A REMARK ON CHARACTERISTIC FUNCTIONS

A. ZYGMUND
UNIVERSITY OF CHICAGO

Let $F_{1}(t), F_{2}(t), \ldots, F_{n}(t), \ldots$ be a sequence of distribution functions, and let

$$
\varphi_{n}(x)=\int_{-\infty}^{+\infty} e^{i x t} d F_{n}(t)
$$

be the corresponding characteristic functions. If the sequence $\left\{\varphi_{n}(x)\right\}$ converges over every finite interval, and if the limit is continuous at the point $x=0$, then, as is very well known, the sequence $\left\{F_{n}(t)\right\}$ converges to a distribution function $F(t)$ at every point of continuity of the latter (see, for example, [1, p. 96]. It is also very well known that in this theorem convergence over every finite interval cannot be replaced by convergence over a fixed interval containing the point $x=0$.

The situation is different if the random variables whose distribution functions are the F_{n} are uniformly bounded below (or above). Without loss of generality we may assume that the random variables in question are positive, so that all $F_{n}(t)$ are zero for t negative. The purpose of this note is to prove the following theorem.

Theorem. Let $F_{1}(t), F_{2}(t), \ldots, F_{n}(t), \ldots$ be a sequence of distribution functions all vanishing for $t \leqq 0$, and let

$$
\varphi_{n}(x)=\int_{0}^{+\infty} e^{i x t} d F_{n}(t), \quad-\infty<x<+\infty
$$

If the functions $\varphi_{n}(x)$ tend to a limit in an interval around $x=0$, and if the limiting function is continuous at $x=0$, then there is a distribution function $F(t)$ such that $F_{n}(t)$ tends to $F(t)$ at every point of continuity of F.

Proof. Let $z=x+i y$, and let us consider the functions

$$
\varphi_{n}(z)=\int_{0}^{+\infty} e^{i z t} d F_{n}(t)=\int_{0}^{+\infty} e^{i x t} e^{-y t} d F_{n}(t) .
$$

Each $\varphi_{n}(z)$ is regular for $y>0$, continuous for $y \geqq 0$, and is of modulus $\leqq 1$ there. For z real, $\varphi_{n}(z)$ coincides with the characteristic function $\varphi_{n}(x)$. It is easy to see that the sequence $\left\{\varphi_{n}(z)\right\}$ converges in the half plane $y>0$, and that the convergence is uniform over any closed and bounded set of this half plane. For let $z=\lambda(\zeta)$ be a conformal mapping of the half plane $y>0$ onto the unit circle $|\zeta|<1$, and let us consider the functions

$$
\begin{equation*}
\varphi_{n}^{*}(\zeta)=\varphi_{n}[\lambda(\zeta)] . \tag{1}
\end{equation*}
$$

These functions are regular for $|\zeta|<1$, are numerically $\leqq 1$ there and their
boundary values converge to a limit on a set of positive measure situated on the circumference $|\zeta|=1$ (this set is actually an arc). By the theorem of Khintchine [2] and Ostrowski [3], the sequence $\left\{\varphi_{n}^{*}(\zeta)\right\}$ converges for $|\zeta|<1$, and the convergence is uniform in every circle $|\zeta| \leqq \rho, \rho<1$. Going back to the half plane $y>0$, we see that the functions $\varphi_{n}(z)$ converge there to a regular function $\varphi(z)$, and that the convergence is uniform over any closed and bounded set in that half plane. In particular, the convergence is uniform over any finite segment of any line

$$
y=y_{0}, \quad y_{0}>0 .
$$

We shall now show that

$$
\begin{equation*}
\varphi(i y) \rightarrow 1 \quad \text { as } \quad y \rightarrow+0 . \tag{2}
\end{equation*}
$$

It will again be slightly easier to consider the functions $\varphi_{n}^{*}(\zeta)$ defined by (1). They tend to a function $\varphi^{*}(\zeta)$ regular in $|\zeta|<1$ and numerically $\leqq 1$ there. This function has nontangential boundary values $\varphi^{*}\left(e^{i \theta}\right)$ for almost every θ and (as a bounded harmonic function) is the Poisson integral of $\varphi^{*}\left(e^{i \theta}\right)$. Let us assume for simplicity that the mapping function $z=\lambda(\zeta)$ makes correspond $z=0$ and $\zeta=1$. If we can prove that in the neighborhood of $\theta=0$ the function $\varphi^{*}\left(e^{i \theta}\right)$ coincides almost everywhere with a function continuous at $\theta=0$ and taking the value 1 at that point, then [since the values of $\varphi^{*}\left(e^{i \theta}\right)$ in a set of measure zero are immaterial for the Poisson integral] the function $\varphi^{*}(\zeta)$ will tend to 1 as ζ approaches 1 along any nontangential path. This will immediately lead to relation (2).

Let us revert to the Khintchine-Ostrowski theorem used above. It can be completed as follows. If the sequence of functions $\varphi_{n}^{*}(\zeta)$ regular and of modulus $\leqq 1$ for $|\zeta|<1$, converges in a set E of positive measure on the circumference $|\zeta|=1$, then on almost every radius $\zeta=\rho e^{i \theta}, 0 \leqq \rho<1$, terminating in the set E the sequence converges uniformly (for the proof, see [4, p. 213]). Since the function $\varphi^{*}(\zeta)=\lim \varphi_{n}^{*}(\zeta)$ has nontangential limit $\varphi^{*}\left(e^{i \theta}\right)$ for almost every θ, it immediately follows that $\varphi^{*}\left(e^{i \theta}\right)=\lim \varphi_{n}^{*}\left(e^{i \theta}\right)$ almost everywhere in E. In our particular case, the functions $\varphi_{n}^{*}(\zeta)$ are continuous on $|\zeta|=1$ except at the point ζ corresponding to $z=\infty$, and converge on an arc $-\delta \leqq \theta \leqq+\delta$ to a function $\gamma(\theta)$ continuous at $\theta=0$ and taking the value 1 there [since $\varphi_{n}^{*}(1)=1$ for all n]. Hence at almost every point θ in $(-\delta, \delta)$ the function $\varphi^{*}\left(e^{i \theta}\right)$ coincides with $\gamma(\theta)$. Thus the proof of (2) is complete.

Since, as seen from the formula for $\varphi_{n}(z)$, all the quantities $\varphi_{n}(i y)$ are positive for $y>0$, the quantity $\varphi(i y)=\lim \varphi_{n}(i y)$ is nonnegative. On account of (2), we have $\varphi\left(i y_{0}\right)>0$ for all y_{0} small enough. Let us fix such a y_{0} and let us consider the nonnegative and nondecreasing functions

$$
\begin{equation*}
G_{n}(t)=\frac{1}{\varphi_{n}\left(i y_{0}\right)} \int_{-\infty}^{t} e^{-u y_{0}} d F_{n}(u) \tag{3}
\end{equation*}
$$

[thus $G_{n}(t)=0$ for $t \leqq 0$]. As seen from the formula defining $\varphi_{n}(z)$, the characteristic function $\psi_{n}(x)$ of $G_{n}(t)$ is

$$
\int_{0}^{\infty} e^{i x t} d G_{n}(t)=\frac{1}{\varphi_{n}\left(i y_{0}\right)} \int_{0}^{\infty} e^{i x t} e^{-t y_{0} d F_{n}(t)=\frac{\varphi_{n}\left(x+i y_{0}\right)}{\varphi_{n}\left(i y_{0}\right)} ~}
$$

Since

$$
1=\psi_{n}(0)=\int_{0}^{\infty} d G_{n}(t)
$$

it follows that the G_{n} are distribution functions. We know that the functions $\psi_{n}(x)=\varphi_{n}\left(x+i y_{0}\right) / \varphi_{n}\left(i y_{0}\right)$ converge uniformly over any finite interval of the variable x. Hence the functions $G_{n}(t)$ converge to a distribution function $G(t)$ at the points of continuity of G.

From (3) we see that

$$
F_{n}(t)=\varphi_{n}\left(i y_{0}\right) \int_{-\infty}^{t} e^{u y_{0}} d G_{n}(u)
$$

The right side here can be written

$$
\varphi_{n}\left(i y_{0}\right)\left\{e^{t y_{0} G_{n}}(t)-y_{0} \int_{-\infty}^{t} e^{u y_{0} G_{n}}(u) d u\right\} .
$$

Hence the functions $F_{n}(t)$ tend to a nondecreasing function $F(t)$ at every point t at which G is continuous, and

From this formula we see that the points of discontinuity of F are the same as those of G. It remains to show that F is a distribution function, that is that

$$
\begin{equation*}
F(+\infty)-F(-\infty)=1 \tag{5}
\end{equation*}
$$

That the left side here is $\leqq 1$ is obvious since $0 \leqq F_{n}(t) \leqq 1$ for all n. Observing that both F and G vanish for $t<0$, we deduce from (4) that

$$
F(a)-F(-0) \geqq \varphi\left(i y_{0}\right)\{G(a)-G(-0)\} \text { for } a>0 .
$$

Taking first a large, and then y_{0} small, and using (2), we find that $F(+\infty)-$ $F(-0) \geqq 1$, which gives (5). This completes the proof of the theorem.

Remark 1. The theorem can be extended to nonnegative random variables in the k-dimensional space R_{k}. The requirement is that the characteristic functions $\varphi_{n}\left(x_{1}, \ldots, x_{k}\right)$ converge in the neighborhood of $(0, \ldots, 0)$ to a function continuous at that point. The proof follows the same line as for $k=1$, and the proofs of the corresponding lemmas for functions $\varphi_{n}\left(z_{1}, \ldots, z_{k}\right)$ of several complex variables offer no serious difficulties. The details are omitted here.

Remark 2. It is easy to see that the condition of the theorem, namely that all of the $F_{n}(t)$ vanish for $t \leqq 0$ (or for $t \leqq t_{0}$), can be replaced by a less stringent one:

$$
F_{n}(t) \leqq A e^{-\epsilon|t|}, \quad t \leqq t_{0}
$$

where the positive constants A, ϵ and the constant t_{0} are all independent of n.
The proof of this generalization remains essentially the same as before. For, applying integration by parts in the formula defining the function $\varphi_{n}(z)$, we see that the $\varphi_{n}(z)$ are regular in the strip

$$
0<y<\epsilon,
$$

and are continuous and uniformly bounded in every closed strip

$$
0 \leqq y \leqq \epsilon^{\prime}, \quad \quad \epsilon^{\prime}<\epsilon
$$

In the proof given above it is therefore enough to take for $\lambda(\zeta)$ the function mapping the latter strip onto the unit circle $|\zeta| \leqq 1$ and consider only the values of y_{0} sufficiently small $\left(y_{0}<\epsilon\right)$.

REFERENCES

[1] H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946.
[2] J. Khintchine, "Sur les suites de fonctions analytiques bornées dans leur ensemble," Fund. Math., Vol. 4 (1923), pp. 72-75.
[3] A. Ostrowski, "Ueber die Bedeutung der Jensenschen Formel für einige Fragen der komplexen Funktionentheorie," Acta Litt. ac Sci., Sect. Sci. Math., Szeged, Vol. 1 (1922), pp. 80-87.
[4] A. Zygmund, "On the boundary values of functions of several complex variables, I," Fund. Math., Vol. 36 (1949), pp. 207-235.

