A REMARK ON CHARACTERISTIC FUNCTIONS

A. ZYGMUND

UNIVERSITY OF CHICAGO

Let $F_1(t), F_2(t), \ldots, F_n(t), \ldots$ be a sequence of distribution functions, and let

$$\varphi_n(x) = \int_{-\infty}^{+\infty} e^{ixt} dF_n(t)$$

be the corresponding characteristic functions. If the sequence $\{\varphi_n(x)\}$ converges over every finite interval, and if the limit is continuous at the point x = 0, then, as is very well known, the sequence $\{F_n(t)\}$ converges to a distribution function F(t) at every point of continuity of the latter (see, for example, [1, p. 96]. It is also very well known that in this theorem convergence over every finite interval cannot be replaced by convergence over a fixed interval containing the point x = 0.

The situation is different if the random variables whose distribution functions are the F_n are uniformly bounded below (or above). Without loss of generality we may assume that the random variables in question are positive, so that all $F_n(t)$ are zero for t negative. The purpose of this note is to prove the following theorem.

THEOREM. Let $F_1(t), F_2(t), \ldots, F_n(t), \ldots$ be a sequence of distribution functions all vanishing for $t \leq 0$, and let

$$\rho_n(x) = \int_0^{+\infty} e^{ixt} dF_n(t), \qquad -\infty < x < +\infty.$$

If the functions $\varphi_n(x)$ tend to a limit in an interval around x = 0, and if the limiting function is continuous at x = 0, then there is a distribution function F(t) such that $F_n(t)$ tends to F(t) at every point of continuity of F.

PROOF. Let z = x + iy, and let us consider the functions

$$\varphi_n(z) = \int_0^{+\infty} e^{izt} dF_n(t) = \int_0^{+\infty} e^{ixt} e^{-yt} dF_n(t).$$

Each $\varphi_n(z)$ is regular for y > 0, continuous for $y \ge 0$, and is of modulus ≤ 1 there. For z real, $\varphi_n(z)$ coincides with the characteristic function $\varphi_n(x)$. It is easy to see that the sequence $\{\varphi_n(z)\}$ converges in the half plane y > 0, and that the convergence is uniform over any closed and bounded set of this half plane. For let $z = \lambda(\zeta)$ be a conformal mapping of the half plane y > 0 onto the unit circle $|\zeta| < 1$, and let us consider the functions

(1)
$$\varphi_n^*(\zeta) = \varphi_n \left[\lambda \left(\zeta \right) \right].$$

These functions are regular for $|\zeta| < 1$, are numerically ≤ 1 there and their

boundary values converge to a limit on a set of positive measure situated on the circumference $|\zeta| = 1$ (this set is actually an arc). By the theorem of Khintchine [2] and Ostrowski [3], the sequence $\{\varphi_n^*(\zeta)\}$ converges for $|\zeta| < 1$, and the convergence is uniform in every circle $|\zeta| \leq \rho$, $\rho < 1$. Going back to the half plane y > 0, we see that the functions $\varphi_n(z)$ converge there to a regular function $\varphi(z)$, and that the convergence is uniform over any closed and bounded set in that half plane. In particular, the convergence is uniform over any finite segment of any line

$$y=y_0, \qquad y_0>0.$$

We shall now show that

(2)
$$\varphi(iy) \to 1 \text{ as } y \to +0.$$

It will again be slightly easier to consider the functions $\varphi_n^*(\zeta)$ defined by (1). They tend to a function $\varphi^*(\zeta)$ regular in $|\zeta| < 1$ and numerically ≤ 1 there. This function has nontangential boundary values $\varphi^*(e^{i\theta})$ for almost every θ and (as a bounded harmonic function) is the Poisson integral of $\varphi^*(e^{i\theta})$. Let us assume for simplicity that the mapping function $z = \lambda(\zeta)$ makes correspond z = 0 and $\zeta = 1$. If we can prove that in the neighborhood of $\theta = 0$ the function $\varphi^*(e^{i\theta})$ coincides almost everywhere with a function continuous at $\theta = 0$ and taking the value 1 at that point, then [since the values of $\varphi^*(e^{i\theta})$ in a set of measure zero are immaterial for the Poisson integral] the function $\varphi^*(\zeta)$ will tend to 1 as ζ approaches 1 along any nontangential path. This will immediately lead to relation (2).

Let us revert to the Khintchine-Ostrowski theorem used above. It can be completed as follows. If the sequence of functions $\varphi_n^*(\zeta)$ regular and of modulus ≤ 1 for $|\zeta| < 1$, converges in a set E of positive measure on the circumference $|\zeta| = 1$, then on almost every radius $\zeta = \rho e^{i\theta}$, $0 \leq \rho < 1$, terminating in the set E the sequence converges uniformly (for the proof, see [4, p. 213]). Since the function $\varphi^*(\zeta) = \lim \varphi_n^*(\zeta)$ has nontangential limit $\varphi^*(e^{i\theta})$ for almost every θ , it immediately follows that $\varphi^*(e^{i\theta}) = \lim \varphi_n^*(e^{i\theta})$ almost everywhere in E. In our particular case, the functions $\varphi_n^*(\zeta)$ are continuous on $|\zeta| = 1$ except at the point ζ corresponding to $z = \infty$, and converge on an arc $-\delta \leq \theta \leq +\delta$ to a function $\gamma(\theta)$ continuous at $\theta = 0$ and taking the value 1 there [since $\varphi_n^*(1) = 1$ for all n]. Hence at almost every point θ in $(-\delta, \delta)$ the function $\varphi^*(e^{i\theta})$ coincides with $\gamma(\theta)$. Thus the proof of (2) is complete.

Since, as seen from the formula for $\varphi_n(z)$, all the quantities $\varphi_n(iy)$ are positive for y > 0, the quantity $\varphi(iy) = \lim \varphi_n(iy)$ is nonnegative. On account of (2), we have $\varphi(iy_0) > 0$ for all y_0 small enough. Let us fix such a y_0 and let us consider the nonnegative and nondecreasing functions

(3)
$$G_n(t) = \frac{1}{\varphi_n(iy_0)} \int_{-\infty}^t e^{-uy_0} dF_n(u)$$

[thus $G_n(t) = 0$ for $t \leq 0$]. As seen from the formula defining $\varphi_n(z)$, the characteristic function $\psi_n(x)$ of $G_n(t)$ is

$$\int_{0}^{\infty} e^{ixt} dG_{n}(t) = \frac{1}{\varphi_{n}(iy_{0})} \int_{0}^{\infty} e^{ixt} e^{-ty_{0}} dF_{n}(t) = \frac{\varphi_{n}(x+iy_{0})}{\varphi_{n}(iy_{0})}$$

370

Since

$$1=\psi_n(0)=\int_0^\infty dG_n(t)\,,$$

it follows that the G_n are distribution functions. We know that the functions $\psi_n(x) = \varphi_n(x + iy_0)/\varphi_n(iy_0)$ converge uniformly over any finite interval of the variable x. Hence the functions $G_n(t)$ converge to a distribution function G(t) at the points of continuity of G.

From (3) we see that

$$F_n(t) = \varphi_n(iy_0) \int_{-\infty}^t e^{uy_0} dG_n(u).$$

The right side here can be written

$$\varphi_n(iy_0)\left\{e^{iy_0}G_n(t)-y_0\int_{-\infty}^t e^{iy_0}G_n(u)\,du\right\}.$$

Hence the functions $F_n(t)$ tend to a nondecreasing function F(t) at every point t at which G is continuous, and

(4)
$$F(t) = \varphi(iy_0) \left\{ e^{ty_0} G(t) - y_0 \int_{-\infty}^{t} e^{uy_0} G(u) du \right\} = \varphi(iy_0) \int_{-\infty}^{t} e^{uy_0} dG(u).$$

From this formula we see that the points of discontinuity of F are the same as those of G. It remains to show that F is a distribution function, that is that

(5)
$$F(+\infty) - F(-\infty) = 1.$$

That the left side here is ≤ 1 is obvious since $0 \leq F_n(t) \leq 1$ for all *n*. Observing that both F and G vanish for t < 0, we deduce from (4) that

$$F(a) - F(-0) \ge \varphi(iy_0) \{G(a) - G(-0)\}$$
 for $a > 0$.

Taking first a large, and then y_0 small, and using (2), we find that $F(+\infty) - F(-0) \ge 1$, which gives (5). This completes the proof of the theorem.

Remark 1. The theorem can be extended to nonnegative random variables in the k-dimensional space R_k . The requirement is that the characteristic functions $\varphi_n(x_1, \ldots, x_k)$ converge in the neighborhood of $(0, \ldots, 0)$ to a function continuous at that point. The proof follows the same line as for k = 1, and the proofs of the corresponding lemmas for functions $\varphi_n(z_1, \ldots, z_k)$ of several complex variables offer no serious difficulties. The details are omitted here.

Remark 2. It is easy to see that the condition of the theorem, namely that all of the $F_n(t)$ vanish for $t \leq 0$ (or for $t \leq t_0$), can be replaced by a less stringent one:

$$F_n(t) \leq A e^{-\epsilon |t|}, \qquad t \leq t_0,$$

where the positive constants A, ϵ and the constant t_0 are all independent of n.

The proof of this generalization remains essentially the same as before. For, applying integration by parts in the formula defining the function $\varphi_n(z)$, we see that the $\varphi_n(z)$ are regular in the strip

$$0 < y < \epsilon$$
,

and are continuous and uniformly bounded in every closed strip

$$0 \leq y \leq \epsilon', \qquad \epsilon' < \epsilon.$$

In the proof given above it is therefore enough to take for $\lambda(\zeta)$ the function mapping the latter strip onto the unit circle $|\zeta| \leq 1$ and consider only the values of y_0 sufficiently small $(y_0 < \epsilon)$.

REFERENCES

- [1] H. CRAMÉR, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946.
- [2] J. KHINTCHINE, "Sur les suites de fonctions analytiques bornées dans leur ensemble," Fund. Math., Vol. 4 (1923), pp. 72-75.
- [3] A. OSTROWSKI, "Ueber die Bedeutung der Jensenschen Formel für einige Fragen der komplexen Funktionentheorie," Acta Litt. ac Sci., Sect. Sci. Math., Szeged, Vol. 1 (1922), pp. 80-87.
- [4] A. ZYGMUND, "On the boundary values of functions of several complex variables, I," Fund. Math., Vol. 36 (1949), pp. 207-235.

372