without any serious
modifications. The more general theory is analogous to the theory of the Maxwell gas.



KINETIC THEORY 175

(3.6b) f2 y, t) = f O(R, t)do2,
X2+ .. . +xn=n-X_y2_

etc.
The integrations are over spheres indicated under the integral signs, the free

variables being replaced by x, y, etc. The density functionsf (n), f2n)J . . will be
referred to as contractions of X, fkn) being the k-dimensional contraction. An easy
calculation on (3.4) yields

(3.7) Of(,)_(-) '.dy ±ff (xCos 0at ~ Jn 2r f

+ y sin 0, -x sin 0 + y cos 0, t) - 28(,y t)Ido
which is strongly reminiscent of (3.5). To get (3.5) one must only assume that

(3.8) f2(n)( y, t) f(n)(x, t)f (n)(y, t)

for all x, y in the allowable range. One is immediately faced with the difficulty that
since k(R, t) is uniquely determined by f(R, 0) no additional assumptions on O(R, t)
can be made unless they can be deduced from some postulated properties of 0 (R, 0).
A moment's reflection will convince us that in order to derive (3.5) the following

theorem must first be proved.
BAsIC THEOREM. Let <0n(R, 0) be a sequence of probability density functions defined

on spheres I1? 1 12 = X2 + + X2 = n and having the "Boltzmann property"
k

(3.9) lim fk (x1 . ** Xk, 0) = II lim f((x;, 0)
n_-a j- 1 n_--

Then 40n(R, t) [that is, solutions of (3.4) ] also have the "Boltzmann property":
k

(3.10) lim fk (x * *, Xk, t) = i lim ff V(x, t)
n_co j= I n--

In other words, the Boltzmann property propagates in time!
It thus appears that the nonlinear character of Boltzmann's equation (3.5) is due

solely to the extremely special assumption which the initial distribution has to
satisfy.

4. Proof of the basic theorem
Consider the Hilbert space of square integrable functions t'n(R) defined on the

sphere Sn, I 1 12 = n, and the linear operator Q

1 1
(4.1) inJ {8(A'()R) - fn(R)}dOd.
It is easily verified that

(4 .2) (Q46n,vXn) = ( An,X Xn)
and that

(4.3) A~t', #~) = - ±1 f I{fn(AAij(O)R) - #n(R)I2 da do.
n 1.i<j<n nn Sn
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The operator Q is thus self-adjoint and clearly bounded (though the bound may,
and indeed does, depend on n).
We can thus write

(4.4) =(R, t )= ,E
k0O k

Let g(R) g(x1) be a bounded function of only one variable. We have from (4.2)
and (4.4)

(4.5) (rn(R, t)g(R)) = J 4)(R, t)g(xl)do

-= ffln(x, t)g(X)dx = Vtk ( kg' 4(R, 0))

Now,

n~1 r2T(4.6) g n J {g(xicos 0 + xj sin )- g(x)Idon1 j-227J0

and setting

1 2r(4.7) g2(x, Y) = {g(x cos 0 + y sin 0) -g(x) IdO
we have

(4.8) f2g = - Mx, x,) .n j-2

Further

(4.9) Q29 = n .g2(xl, x,)
nl j=2

and

(4.10) 2g(xI, x2)

n- I21{g2(xI cos 0 + X2 sin 0, - xl sin 0 + X2 cos 0) -g2(x, x2)}dO
n21rJo

+ n- 21F 92(gX cos 0 + xj sin , X2) - g2(l, x2)}do
nj 12rf

+ n-
f

2J {92(xI, X2 Cos 0 + xj sin 0) - g2(xI, x2)IdO
Since 4n(R, 0) > 0 and

(4.11) n(0)d = 1,
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and since I g(R) I < M, we have 1921 < 2M and hence

(4.12) I(9g, kn(R, O))I < 2M .

Furthermore

(4.13) 102QI < 4M + 2(n-2) 4M < 214M

and hence

(4.14) jQ2gj < 2! 22M .

In general,

(4.15) |(Y'g 4..(R 0)) < k!1 2kM .

(Added in proof: The above proof is applicable only for k . n. However, the form-
ula remains valid for k > n, since

QkgI = .k-nQngI nk-nn!2nM < k!2^M.)
Moreover,

(4.16) lim (Mg, kn(R, 0)) = f2(X, Y)g2(x, y)dxdy,
n-> ff

where

(4.17) f2(X, Y) = lim f2()(x, y, 0)

and in general

(4.18) lim (Qg9, rkn(R, 0)) = f fffk+l(lX , Xk+l)
* gk+l(Xl,* , Xk+l)dXl . . . dXk+1

where the gk+1 are defined inductively as folows:

gi(x) g(x)

(4.19) gk+l(X1, Xk, l*+i) = k 2- {gk(xl . . , xj cos e

+ Xk+1 sin 0, * * *, Xk) - gk(x, * * *, Xk)dO .

Since we have assumed that On(R, 0) has the Boltzmann property we have

(4.20) lim (Q2kg, tn(R, 0)) = f. . .ff(xI) f(Xk+l)

gk+1(Xl, * * *, Xk+l)dXl . . . dxk+I
where

(4.21) f(x) = fl(x, 0) = rim ffA Qe, 0).
n-co



178 THIRD BERKELEY SYMPOSIUM: KAC

From (4.5), (4.15) and (4.20) it follows that for 0 5 t < 1/2V

(4.22) f f(x, t)g(x)dx = E k f _* f(XI) * f(xk+l)
* gk+l(XI, *, Xk+l)dXl . . . dxk+l

where' f(x, t) -f,(x, t) = lim f (n)(x, t).

Starting now from a function Y2(xl, x2) = g(xl)h(x2) and defining yk(xl,.**, Xk)
inductively by formula (4.19) we obtain again for 0 S t < 112V

(4.23) fff(Xf, X2, t)g(xO)h(x2)dxidX2

= ~ 1-k -r.* f(Xl) . . . f(Xk+2)Yk+2(XII . . .*, Xk+2)dXl . . . dXk+2.

It is easily checked that

(4.24) 7y3(Xi, X2, X3) = hl(x2)g2(xl, X3) + gi(x0)h2(x2, X3)

(4.25) 74(XI, X2, X3, X4) = h2(x2, X4)92(Xl, X3) + hi(X2)93(X1, X3, X4)

+ g2(xl, x4)h2(x2, X3) + gi(x1)h&(x2, X3, X4)
etc.

Thus, for instance,

(4.26) fffff(xI) . . . f(X4)Y4(Xi, X2, X3, X4)dxldx2dx3dx4

-(fcc f(x)h(x)dx)(fff f(Xi)f(X2)f(X3)93(Xl, X2, Xs3)dXldx2dxa)

+ 2 (fj'(Xl)f(X2)92(XI, X2)dX1dX2)(f f(X1)f(X2)h2(X1, X2)dXldX2)

+ (iO f(x)g(x)dx)(fJff(X1)f(X2)f(X3)h3(X1, X2, X3)dxldx2dxa),

and since similar formulas hold it is seen that for 0 _ t < 1/2v,

5 It should be clear that the limit is to be understood in the weak sense in the space L(- o, co).
Thus once the propagation of the Boltzmann property is established, we have a proof that the
Boltzmann equation (3.5) does have a solution. Uniqueness follows from considerations of section
7 where, starting from (3.5), we show how to determine uniquely the Fourier-Hermite coefficients
of f(x, t); the needed fact that the Hermite functions are complete in L(- c, co) is, of course, well
known. Since the master equation is truly descriptive of the physical situation, and since existence
and uniqueness of the solution of the master equation are almost trivial, the preoccupation with
existence and uniqueness theorems for the Boltzmann equation appears to be unjustified on grounds
of physical interest and importance.
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(4.27) ff f2(xi, x2, t)g(xi)h(x2)dx1dx2 = f(xi, t)g(xl)dxl f(x2, t)h(x2)dx2 .

Since g and h are arbitrary we have for 0 < t < 1/2v,

(4.28) f2(X1, X2, t) = f(xI, t)f(x2, t) .

By a similar, but more tedious, argument we also get

(4.29) fk(X1, * * *, Xk, t) = f(x1, t) . . . f(xk, t) .

The restriction on t can now be removed by observing that it does not depend on the
initial distribution.

In fact, we can start with some to, 0 < to < (2p)-1, and repeating the argument
extend the proof of Boltzmann's property to the range to- t < to + (2v)-l. Pro-
ceeding this way we can clearly cover the whole time range 0 < t < Co.
The above proof suffers from the defect that it works only if the restriction on

time is independent of the initial distribution. It is therefore inapplicable to the
physically significant case of hard spheres because in this case our simple estimates
yield a time restriction which depends on the initial distribution. A general proof
that Boltzmann's property propagates in time is still lacking.

5. Distributions having Boltzmam's property
We shall now show that

HI c(x,)
(5.1) j 1(R) = X

J II c(x3)da
Sn i-

where c(x) 2 0, and subject to some mild restrictions, has the Boltzmann property.
First we determine the asymptotic behavior of

f n
(5.2) f II c(x,)dao.

Sn j=l

This is done by a method frequently used in statistical physics (see, for example,
[1]) and we shall restrict ourselves to going through the formal steps without
rigorous justification.

Set
rn

(5.3) F&(r) = J2 c(x,)do,

and note that for 9(s) > 0,

(5.4) 2J e-BPFn(j) dp - r ea2Fe(r)dr = ( : e8Z2c(x)dz)

Using the complex inversion formula we get
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(5.5) F p) _ 1 fyir . eZP (r e zzc(xzdx) dz
(5.5) -~~p/ 27ri f,- i -

where -y > 0 and otherwise arbitrary.6 Thus

(5.6) Fn( \/n) =
2Vn fX (ezr ezzc(x)dz) dz,

and we are in position to use the method of steepest descent.
The saddle point is determined from the equation

(5.7) f e-zZc(x)dx = f x2e oZc(x)dx
and we shall assume that a real solution exists. It then follows easily that it is unique
and we can write (setting -y = zo, z = zo + it)

5.8) n) =2 2ne='z f dt (f e-zOX2eit )c(x)dx)

Under mild additional assumptions on c(x) we get

(5.9) Fn( x\/n)- 2ne= (ec-Zoz2 (X)n
\/2r J

Let now g(x) and h(x) be bounded continuous functions defined in (-c, co).
Then, by the same process we obtain~~~~n
(5.10) f g(xi)h(x2) H c(x,)dy

fsn

(f g(X)e_02c()dX) ( (X)e_z2c(X) 2nez) _/n2 \

(fin2)~~~~~fezoz~c(x)dx)

and it follows that

(5.11) fi(x) = e- X2C(X)
f e-z2c(x)dx

(5.12) f2(x1, x2) = f1(x1)fi(x2)
etc.
The most severe restriction placed upon c(x) is that for some z

(5.13) e_z2c(X)
be integrable in (- co, co). If this is violated, our method fails and it is far from
clear what happens.

6 Note that we assume that c(x) is such that for some z, (Rz > 0, the integral fr3 e-z2c(x)dx exists.
If c(x) vanishes at infinity so rapidly that for some z with (R z <0 the above integral exists, we
can, of course, take y = 0.
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Consider now probability densities 'P/(R) which have the Boltzmann property
but which are not necessarily of the form (5.1). Suppose furthermore that the limit-
ing one-dimensional contraction of n is f(x). Since

(5.14) n = nJ =f+*d + x.) n(R)da

= nP ,(R)d¢ = n r .; x2f(n)(x)dx

we have (provided f-,0x2f(x)dx < co)

(5.15) x2f(x)dx = 1

If we set

(5.16) c(x) = f(x)
we see that

II f(xj)
(5.17) On(R) = I

rn
f(xj)do

contracts (in the limit n - X ) to f(x) (zo = 0 in view of (5.15)) and has the Boltz-
mann property.

It seems plausible that, in some sense, 0n(R) is an approximation to #n(R) but
we have been unable to state this precisely. It would already be of interest to prove
or disprove the conjecture that for every a > 1

[f (R)do n

(5.18) lim = 1.n-a)fjrnd
6. The H-theorem

Starting with the master equation (3.4)

(6.1) d(= v z 2 r(tT) - O(, t)Jd0at n 15i<,i<n 2 0
we obtain [see (4.3)]

(2) df,02(R, t)do __ 1 (21
(6.2) dt flslFn2nrto d O(Ai( )R t) tXR tdo-
and hence

(6 3) dby2Hb tdes ieult

Furthermore, if a > 1, we have by Holder's inequality
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(6.4) f -a-1(R)O(Aij(O)R)da < (feta(R)d (A ij(()R)d) =f= (R)d,

and hence

(6.5) d f& (R, t)do .< 0.

Since

(6.6) logo = lim 1
.F_ e

we obtain as a corollary of (6.5) that

(6.7) dtf(R, t) log o(R, t)dcr _0.

The equality in (6.3), (6.5) and (6.7) occurs only if

(6.8) gb(R, t) = constant = _
Sn(Van)

where Sn(.Vn-) denotes the surface of the sphere R i 2 n.
The one-dimensional contraction of (6.8) is readily seen to be

(1--)
(6.9) n

I/V- 2Xn-3

which in the limit n -X becomes the Maxwell-Boltzmann density7

(6.10) 1 e_,2/2
\/27

We must now prove that8

(6.11) t0(R, t) _
Sn( V/n)

as t -A c, at least in the weak sense, that is, for every x(R) e L2(Sn)

(6.12) lim fo(R, t)x(f)da= X(R)doSn(-\/n)
Since the master equation is of the form

(6.13) at = '

7 The observation that the one-dimensional contraction of the uniform distribution on the sphere
I RI 12 = n leads, in the limit, to the Maxwell-Boltzmann distribution is due to Maxwell but is

often attributed to Borel [3].
s This is simply the ergodic property of the Markoff process under consideration. Rather than

to appeal to general theorems we prefer to keep the exposition self-contained and provide a proof
which, in this case, is very simple.



KINETIC THEORY i83

where 0 is a bounded, self-adjoint, negative operator we have

(6.14) (0, x) = f4(R, t) x(R)da = f_e'tdx(E(X)6(R, 0), x(R)),

where E(X) are the projection operators involved in the resolution of the identity
of the operator Q.
The function

(6.15) r(X) = (E(X)4(R, 0), x(R))

is of bounded variation and since fl is bounded r(X) is constant for sufficiently
large negative X.
Thus

(6.16) d- f( t)x(R)di = f Xe'dr(X)),
and consequently

(6.17) lim d f4(R, t) x(R)da = 0.

From (6.3) it follows that a sequence t8 -- o exists such that 0(h, ta) converges
weakly to a function oo(R), that is,

(6.18) lim fJ (hR, t,)x(R)do = fo(R)x(R)do
and

(6.19) lim fJ(R, t,) x(Ai(O)R)da = fJto(h)x(Aij(o)R)da -

Since

(6.20) d jo(R, t) x(R)daT = n _s L..e dOJdmo(R, t){ x(Aij(O)R)- x(R),

it follows from (6.17) (by letting t oo through the sequence t,) that

(6.21) 0 = E' ±1 ( dO rdao(hR) I x(A i,(O)R) - x(R))
r ~~1f2,

= J dox(R) <,< 2 J {4o(Aij(O)R) - (R)}dd,

and since x(R) is arbitrary we have

(6.22) 2- J {0o(Aij(0)R) - 0(R)ldO = 0

Multiplying both sides of (6.22) by oo(R) and integrating over Sn we obtain

(6.23) fz<dfic 1 f {f0o(A ij(O)R)- Oo(R) I 2dO = 0
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and hence

(6.24) oo(A ij(0)R) = Oo(R)
for almost every 0 and almost every R. To prove that (6.24) implies that 4o(R) e
constant almost everywhere, we need the fact that the Ai3(0) generate a transitive
subgroup of the full n-dimensional rotation group. This is almost trivial because
starting with

(6.25) T= ( S
we can by an appropriate A12(0) turn (6.25) into

(6.26) (A + ,t0, * )

An appropriate A13 will turn (6.26) into

(6.27) /+t2+t2X0 0*

and proceeding this way we see that an appropriate product

(6.28) A ln(O.-) . . . A 12(01)

will turn (6.25) into (v4n, 0,* * , 0) = Ro. Assuming that Oo(ho) is defined we
see that

(6.29) cko(T) = 4 o(Ro)
provided, of course, iT is such that 4o(T) is defined and the angles 01, * * *, an-l
(which clearly depend on T) do not belong to the exceptional sets of measure 0. It
is clear that for almost every T' the angles 01, * * *, an-l will not lie in the excep-
tional set and hence

(6.30) fo(R) = constant = 1
S.( V/n)

almost everywhere.
Since ,o(R) is unique it follows that

(6.31) lim 4(R, t) =

where the limit is taken in the weak sense. The above analysis goes through without
any modifications for the general master equation (2.6) except that the proof that
the A ii(i) generate a transitive subgroup of the orthogonal group in 3n - 3 dimen-
sions is more tricky. A proof was communicated to me by my colleagues Drs. Feit
and Hunt but we shall not reproduce it here.
We have thus shown that the master density o(R, t) approaches, as t -+ c, the

equilibrium density

(6.32) f (R) =
Snb(6n)

and that the approach is "irreversible" as implied by (6.3), (6.5) or (6.7). From the
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fact that the master density approaches (6.32) and from the fact that the one-
dimensional contraction of (6.32) is (6.9), it follows (again in the weak sense) that

(6.33) imn fln)(X, t) = n 1 e_X2/2

We shall now discuss the relation of Boltzmann's famous H-theorem to our
development.
The H-theorem asserts that

(6.34) d f f(x, t) log f(x, t)dx < O
and is easily derivable from (3.5) by following Boltzmann's original derivation.
However, in contrast with the statements (6.3), (6.5) and (6.7) (which can be gener-
alized further by replacing Oa or 4 log 4 by M(+O) provided M is concave upward)
the functional

(6.35) H(f) = ff log f dx

is the only one, discovered so far, which exhibits the monotonic behavior.
To elucidate this situation we must recall that (3.5) is applicable only to distri-

butions having Boltzmann's property. If, in some sense, we could say that
n

_H f(xj, t)
(6.36) n(t) -

1

J f f(Xj, t)d.-
we would have

(6.37) 1fblog 4,do-'- fH f(x,, t)( log f(xj, t) - log Cn do-

-log Cn + n fdo log f(x1, t) J f(xj, t),
where

=f n
(6.38) cn= I f(x3, t)da

and f(x, t) is the limiting one-dimensional contraction of On(R, t).
Asymptotically, for large n, we would have

(6.39) fbnlog ondo - -log Cn + n f_ f(x, t) log f(x, t)dx

and from the fact that

(6.40) fkn log oS,da
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decreases in time it would follow that so does

(6.41) H(f) = f f log f dx.

If the above steps could be made rigorous we would have a thoroughly satisfactory
derivation of Boltzmann's H-theorem.
Along the same lines we could then construct other "entropy-like" functions.

For instance, starting with (6.3) we could write, in virtue of (6.36),

f nr f II 2P(xj, t)doa
(6.42) J4P doa 1 C

and applying the argument of section 5 we would have

(6.43) 1

(since by (5.10) zo = 0) and

(6.44) (f2d )n IfZ()l-$)(x,t)dx ,

where zo( f2) denotes the real root (if it exists) of the equation

(6.45) f (1- X2)e_Z,2f(x, t)dx = 0

Since

decreases in time one might expect that so does the functional

(6.46) K(f) = f eZo(f2)(1,2)f(x, t)dx

It is an interesting open problem to prove or disprove the "K-theorem" to the effect
that
(6.47) dK(f) 0

dt

7. Relaxation times
In the preceding section we have shown that the master density approaches the

equilibrium density
-~ 1

Sn(V/n)

and that the approach exhibits the important feature of irreversibility. We shall now
study the approach to equilibrium in a more detailed manner.
We have already seen that we can write

(7.1) 4(R, t) = f eXtd{E(X)4(R, 0)}
and it would thus appear that 4(R, t) - 4o(R) might decay exponentially.



KINETIC THEORY I87

For this to be true one has to prove that 0 which is a simple eigenvalue of Q
(with co(R) as the corresponding eigenfunction) is isolated. In other words one has
to prove that

(7.2) l.u.b. < O

where the l.u.b. is taken over all functions orthogonal to oo(R), that is,

(7.3) f #du = 0.

Actually one needs more than (7.2), namely,

(7.4) lim l.u.b. (') < O .

Surprisingly enough this seems quite difficult and we have not succeeded in finding
a proof. Even for the simplified model we have been considering, the question re-
mains unsettled although we are able to give a reasonably explicit solution of the
master equation.

Let H (r)(), 1 < r _ y(k),9 be the linearly independent n-dimensional spherical
harmonics of order k.

Since H r)(Aij(O)h) is a spherical harmonic of order k it must be a linear com-
bination of the H (R). Thus

(7.5) H r)(A j(O)R) = E c'r, i, j)Hka)(R)
a-i

Thus

UH(r)~~~(k(7.6) k dk(v '(k ) _
na-

where

(7.7) d(r a = a))27Ck (O; i, j)dO }

The y(k) X y(k) matrix

(7.8) Dk = ((dk ))

is easily seen to be symmetric and, if one writes

_0h co t(k)

(7.9) E(,Oak(8) Hkeg) (R) ,
k-O a-1

one obtains

(7.10) s (o t) E(au)e(stt)Dkl(H (R))
k=n

9Actually Sy(k) depends also on n but we suppress it to simplify the formulas.
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Here (ak) is the row vector (a('), * a(y(k) and (Hk(R)) the column vector

Hk )(R)

I (2)(R
(7.11)

Hr (k) (R)

The "time constants" in the expansion (7.10) are

(7.12) - v X eigenvalues of Dk,
n

and it is not clear that the set of numbers (7.12) does not have 0 as a limit point
(especially if one allows n to approach a,).
Consider now the one-dimensional contraction fn)(xi, t) of 4 (R, t). For a function

g(x1) such that f g2(xl)do < X we have

(7.13) f -g(x)f(n)(x, t)dx = , (ak)e(I/n)k (Ig9(x)Ck(x)dx)

where wo,) (x) is the one-dimensional contraction of H(8)(R).
The functions H 8)(R) can be so chosen that w a)(x) = 0, s = 2, 3, * * k*,

in which case c()(x) is the well known Gegenbauer function.
Denoting by - ()(n) the eigenvalues of the matrix n-1DA we can rewrite (7.13)

in the form

(7.14) Jb V;; g(x)fl (x, t)dx = , ( , bk e * ),Js V;gSk (x)g(x)dx ,
. I/n ~~~k=O 8=1J %n

where the b(8) are certain linear combinations of the a(,) with coefficients involving
the eigenvectors of Dk. It should be borne in mind that -y(k), b(8) and w'1) (x) depend
also on n. It seems very difficult to go beyond (7.14) but it suggests what happens
in the limit n -> c.

It is known that as n -Xa cow )(x), when properly normalized, approaches

(7.15) e_,u/2hk(X)
where hk(X) is the Hermite polynomial

e.212 dk _,2/2(7.16) hk(X) = e dde

It thus appears natural to expect that

(7.17) f(x, t) E ak(t)hk(X)e X
k=O

where moreover ak(t) might be expected to be of the form

(7.18) ak(t) J e'"4td!(X)
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If O(R, 0) has the Boltzmann property we know that f(x, t) satisfies the nonlinear
equation (3.5) and using this information we shall be able to determine the ak(t)
explicitly.
From (3.5) we deduce almost immediately that

(7.19) d f f(x, t)hk(X)dx = 2 f(x, t)f(y, t)

r2r

f. {hk(x cos 0+y sin 0)+hk(-X sin O+y cos 0)-hk(X)-hk(Y)ldOdxdy
and using the known relation

klk\ ink(7.20) hk(x cos + ysin)= ) cosl sink' h(x)hk i(y)

we obtain

dbk(7.21) dt = -vbk if k is odd

and

(7.22) d0btm = ,(2;) 121, 2m-2i b2i b2m-21 - b2.
where

(7.23) bk(t) = f f(x, t)hk(x)dx

and

(7.24) /321, 2m-21 = 2 f COS21O sin2m'21 do.

Formula (7.22) can be rewritten in the more convenient form

db2mn '- 2m
(7.25) db = v(2a2m- 1)b2m + V L (21) /21, 2m-21 b21 b2m_21

where

(7.26) a2m = 02m, ° = 2- 'COS2Tc dD = k (2m )

It is also clear that bk differs from ak by a numerical factor only.
Since

(7.27) f f(x, t)dx = 1 f x2f(x, t)dx = 1

we have bo = l(ao = 1/V-/2-) and it follows from (7.25) (since a2 = 2) that

(7.28) db2 = 0dt
or

(7.29) b2(t) 0.
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The odd b's are easily determined from (7.21)

(7.30) bk(t) = bk(0)e v

The early even b's are also easily determined and one gets

(7.31) b4(t) = b4(0)e t

(7.32) b6(t) = b6(0)e'(2c6l)t
where in deriving these formulas use has been made of the fact that b2(t) 0. To
determine b8(t) we have the equation

(7.33) db8 = P(2a8 - 1)b8 + v (8 444b

and since we know b4 [see (7.31) ] we can solve for b8 and it is clear that it is a linear
combination of

(7.34) el(2a8-l)t and e2v(2a4 1)t

Similarly,
(7.35) ~~db1o (10) b

(7-35) =dt= v(2aio- 1)bio + 2v ( 4) 6 b4b6

and b1o is a linear combination of the exponentials

(7.36) e^(2.10-1)t and E(2a4-1)+(2a6-1)]t

It is clear that in this way all the b's can be determined but formulas will get pro-
gressively more and more complex.
A moment's reflection will convince us that in the formula for b2m(t) we shall

have only exponentials with time constants

(7.37) 1,(2a2, - 1),
s=2

where the 1. are nonnegative integers subject to the condition

(7.38) E lss = m.
e-2

This observation is closely related to an interesting property of Hermite poly-
nomials. Let us define the "Boltzmann bracket [g, h]" as follows

(7.39) [g, h]

= r fe-2/2 {g(x cos 0 + y sin O)h(-x sin 0 + y cos 0) - g(x)h(y)}dOdy

and note that [g, h] is a function of x. If g and h are polynomials of even degree
[g, h] is a polynomial whose degree is the sum of degrees of g and h.

Substituting (7.17) in (3.5) we obtain formally

(7.40) = V ak(t)al(t)[hk, h,] ez2/2 = V ak(t)as(t)[hA, hl] e2/2-
dt k,l=O m=O k+l=m
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Consider now [hk, hi] with k + 1 = 2m. If both k and 1 are odd the bracket is iden-
tically 0 and it is sufficient to consider [ h2k, h21] with 2k + 21 = 2m. The polynomial
[h2k, h21] is of degree 2m and hence a linear combination of ho, h2, , h2m. The
interesting fact is that it is actually only a multiple of h2m.
To see this, note that if [h2k, h21] did have a lower component, say, h2r (r < m),

a2ka2i would have to be part of the coefficient of h2r exp (-x2/2) in the expansion of
f/lat (and hence off) and this is impossible in view of (7.37) and (7.38).
Thus

(7.41) [h2k, h211 = Ck,lh2k+21

and the multiplier Ck,I can be easily determined. In fact

(7.42) Ck,I =C2kC2l
where

(7.43) a2k(t) =C2kb2k(t)

provided neither k nor 1 are 0, in which case the formula has to be slightly modified.
A direct proof of the bracket relation (7.41) was communicated to us by Dr. G.

E. Baxter.
Comparing our solution of (3.5) with the solution (7.14) of the master equation

we notice that, whereas in (7.14) the coefficient of co(l)(x) is composed of a large
number of exponentials (in fact -y(k) of them), the corresponding coefficient of
hk(x) exp (-x2/2) contains only a finite number (remember that y(k) -- as n-*o).

There may be several causes for this enormous reduction.
(a) Since we are starting with distributions having Boltzmann's property most

temporal modes are absent.10
(b) Some eigenvalues of Dk are degenerate.
(c) Some eigenvalues of Dk approach o as n m.
(d) Some b(8) approach 0 as n -> c.
A particularly interesting possibility is that there are X(i) which approach 0, but

that the corresponding coefficients bV8) also approach 0. If this were the case there
would be temporal modes which decay extremely slowly but which are unobserv-
able because of the smallness of their amplitude.

8. The linear Boltzmann equation
So far we have primarily concentrated on the evolution of q(R, t) in case 4(R, t)

had the Boltzmann property. There is another case which is of great interest,
namely,

(8.1) 0)= c(x)
fc(x,)da

10 Since functions having Boltzmann's property are, by definition, symmetric, only symmetric
spherical harmonics are involved in (7.10). The number of linearly independent symmetric spher-
ical harmonics of degree k remains bounded as n - - but their number is still considerably larger
than the number of distinct exponentials which form the coefficient of hk(x). Part of the excess can
be explained by the fact that some of the spherical harmonics contract to 0. Whether this accounts
for the whole discrepancy is not yet settled.
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The contractions of (8.1) are

C(x0))(xi - 2

(8.2) rnC(X) ( n-

ff(x2x 0) = C(X) -x n- x)!i24+
X

ff c(xl) (1 2n 32__
:1+4Xn

etc.
In the limit n co these become

c(xz ) exp[- x]
(8.3) fi(xi, O) _ fxi)=

J,(xi) exp [_xi 2+ X2] dXidX2

etc.
By the argument of section 4 we have

(8.4) f f(x, t)g(x)dx

=k I 1 ffk+f(Xly * *Xk+ly 0)) k+e(Xp . *Xk+l) dXl * [lXk+I

k=-S(vt) 1 r f(lyO) exp[ +Xk] gk+1(x*,.* .,xk+1)dxl .* *dxk+.

Recall now that

(8.5) gk+i(x,i **,xk+. )
k l 2r

= 2J gk(Xl . . XjcosO+xk+lsin O,*,Xk) - gk(xI,...,xk)JdO
j-, 7 fo

and note that in the corresponding integral all terms except those which correspond
to j = 1 vanish.
We thus have

(8.6) ( )k fA.ffxi) exp [-X2+ "+xc+k gk+1(X1,* ..,Xk+l)dXl ..dX.
7

1ffLfe[r)kf +4] P,[2,]

l r:r , [ x~+. +X2]9(l x,x x
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where

(8.7) L(f)

= 1f0jb 1f2-7 {f(x cos e + y sin O)e-(- G+vcog )2/2 - f(x)e d2d2}

Repeated applications of (8.6) gives

(8.8) f f(x, t)g(x)dx = £ f L"(f(x))g(x)dx

or
(8.9) f(x, t) = e LLf(X)
Thus f(x, t) satisfies the linear Boltzmann equation

(8.10) a.f(X, t)
49t

;flf If(x cos 9 + y sin C, t)e-(-x 8in 9+l Cos 9)2/2 _2f( t e2/2

In contrast with section 4 convergence difficulties are of a trivial nature and the
reasoning extends easily to more realistic cases. The reason why we now have a
much simpler situation is clear on physical grounds.

In fact, the assumption
c(X1)(8.11) 4(R, 0) = I c(xl)d

means that all particles except the first are already in statistical equilibrium [as
can be seen from (8.2) ] and we have here a situation in which a particle moves in a
medium which, statistically speaking, remains stationary.

This is analogous to the theory of Brownian motion except that a collision may
now produce large changes in velocity and hence instead of a simple operator like
D(02f/0x2) we have the more complicated integral operator of (8.10).
The general solution (7.14) of the master equation suggests again that the solu-

tion of (8.10) is to be sought in the form

ce~~~~~/
(8.12) E ak(t)hk(x)ez212

k-O

It is easily verifiable that hk(x) exp (-x2/2) is an eigenfunction of the operator L,
the corresponding eigenvalue being X2m+l = - v or X22m = V(a2m- 1), and conse-
quently ak(t) = cke kl. The time constants X2m are not among those encountered in
the solution of the nonlinear equation.

9. Linearized equation. Method of successive approximations
We shall now discuss a method of solving the nonlinear Boltzmann equation,

which in its essence is a perturbation method.
We start by postulating f(x, t) in the form

(9.1) f(x, t) = fo(x)(1 + 0pl(x, t) + 022p2(X, t) + * *



194 THIRD BERKELEY SYMPOSIUM: KAC

where 0 is an auxiliary artificial parameter. Substituting (9.1) into Boltzmann's
equation (3.5) we get by comparing coefficients of powers of 0

(9.2) dtp = v[1, P1] + [pa, 1] },dt

dpt = v{[1, p2] + [p2, 1] + [pl, pl]},
etc.

Here

(9.3) fo(x) = _ -xe/2

and the brackets [, are the Boltzmann brackets defined by (7.39).
Equations (9.2) can be solved successively and the solution f(x, t) is then given

by (9.1) with 0 = 1.
The operator

(9.4) Ap [1, p] + [p, 1] = J fo(y) 2

r2f2X {p(x cos 0 + y sin 0) + p(-x sin 0 + y cos 0) - p(x) - p(y)}dody
is linear and the equation

(9.5) dp = vAp1dt

will be referred to as the linearized Boltzmann equation.
In order to solve equations (9.2) we must know p1(x, 0), p2(X, 0), * - -. It is

simplest to set p2(x) 0, p3(X, 0) 0, * * * and

(9.6) p(x) pl(x) = f ) -

so that

(9.7) f(x, 0) = fo(x) (1 + p(x))-
The background of the successive scheme (9.2) will now emerge from (4.22). In
fact, if we substitute (9.7) into (4.22) we obtain

(9.8) f f(x, t)g(x)dx = fo(x)g(x)dx + Ek.n ~~~~~~~~~k=O k
/k+1

* .j-fo(xl).. *fo(xk+i) ( p(Xj)) gk+1(X1, *,Xk+l)dXl *. dXk+l

k=lkf ! Jf ffo(x1) *fo(Xk+1)

E(Z p(XO)p(X.) 9k+1(X1, *--,xk+1)dx1 .* -dxk+l + * - -
I-,, i< j:-<k+ 1
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We shall now show that the successive infinite sums in this rearranged series are

(9-9) f fo(x)pl(x, t)g(x)dx, f fo(x)p2(x, t)g(x)dx,

To see this we note that from the definition (4.19) of gk we have

(9.10) f f fo(Xl). fO(xk+,l) P(Xj)) gk+l(xl, ,xk+l)dxl dXk

= rrf_i x1, fO(xkk) AP(xi))gk(Xl, .xdxl dXk

-cfo(x)Akp(x)g(x)dx
and hence formally the first infinite sum of (9.8) is equal to

(9. 11) f fo(x)g(x)(e,,A p(x))dx
which is clearly

(9.12) f fo(x)g(x)pl(x)dx.
The computations with the second infinite sum are more involved and we shall
just give the result leaving the detailed verification to the reader.

For a symmetric function p(x1, x2) of two variables we define the operators A(2)
and B as follows:

(9.13) A2p(x1, X2) = A(-2)P(xl, X2) + A(z1)p(xl, X2),

where A(,2) (A(-,)) is the operator A defined by (9.4) applied to p(xI, x2) while keeping
x2(x1) constant, and

(9.14) Bp(Xi, X2) = dx2fo(x2) 1

r2fJ tp(xl cos 0 + X2 sin 0 - xi sin 0 + X2 cos 0) - p(xl, x2)} do .

From the definition of gk one gets

(9.15) f ff+fo(xl) * fO(Xkl) 1<<P(xi, x,)) 9k+1(Xl, *,xk+1)dXl * dxk+1

fo(x)g(x) {AklBp + Ak2BA(2)P + *-- + BA' p} dx

and setting

(9.16) P(x, t) = E(tkI{Ak-l Bp + Ak-2 BA(2) p + + BA'2) P}(9.16) (x, t) k! (2
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we see that

(9.17) AP = 1 dP - B{ePtA(2)pl

It can now be verified that if

(9.18) p(x,, X2) = P(Xl)P(X2),
one has

(9.19) Ble"'t(2)pl = [p,(x, t), p,(x, t)],
and thus

(9.20) P(x, t) = p2(X, t) .

The eigenfunctions of the operator A are again the Hermite polynomials hk(X), the
corresponding eigenvalues being"'

(9.21) A2m+1 = PI P2m = P(2a2m - 1).

Consequently

(9.22) pI(X, t) kEk8kt hk(x)ez/2

Using the bracket relation (7.41) and the fact that [hk, hi] = 0 if either k or I is
odd we get

(9.23) [pI, pI] E (+E 52k02ZCk.e 2k21 ) h2m(x)e- /2
1 k + I-m

Hence p2(x, t) will be linear combination of exponentials with time constants

(9.24) - (P2k + 121) .

Similarly p3(x, t) will involve exponentials with time constants

(9.25) -(P2k + P21 + A2m)X
etc.

All this agrees, of course, with what we have found in section 7.
The linearized Boltzmann equation is used to discuss systems which are so close

to equilibrium that pi(x, t)pl(y, t) and other quadratic terms can be neglected. If
we compare p,(x, t) with the exact solution of the nonlinear Boltzmann equation
it appears that it is actually exact as far as the first few (slowest) exponentials are
concerned. However, denoting by Xo the smallest time constant of A which is differ-
ent from 0, we see that the part of p,(x, t) which involves exponentials with time
constants larger than 2Xo is meaningless because p2(X, t) introduces larger terms.
This observation holds in general (that is, for the physically significant cases of
11 Note that /A2 = Po = 0 so that 0 is a doubly degenerate eigenvalue. In an actual physical case 0

is fivefold degenerate corresponding to given conservation laws (particles, energy and three compo-
nents of momentum). In our case, only the number of particles and the energy are conserved,
hence only double degeneracy. For the linear equation (8.10), 0 is a simple eigenvalue because
energy is no longer conserved.
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hard spheres and Maxwell molecules) even though the spectrum of A may not even
be discrete.
The scheme (9.2) of solving Boltzmann's equation is not really a successive ap-

proximation scheme because higher "approximations" involving p2(x, t), p3(X, t),
etc. introduce terms which are larger than terms kept in in p1(x, t).
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