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Let F1(t), F2(t), . ., F,(t), . . be a sequence of distribution functions, and let
+-M

'P. (x) co= i-eSdF. (t)

be the corresponding characteristic functions. If the sequence Io(,(x) } converges
over every finite interval, and if the limit is continuous at the point x = 0, then,
as is very well known, the sequence {FI(t) } converges to a distribution function
F(t) at every point of continuity of the latter (see, for example, [1, p. 96]. It is also
very well known that in this theorem convergence over every finite interval cannot
be replaced by convergence over a fixed interval containing the point x = 0.

The situation is different if the random variables whose distribution functions
are the F& are uniformly bounded below (or above). Without loss of generality
we may assume that the random variables in question are positive, so that all
F&(t) are zero for t negative. The purpose of this note is to prove the following
theorem.

THEOREM. Let Fi(t), F2(t), . . ., F,(t), . . . be a sequence of distribution functions
all vanishing for t < 0, and let

/^+ODn(x) eye'dF.(t) , -co<x< +co.
If the functions sp.(x) tend to a limit in an interval around x = 0, and if the limiting
function is continuous at x = 0, then there is a distribution function F(t) such that
F&(t) tends to F(t) at every point of continuity of F.

PROOF. Let z = x + iy, and let us consider the functions
+co +co

(pn ( Z) = eeiztdit (t) = fJ eixte-y'dF().
0 o

Each (p,(z) is regular for y > 0, continuous for y > 0, and is of modulus _ 1 there.
For z real, pn(z) coincides with the characteristic function son(x). It is easy to see
that the sequence {Iwp(z) } converges in the half plane y > 0, and that the con-
vergence is uniform over any closed and bounded set of this half plane. For let
z = X(r) be a conformal mapping of the half plane y > 0 onto the unit circle

< 1, and let us consider the functions

(1 ) (r n [X (0 I
These functions are regular for I < 1, are numerically < 1 there and their
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boundary values converge to a limit on a set of positive measure situated on the
circumference v = 1 (this set is actually an arc). By the theorem of Khintchine
[2] and Ostrowski [3], the sequence 5(p) } converges for I|r < 1, and the con-
vergence is uniform in every circle < p, p < 1. Going back to the half plane
y > 0, we see that the functions 5°n(z) converge there to a regular function 50(z),
and that the convergence is uniform over any closed and bounded set in that half
plane. In particular, the convergence is uniform over any finite segment of any line

Y=Yo, yo > O .

We shall now show that

(2) so(iy)- 1 as y-+0.
It will again be slightly easier to consider the functions *(r) defined by (1).

They tend to a function so*(¢) regular in Ir < 1 and numerically <1 there.
This function has nontangential boundary values (o*(eO) for almost every 6 and
(as a bounded harmonic function) is the Poisson integral of 'o*(eiG). Let us assume
for simplicity that the mapping function z = X(r) makes correspond z = 0 and
r = 1. If we can prove that in the neighborhood of 6 = 0 the function (o*(eiG)
coincides almost everywhere with a function continuous at 6 = 0 and taking
the value 1 at that point, then [since the values of so*(eie) in a set of measure zero
are immaterial for the Poisson integral] the function so*(r) will tend to 1 as r ap-
proaches 1 along any nontangential path. This will immediately lead to rela-
tion (2).

Let us revert to the Khintchine-Ostrowski theorem used above. It can be com-
pleted as follows. If the sequence offunctions *(v) regular and of modulus < 1 for

< 1, converges in a set E of positive measure on the circumference = 1, then
on almost every radius r = peO, 0 < p < 1, terminating in the set E the sequence con-
verges uniformly (for the proof, see [4, p. 213]). Since the function so*(v) = lim *(v)
has nontangential limit p*(eie) for almost every 0, it immediately follows that
(p*(eiO) = lim (p*(eO) almost everywhere in E. In our particular case, the func-
tions n(r) are continuous on I= 1 except at the point r corresponding to
z = c, and converge on an arc - _. _6 +6 to a function y(O) continuous at
o = 0 and taking the value 1 there [since *o(I) = 1 for all n]. Hence at almost
every point 6 in (-5, 6) the function Vo*(eiG) coincides with -y(O). Thus the proof
of (2) is complete.

Since, as seen from the formula for (Pn(Z), all the quantities 'on(iy) are positive
for y > 0, the quantity p(iy) = lim Vpn(iy) is nonnegative. On account of (2), we
have po(iyo) > 0 for all yo small enough. Let us fix such a yo and let us consider
the nonnegative and nondecreasing functions

(3) Gn (t) = (i) f e -uuodFn (u)

[thus G"(t) = 0 for t < 0]. As seen from the formula defining V,,(z), the charac-
teristic function l'n(x) of Gn(t) is

AextdGn (t) = . - e ixt e-'?odFn (t) -_n (X +iyO)
fo rOn UYo(t)0Pn t (yo)
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Since

1.=n(°) = f; dG. (t)

it follows that the G. are distribution functions. We know that the functions
,P.(x) = pO.(x + iyo)/'pn(iyo) converge uniformly over any finite interval of the
variable x. Hence the functions Gn(t) converge to a distribution function G(t) at
the points of continuity of G.

From (3) we see that

F. (t) = op (iyo) f euUodGn (u).
The right side here can be written

(P. (iyo)l et8oG. (t) - yoJ euyo&Gn (u) du

Hence the functions F,,(t) tend to a nondecreasing function F(t) at every point t at
which G is continuous, and

(4) F (t) = p (iyo) le tvoG (t) - yof euyoG (u) du p= (iyo) f euylodG (u).

From this formula we see that the points of discontinuity of F are the same as those
of G. It remains to show that F is a distribution function, that is that

(S) F(+-) - F(- )= 1.

That the left side here is _ 1 is obvious since 0 _ Fn(t) _ 1 for all n. Observing
that both F and G vanish for t < 0, we deduce from (4) that

F (a)-F (-O) _ p (iyo) {G (a)-G (-0) I for a > O.

Taking first a large, and then yo small, and using (2), we find that F(+ 0a) -
F(-O) _ 1, which gives (5). This completes the proof of the theorem.

Remark 1. The theorem can be extended to nonnegative random variables in
the k-dimensional space Rk. The requirement is that the characteristic functions
,pn(x1, . .. , xk) converge in the neighborhood of (0, . .. , 0) to a function con-
tinuous at that point. The proof follows the same line as for k = 1, and the proofs
of the corresponding lemmas for functions (Pn(Z1 . . . , Zk) of several complex
variables offer no serious difficulties. The details are omitted here.

Remark 2. It is easy to see that the condition of the theorem, namely that all
of the Fn(t) vanish for t _ 0 (or for I _ to), can be replaced by a less stringent one:

F. (t) _ Ae-" 'ItI, I _ to,

where the positive constants A, e and the constant to are all independent of n.
The proof of this generalization remains essentially the same as before. For, ap-

plying integration by parts in the formula defining the function P,,(z), we see that
the $,°(z) are regular in the strip

0<y< E,

and are continuous and uniformly bounded in every closed strip
0 _ y< e' e' < e.
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In the proof given above it is therefore enough to take for X(r) the function map-
ping the latter strip onto the unit circle I _ 1 and consider only the values of yo
sufficiently small (yo < e).
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