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1. Summary
When statistical decision problems of the same type are considered in large

groups the minimax solution may not be the "best," since there may exist solutions
which are "asymptotically subminimax." This is shown in detail for a classical
problem in the theory of testing hypotheses.

2. Introduction
Consider the following simple statistical decision problem. The random variable x

is normally distributed with variance 1 and mean 6, where 0 is known to have one
of the two values ± 1. It is required to decide, on the basis of a single observation
on x, whether the true value of 0 is 1 or -1, in such a way as to minimize the prob-
ability of error.

For any decision rule R the probability of error will depend on the true value
of 0. Let

(1) (R) = P [error R, 0 =-1], 6 (R) = P[error R, 0 = 1].
By a suitable choice of R we can give to 7(R) any desired value between 0 and 1;
unfortunately, if R is chosen so that I(R) is near 0 then 6(R) will be near 1, and
in this circumstance lies the problem.

For any constant c let R, be the decision rule which asserts "0 = sgn(x -c)";
thus in using R, we assert "0 = 1" if x > c and "6 = -1" if x < c. Then

(2) n (R6)=Jr f (x+1)dx=F(-1-c),

a (Rc) =f f (x-1) dx =F(-1 + c),
_co

where we have set

(3) f (x) = 'e2 /2e , F (x) = J f (y) dy = 1-F(-x).

It is clear from (2) that

(4) for any number n between 0 and 1 there exists a number
c = c (77) such that - (R,) = 7

13I



I32 SECOND BERKELEY SYMPOSIUM: ROBBINS

Moreover, using the fundamental lemma of Neyman and Pearson it can be
shown that

(5) for any c and any decision rule R such that q(R) _ r(Rc),
6(R) _ 6(RL).

It follows from (4) and (5) that we need only admit into competitionr decision rules
of the form R., but it remains to choose the proper value for c.
An examination of (2) shows that the value c = 0 is of particular interest. Let

us denote by 1? the rule R, with c 0; thus in using R we assert "0 = sgn(x)."
Now for any c,

(6) max [71(R), 6 (R)] = max [F (-1 - c), F (- 1 + c)] = F (- 1 + c|)

and this attains its minimum value F(- 1) = .1587 for c = 0. It follows from
(4)-(6) that for any decision rule R (not necessarily of the form R,),
(7) max [nq (R) , 6 (R)] _ max [X1 (1?), 6 (R)] = j (R) = a(R) = F (-1),

and it can be shown that this inequality is strict unless R = R, where we regard
two decision rules as equal if and only if they arrive at the same decision with
probability 1 for all values of 0. Thus R is the unique decision rule which minimizes
the maximum possible probability of error, or, in Wald's terminology, R is the
unique minimax decision rule. As is often the case with minimax solutions, R has
the agreeable property that the probability of error is independent of the value of 0.

The unique minimax property of R is a strong argument in favor of R but is not
in itself a compelling reason for regarding R as the "best" solution of the decision
problem. Suppose, for the sake of argument, that there existed another rule R
for which

(8) X (R) = F (-1) + el, 6 (R) = E2,

where both ei and E2 are small positive numbers, say less than .001. This would
not contradict the minimax property (7) of R. Still, there would be little doubt
that R is preferable to R, for in using R we would achieve a much smaller proba-
bility of error when 0 = 1 at the cost of only a slightly greater probability of error
when 0 = -1.

Of course, there is no such rule R. In fact, it follows easily from the previous
discussion that for any rule R such that (8) holds,

(9) El + E2 > F (-1),

equality holding only for el = 0, e2 = F(- 1), R = R. Hence ei and E2 cannot both
be made small, and the gain, F(- 1) -f2, of any rule R over R when 0 = 1 is
more than balanced by the loss, el, when 0 = -1. The fact that any improvement
over R when 0 = 1 must be accompanied by an even greater deterioration when
o = -1, goes beyond the minimax property of R and greatly strengthens the view
that R is in fact the "best" decision rule.

Statistical decision problems often occur, or can be considered, in large groups.
Thus let x1,. . . , x,, be independent random variables, each normally distributed
with variance 1, and with respective means El, , 0,,, where 0i = + 1, i = 1,
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... , n. No relation whatever is assumed to hold among the unknown parameters Oi.
To emphasize this point, xi could be an observation on a butterfly in Ecuador, x2 on
an oyster in Maryland, x3 the temperature of a star, and so on, all observations being
taken at different times. Let it be required to decide, on the basis of the observed
values xl, . ., x", for every i = 1, . . ., n whether 0i = 1 or -1, in such a way
as to minimize the expected total number of errors. The parameter space Q of this
compound statistical decision problem consists of the 2n points 0 = (01, . . ., On),
Oi = ± 1. It is natural to suppose that the "best" solution of the compound prob-
lem consists in applying to each of the xi the "best" solution of the original simple
problem and therefore in asserting "Oi = sgn(xi), i = 1, . , n." Let us again
call this (compound) decision rule R. It is indeed true that R remains for every
n the unique minimax solution, in that for any rule R #4 R which may be applied
in the compound problem,

max[exp. no. of errors IR, 01 >max[exp. no. of errors R, 0 .
0E l 0E a

We shall see, however, that for large n, R can no longer be regarded as the "best"
decision rule in the compound problem. Nor is this due to any special property of the
simple decision problem with which we began; it lies rather in the fundamental
operation of "compounding" and will occur in a large class of compound decision
problems.

3. Statement of the compound decision problem. The rule R

Let -

(10) XI,. ... XX

be independent random variables, each normally distributed with variance 1, and
with respective means

(1 1) 01, * * , a = ± 1.

On the basis of the observed sample (10) we are to decide for every i-= 1, . . ., n
whether the true value of 0i is 1 or - 1, in such a way as to minimize the expected
total number of errors.

Denote by Q the set of all 2n possible parameter points 0 = (01, On, 0n),
0i = ± 1. For any 0 in Q the density function of the sample vector x = (x1,

,xn) is, by hypothesis,
1 _ z . -O)/ 1 -(I_ )/(12) 0 (x, 0) = (2;)/2 e _1 ei= (2 e-2 +n)/2. eOx.

If 0 and 0' are any two points of Q take

(13) w (', 0) = (no. of i for which 0'6) 1 |L
n 0,~~~~zi0'I

as a measure of the loss involved when the true parameter point is 0 and the de-
cision "0 = 0"' is taken. [The factor 1/n in (13) is used in order to stabilize cer-

tain later formulas as n varies.] Order the points of Q arbitrarily as 0(l), . .,
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The most general (randomized) decision rule R amounts to specifying as a func-
tion of x a probability distribution pj(x), j = 1, . . . , 2', on Q:

2n

(14) R: pj (x), j = 1, ...X2n pj (x) >- O, pi (x)-1.
j-1

For given x the rule R asserts "0 = O'i)" with probability pj(x). When 0 is the
true parameter point the expected loss in using R is given by the risk function

2n

2+if[I pj(x) 'i-oi ] (x, 0) dx.

This can be put into a more convenient form as follows. Let

I2n
(16) ui (x)(I+oij), n

= conditional probability, given x, of deciding that
Oi= 1, 0<-uj (x) _<1-

Then

(17) 2i (x) if O = -1,
j=1*

O i 2[I-ui(x)] if Oi 1,
=1 +Oi-2sgn (01i) ui (x) for Oi=+1

Foi any 0 in Q let

(18) P (0) = - (1 + )-(noof for which Oi= 1) 0 p () _ 1

Then from (15)-(18) we have

(19) L (R, 0) = p(0)-- sgn (0i)Jf (x, 0) ui (x) dx.

This shows that L(R, 0) (although in general not R itself) depends only on the n
functions (16).

The maximum likelihood estimate of the true parameter point 0 is, by (12),

= [sgn (xi), ... , sgn (xn)]

The corresponding decision rule will be denoted by R:

(20) R: "Oi = sgn (xi) , i = 1, . . .",

For the rule R. ui(x) = 1 or 0 according as xi > 0 or xi < 0, so that from (19),

(2 1) (, ) = [
n

2' sgn (0Ai)f 0f (x, 0) dX] -
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Using the notation of (3), (21) becomes

(22) L 0R ) 2n[ 2- sgn (0i) f (xi- i) dxil

=-E [-+2- sgn (Oi)F()]=F n F(- 1) _F(- 1) = .1587

for every o in U. Thus R has the constant risk F(- 1) no matter what the true
parameter point 0.

Returning to the general case where R is any decision rule with associated func-
tions (16) we shall consider certain weighted sums of L(R, 0) taken over all 0 in U.
For any k = 0, 1, . . . , n let Qk denote the set of all 0 in Q for which p(O) = k/n;
thus 0 E Qk if exactly k of its components are 1. Let a function h(0) _ 0, #0 be
defined on Q such that h(O) = constant = bk for 0 E Qk;, k = 0, 1, . ., n. Then
from (19) we have

(23) h (0)L (R, 0) =,h (0) p (0)

f[ h () sgn (Oi). (x, 0) ]ui (x) dx .

This will be a minimum with respect to R for given h(O) [in Wald's terminology,
R will be a "Bayes solution" corresponding to h(0)] if and only if for a.e. x,

1 if zh(0)sgn(0i)O(x, 0) >0,
(2 4) Ui (x) =n

O otherwise.
Let

(25) k,i = all 0 in Qk for which 0i = 1,
Qk,i = all Gin £k for which 0, = -1,

so that
Ok = Qk',i + Qk ,i, k = O, 1, . . . , n; ,... n .

Then (24) asserts that ui(x) = 1 when

(26) E bk[EO(x, ) -E0(x, ] O.
k= k+, i nk, i

Multiplying by the positive factor (2i)n/2e(X2+n)/2.elx, where 1= (1, 1),
(26) is seen to be equivalent to

(2 7) E bk[[ e(1+0)x_ e(I+O)x] >0.
k= k, i nk, i

Let
(28) Sk = e2(zi,±+ '+xik k =1,..., n -I,

S(i S()n 0 (iS. 4
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where the summation is over all (n k ) combinations of the integers 1,
i - 1, i + 1, ... , n taken k at a time. Then (27) may be written as

bkI e ik-1 Sk ]I> °,
k-0

or, finally, as

Wn-0 bkSk

(29) xi > -In
n-1

bk+ lSk
k=0

It follows that h (0) L (R, 0) = min. for the (nonrandomized) rule

n-1

(30) R: " =snxi-jln °k|, i=1,...,.

bk+Si)
k=0

If we regard two rules as equal if and only if they give the same decision with prob-
ability 1 for all 0 in Q, then the minimizing rule (30) is unique.

Example 1. bk = 1, k = 0, 1, . , n. In this case (30) shows that L (R, 0) =
n

min. for R = R defined by (20). Since

(31) SL(R, 0) >IL (R, 0) forR $R,
Q 0

L (R~, 0) -F(-1),

it follows that R is the unique minimax decision rule:

(3 2) max L (R, 0) > maxL (R,0 ) =F (-1) for every R R.
OE ] GE'

The result (32) for n = 1 is well known. Our purpose in proving it for arbitrary
n is to show that R remains the unique minimax solution even when we admit rules
of the general type (14) which make the decision on each Oi depend on the whole
sample (10). For R, the decision on Oi depends only on xi. This agrees with the fact
that, since the components (10) are independent, and since no relation is assumed
to hold among the components (11) (that is, since the true parameter point 0 can
be any point in Q), it is xi alone which contains "information" about the value of Oi.
From the minimax point of view our decision problem is completely solved in

favor of R by (32). Nevertheless, we shall consider two other examples of decision
rules obtained by minimizing weighted sums.
We shall call a decision rule R symmetric if L(R, 0) = constant = Ck for 0 E Ik,

k = 0, 1, . .. , n. [Any rule of the form (30) is easily seen to be symmetric.] In
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the class of symmetric rules it is of interest to minimize the sum ck. This
k=0

will be done in the following example.

Example 2. bk = (nk3 Xk = 0, 1, . . ., n. (30) shows that

' (k) EL (R, 09) = min.
k=O a

in the class of all decision rules, symmetric or not, for the symmetric rule

(33) R: "Oi = sgn (x-In _n

k=0

Let L(R, 9) = k for 9 in Qk, k = 0, 1, . . , n. If R is any symmetric rule with
L(R, 0) = Ck for 9 in Qk then

Ck= E1k,L(R, 0) ,k=:k=

since there are k points in Qk. Hence R defined by (33) minimizes E Ck in

the class of all symmetric decision rules. Since R 7d R it follows incidentally that

(34) ~1 nkF 1
n + I ) k F(-1

As a final example we shall consider the decision problem when the parameter
space is some fixed 0k. This corresponds to the case when the number k (but not
the positions) of the values 1 (and hence also of the values -1) in the sequence (11)
is known.

Example 3. bk= 1 for some fixed k, O < k < n, and b3= O for j$ k. Then

'L (R, 9) = min. uniquely for the symmetric rule
Ok

(35) R: Skg(i2l5; ) =1 .,n.

We shall not attempt to determine numerically the constant L(Rk, 9), 9 E Qk
[it is, of course, <F(- 1)]. As in example l it follows that Rk is the unique minimax
decision rule when 9 is restricted to gk:

(3 6) maxL (R, 9) > max L (Rk, 9) for every R9Rk .
OE ak OEEk

This result is somewhat surprising, as the following considerations show. For
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definiteness take k = 1, so that Rk becomes

iR,: " s= gn (e2Z- 2i, i ,... n X

For n > 2 the probability of the decision "0 = (-1,-1, . .,-1)" is positive
(since this decision will be taken when all the xi are nearly equal) even though it
is known to involve exactly one error!
A more plausible rule than R1 when 0 is known to lie in Q2 would be to assign

the value 0i = 1 to that i for which xi = max (xi, . , x,,) and Oj = -1 for
j # i. This rule, call it R, always assigns to 0 a value in Q1 and has a constant risk
in Q1, as does J?j, but from (36) it follows that L(R, 0) > L(R1, 0) for 0 E Q2, so
that R1 is uniformly better than R in Q1. Of course, if one is restricted to decision
rules which assign to 0 a value in Q1 then R is presumably minimax. Corresponding
remarks hold for k = 2, ... , n- 1.

4. R*, a competitor. of R

We have proved (32) that for the unrestricted compound decision problem
where 0 is known only to lie in Q, the rule R defined by (20) is the unique minimax
solution. We now make the, perhaps surprising, statement that for large values of n
there are strong reasons for regarding R as a relatively poor decision rule. In support
of this assertion we propose the following rule R* as a competitor of R. Let

1n
(37) -=E xi,

( xO if x <-1 ,

x In +*if-1 < x <1,

-O ~~~~ifx_1,

R*: "10j=sgn(xi-x*), i= 1, n

Observe that R* makes the decision on each 0i depend on all the components
(10) and not solely on xi. Now it may be that the n populations from which the xi
are drawn are entirely different and completely unrelated, as in the last paragraph of
section 2. The use of the "hybrid" mean x might then seem to be meaningless
physically and pointless statistically. Furthermore, the rule R* is not "admissible"
in Wald's sense; that is, there exists a rule R such that L(R, 0) _ L(R*, 0) for
every 0 in Q, the strict inequality holding for at least one, and possibly all, 0.
This is known to follow from the fact that R* is not of the form (30) of the "Bayes
solutions" of the present problem. Nevertheless, on the principle that the proof
of the pudding lies in the eating, let us compare R* with R by computing the risk
function L(R*, 0).

For any 0 _ p _ 1 and any n = 1, 2, . . ., let [see (3) for notation]
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(38) h (p, n) = pF(-2pV/ni) + (1-p)F -2 (1-p) ]

J"-22(l )8/l[ < ( X [~~I -+ 2 i;

[<}z_11--4-aZn)]}f (x)

It is plausible from inspection of (38), and it can be proved rigorously, that

(39) limh(p,n) =h(p)=pF(-1+4ln p)

+ (1-p)F(-21-ln 1-p)

uniformly for all 0 _ p _ 1. We note also that

(40) h(p,n) =h(l-p,n), h(p) =h(l-p), h(O) =h(l) =O,
h (.5,n) > F(-1), h(p) < F(-1),forp .5, h (.5) = F (-1) .

By elementary calculation which we omit here it can be shown that

(41) LR,)=hpo,]

from which it follows that
(42) lim {L(R*,p ) -h[('I

I

=0
n

uniformly for all 0 in Q.
A few values of h(p) and h(p, 100) are given in table I, computed by Mr. J. F.

Hannan. [The entries for h(p, 100) are averages of strict upper and lower bounds
and are not guaranteed beyond two significant figures.] From the table we see that

TABLE I

P F(-1) h(p) h(p, 100) h(p, 1000)

0.0orl.0 .1587 0 .0041
.1 r .9 .1587 .0691 .0763
.2 or .8 .1587 .1121 .1174
.3 or .7 .1587 .1387 .1439
.4 or .6 .1587 .1538 .1591
.5 .1587 .1587 .1628 .1591

for n = 100, R* has a slightly higher risk than R for p near .5 and a much lower
risk for p near 0 or 1. As n - co, this phenomenon becomes more pronounced.
Since (39) and the last two relations in (40) hold, we call R* an asymptotically
subminimax decision rule as n -+ c.

A statistical decision problem is sometimes regarded as a game between the
statistician S and Nature [1]. In the present problem if S should use the decision
rule R* then Nature could counter by seeing to it that p(O) - .5. Since L(R*, 0) >
L(R, 0) = F(- 1) for p(O) - .5, S would do better, as far as expectations are
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concerned, to use R. But if Nature is not an opponent but a neutral observer of
the game then p(O) may not be -.5, and in using R* rather than R, S would be
balancing the possibility of a slightly higher risk in return for that of a much lower
one. As n - ,the set of values of p(O) for which L(R*, 0) > L(R, 0) converges
to the single point .5 and the excess of L(R*, 0) over L(R, 0) in the neighborhood
of this point tends to 0, while the excess of L(R, 0) over L(R*, 0) near p(0) = 0 or
1 tends to F(- 1). Even for large n this is not, of course, a compelling reason for
preferring R* to R, especially if there is reason to believe that p(O) is near .5, but
we shall not labor this point here.

The reader will have observed that R* can only be used in applications in which
all the values (10) are at hand before any of the individual decisions concerning
the Oi are to be made. This will often be the case in practice. Even when it is not,
R* can be used, after all the values (10) are known, to supersede preliminary de-
cisions based, say, on R, or perhaps on some rule which uses the values xi, . xi
to decide the value of Oi.
We emphasize that R* is by no means advanced as in any sense a "best" rule. Its

chief virtue as an asymptotically subminimax rule is its comparative simplicity,
both in application and in the computation of its risk function (38). A possible
candidate for a rule superior to R* in every respect save simplicity is the rule .R de-
fined by (33); unfortunately, the risk function L(R, 0) seems difficult to compute..
It is possible that R is uniformly.better than R*. On the other hand, it may be that
the limiting value of L(R, 0) as n - o and p(o) -4 p is h(p), in which case R and
R* would be asymptotically equivalent in performance. Finally, it is possible that
no rule has a limiting risk function uniformly below h(p), in which case R* would
be "asymptotically admissible."

In the preceding discussion the rule R* was introduced without motivation. In
what follows we shall show how R* came to be considered, in a way which indi-
cates that the existence of asymptotically subminimax decision functions is to be
expected in a wide class of problems.

5. Heuristic motivation for R*
A decision rule R with corresponding functions (16) will be called simple if for

some function u(x),
(43) ui(x) = u(xi) , i= 1, . . ., n

(For n = 1 any rule is simple. For n > 1, of the specific rules 1?, R, Rk, R* con-
sidered thus far, only R is simple.) For any simple rule R (19) becomes

(44) L (R, 0) = p (0) - sgn (0)0fo (x, 0) u (xi) dx

=p (0)-Jf p (0) f (x-1)-[1-p(0)I f (x+ 1) }u (x) dx.

This shows incidentally that every simple rule is "symmetric" (definition in sec-
tion 3, preceding example 2) and that for fixed R, L(R, 0) is a linear function
of p(0).
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Now let X be any constant, 0 < X < 1, and choose the function u(x), 0 _
u(x) < 1, so as to maximize the integral

(45) f [)f (x+ 1)-(1-X) f (x-1)I u (x) dx.

This occurs if and only if for a.e. x,
(1 if Xf(x+ 1) -(1-X)f(x-1) >0,

(46) u (x) =ux (x) =
0 otherwise,

which determines the simple rule

(47) RA: " 0 = sgn (xi- 'In-.) i=l,.., n .

It follows that when p(o) = X, Rx minimizes L(R, 0) in the class of all simple rules.
The risk function of Rx is, by (44), for any X and any 9,

(48) L (RA, 0) = P (0) F(-l+ ln X )

+ [l-p(0)IF(- 1- 'ln 1 _X)
The family of simple rules Rx, 0 _ X < 1, is "complete" in Wald's sense: if R is

any simple rule then there exists a X such that

(49) L (R,, 0) < L (R,0 ) for every 0 in Q .

To show this directly in the present case, take any simple rule R with associated
function u(x) and choose that X for which

(50) ff(x+1)ux(x)dx=F(- l+ ln X)f1 (x+1)u(x) dx;

then necessarily

(5 1) ff (x-1) u (x) dx = F (-1-ln fX)_f(x-1)u (x) dx,

since otherwise (45) would not be maximized by ux(x). Now (49) follows directly
from (44), (50), (51). We note that RA= R for X = .5, and that L(R.5, 0)
F(-1).

It follows from (49) that in the class of simple rules we may confine our-
selves to the family RA. It remains to choose X. From (48) we see that for fixed

X,L(Rx, )isalinearfunctionof p(0)withextremevaluesF( I - 'ln 1 -X)
F 1-l + 2 ln X X) assumed respectively when p(O) = 0, 1. It follows that for

X .5,
(52) max L(R,\, ) =max [F(-l- In XX), F-+ In xx)]
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which is a stronger inequality than the minimax character of R.5 = R, previously
shown to hold in the class of all decision rules. Since by (52) the linear risk function
L(Rx, 0) for X $4 .5 lies above F(- 1) for more than half the interval 0 _ p(O) < 1,
and rises above it at one end by more than it falls below it at the other, it seems
reasonable (when nothing is known about 0) to regard R = R.5 as the "best" of
the rules Rx and hence of all simple rules. Thus when we are restricted to simple
rules the minimax rule R is the "best," and asymptotically subminimax rules do
not exist. On the other hand, if p(O) is known then by the previous discussion
culminating in (48),

(53) L (R,(0), 0) = h [p(O)] [see (39)] < F (-1) for p (0) # .5.

Thus if p(O) were known we could, by using the simple rule R,(9, achieve the risk
function h[p(0)] which lies below the risk function F(- 1) of R. {Of course, by using
the nonsimple rule Rk with k = np(O) [see (35)] we could still further reduce the
risk function. } In fact, the curve y = h(p) is the envelope of the one parameter
family of straight lines

y = y (p, a)=pF I-+ Iln )+(1- p) F (--In)

and lies below each of them, including the line y = y(p, .5) F(- 1).
In practice, of course, p(O) will rarely be known. However, and this is the key

to the matter, we can estimate p(O) from the sample (10) and then use the rule RA
with X replaced by our estimate of p(o). Let us see how this attempt to lift ourselves
by our own bootstraps works out.
We must first choose some estimator of p(o). One's first thought is to use the

method of maximum likelihood. As was pointed out in section 3, the maximum like-
lihood estimate of 0 is

6 = b (x) = [sgn (xi), .. ,sgn (x.)],
so that (presumably) 1

p (0) =-(no. of i for which xi > 0)
n

is the maximum likelihood estimate of p(o). It is easily seen that

E[p (6) I 0 = [I1-2F (-1)] p (0) + F (-1) ,

so that for p(o) 5 .5, p(6) is a biased estimator whose bias does not tend to 0 as
n --* o unless p(O) -- .5. We can correct for bias by using the unbiased estimator

p(s) -F(-1)
z 1-2F(-1)

which has variance
var I oI =IF( 1)[I F( 1)] .29

var1Zjj n [1- 2F(-1)]I2i _n
and is nearly normal for large n.

Consider instead, however, the unbiased estimator

n1
v = a ( + x , x n Er
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which is normal with variance
var [vjo] n

less than that of z. Since 0 _ p(o) _ 1 it seems natural to truncate v at 0 and 1 and
to use the modified estimator

0O if v_O,
v'= v if O<v<1,

It if v_ 1,

which, though biased, seems "better" than v. We shall adopt, arbitrarily, v' as our
estimator for p(O). v' is clearly consistent as n -* o; in fact

lim Et [v'-p(O)]21}=0
IL CO

uniformly for all 0 in Q. Now the rule Rx with X replaced by the estimate v' of
p(O) is simply R* defined by (37), and this provides the motivation for consider-
ing R*.

Since v' is a consistent estimator of p(0) it is clear from (53) that (42) must hold.
The performance of R* for finite n must, of course, be worked out by computation
on the basis of (41) and (38), as was done in the table of section 4.

There are, of course, other ways in which we might obtain decision rules to com-
pete with R For example, we might use an integer-valued estimate of k = np(O)
in the rule Rk. Again, we might use an iterative process: first estimating p(o) then
using Rx with X replaced by its estimate to obtain the decision "O = 0(k)" for some
k, and finally using Rx again with X replaced by p(O(k)). There is also the rule .R de-
rived in section 3 as the solution of a minimum problem. Compared with any of
these, R* has at least the advantage of simplicity.

Because of the demonstrated properties of R* it seems safe to say that for
"large" n there exist, among the nonsimple rules, worthy competitors of the
minimax rule R. If this be admitted one then has the problem of finding the "best"
decision rule. The definition of "best" is an open question at the moment, but at
least it appears that "best" does not equal "minimax."

The existence of asymptotically subminimax decision functions is not confined
to problems of the "compound" type. For example, let x have a binomial distribu-
tion (n, 6) and let it be required to estimate 0 by some function t = t(x) so as to
minimize the quantity

L(t, 0) =nE[(t- 0)21 0] =n (n) z(1 -0) [t(x) -0] 2-

For the conventional estimator ti = x/n we have

(54) L(t1, 0) = 0(1-0),

while the minimax estimator is

x+22
12= +
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for which
(55) L (2, 0) 2

4(1+ )

As n -, co,(55) 4 which is greater than (54) except for 0 = .5. Thus t1 is asymp-
totically subminimax, although in this case it is the minimax risk function (55)
which varies with n. The question of whether t, is "better" than t2 has been raised
by Hodges and Lehmann [2].

6. General remarks on compound decision problems
A wide class of statistical decision problems can be brought under a general

scheme, due to Wald, in which there is given (1) a sample space X of points x, (2) a
parameter space w of points 0 such that for every 0 in w there corresponds a prob-
ability distribution Pe on X, (3) a class _% of decisions D, (4) a loss function
w(D, 0) _ 0 representing the -cost of taking the decision D when the true value of
the parameter is 0. Any function u = u(x) with values in ._ is called a decision
function, and the function
(56) L (u, 0) =fw [u (x) , 0JdPe (x)

is called the risk function. The statistical decision problem p is to find the decision
function u which in some sense minimizes the risk function (56) over w. For ex-
ample, we may seek the u which minimizes the quantity

(57) JL(u, 0)dG(0),
where G(0) is a given distribution on w, and which is called the Bayes solution of p
corresponding to G(O). Or we may require that u be a minimax solution for which
the quantity max L (u, 0)

is a minimum.
It often happens that one deals with a set of n independent and, in general, un-

related, decision problems of the same mathematical form. Thus, let xi, . . . ,
be independent random variables such that each xi presents the same problem p.
Each xi will be distributed in X with a distribution Po, Oi C w, but no relation
is assumed to hold among the n parameter values 01, . . ., anO. For each xi a de-
cision Di C .% must be taken. We shall take the quantity

1 n
-Fw(Di, 0i)

as a measure of the loss incurred by any set of decisions D1, ...., Dn when the
true parameter values are respectively 01, . . ., on. If a decision function ui de-
pending on xi alone is used for the i-th decision then, setting 0 = (01, . . ., 0n)
and u = (u1, . . ., uj), the risk function will be

(58) L (u, 0) = [ui (xi) Oil dPo, (xi) ... dPo, (x.

I J lui (x) ail dPoi(x
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The problem of minimizing (58) by proper choice of the ui(x) is essentially the
same as that of minimizing (56). However, if the whole set of values x1, . . . , xn is
known before the individual decisions are to be made, then we can permit us to
depend on all the values x1, . . , xn, so that the risk function will be

(5 9) L (u, 0) = Jf.. w [Ui (Xi.. X.) XOil dPol(xi) ... dPe. (x.)-
i-i

The problem of minimizing (59) over the n-fold Cartesian product Q of w with
itself, consisting of all ordered n-tuples 0 = (01, ..., On), Oi E w, is quite different
from the original problem P involving (56). We shall denote the problem of
minimizing (59) by p(n) and call it the compound decision problem corresponding
to the simple problem P.

At first sight it may seem that the use of decision functions of the general form
ui(xl, ..., xn) is pointless, since the values xi forj z- i can contribute no informa-
tion concerning Oi; this because the distribution Pe, of xj depends only on Gj which
was not assumed to be in any way related to Oi. From this point of view we should
stick to simple decision functions of the form ui(x1, , xn) = u(xi) where u(x)
is the "best" solution of P. The example of section 4, however, shows that there
may be great advantages in using nonsimple decision functions of the general form
ui(x, . . . , x.). In that example the minimax solution of p(n) is afforded by the
simple decision functions i4i(x1, . , x.) = iu(xi), where iu(x) is the minimax solu-
tion of P, but although u was seen to be the "best" solution of P, the existence
as n - o of an asymptotically subminimax solution of p(n) showed that the
minimax solution of p(n) was not the "best" for large n. This phenomenon is to
be expected in many cases, as we shall see.

The most interesting Bayes solutions of p(n) are those obtained by minimizing
the integral of (59) over Q with respect to some distribution G(O) which is invariant
under all permutations of the components 01, , On of 0; the corresponding
Bayes solutions u will then be symmetric in the sense that the risk function (59)
will be invariant under all permutations of 01, . . , On. In general the Bayes solu-
tions may be expected to be complicated in structure and difficult to evaluate in
performance.
We shall now give a heuristic rule for constructing certain nonsimple solu-

tions of p(n). For any 0 = (O1, . . ., On) in Q2 let GO(O) be the cumulative distribu-
tion function of the probability distribution of a random variable 0 for which
P[O = oi] = l/n, i = 1, . . . , n; that is, if w is the real line,

1 ,R
(60) Go (O) = n (no. of i for which ,<_ ),- <- co<0co

Suppose that the distribution Pe on X has a density function f(x, 0); then for any
simple rule u such that ui(x1, . ., Xn) = u(xi), (58) becomes

(6 1) L (u, 0) =J[f wlu(x), Oil f(x,0 i)G dx

=fC[.w[u (x) , 0] f (x, 0) dG. (0) ]dx. \
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Now if GO(O) is known (that is, if the components 0i of 0 are known apart from
their order) then (61) will be a minimum for that function u(x) = u[x; GO(0)]
such that for every fixed x, u(x) = t, where t is that number for which

(62) fw (1, 0) f (x, 0) dG0 (0) = min.

Denote the simple decision rule for which ui(xi, . . , x,,) = u[xi; Ge(0)] by
u[Go(0)]; this will clearly be better than any simple rule which depends on x1, . .

xn alone. Of course, in order to use the rule u[GO(0)] we must know GO(O), which
depends on the unknown 0. Thus we must devise a method for estimating G9(0)
from the observed values xi, . .. , x,. [Actually, we need only be able to estimate
the left hand side of (62) for every x and t.] This involves finding a solution to
the following problem:

(I). Let xi, . . , x. be independent random variables such that the density
function of xi is f(x, Oi), where 01, . ., a, are n arbitrary unknown elements of

a parameter set w. The joint density function of the xi is therefore 17 f (xi, Os) .
i=l

Let 0 = (01, . .. , 0n). From the observed values x1, . .. , x,, we are to form an
estimator G(0; x1, . . , xn) of the cumulative distribution function (60) which for
large n shall be "close" to (60) with probability near 1 for all possible values of 0.

Assuming problem (I) to be solved we can apply in the compound decision
problem p(n) the nonsimple decision rule

(63) u* (x1, . ., x.) = {u[xi, G(0; x1, ...., xn)A, *
U [Xn, G(O; xi,... , Xn)]}

that is, u[G9(6)] with GO(O) replaced by its estimate G(0; x1, .. , xn). If our solu-
tion of problem (I) is a good one then for large n (63) will be better than any
sepI rule. In particular, if the minimax solution (assumed unique) of p is de-
noted by u(x), then (63) will be better than the simple rule

(64) u (x1, . . . , x.) = [u (xl), * * *, u (xn)] -

If (64) is the minimax solution of p(n) in the class of all decision rules, nonsimple
included, then (63) will be asymptotically subminimax.
We have seen in section 5 that problem (I) can be solved in the very simple case

in which w consists of only two elements, ± 1, and f(x, 0) is the normal density
function with mean 0 and variance 1. The function G9(0) is then completely de-
termined by the number p(O) = (no. of i for which OL = 1)/n, of which a consistent

estimator is (1 + x)/2, where i = z xi/n.

Before proceeding further with problemn (I) let us consider a different but analo-
gous problem:

(II). Let xi, x..Xf be independent random variables each with a common
density function

hG(x) =ff(x, 0)dG(0)
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where f(x, 0) is the same as in problem (I) and G(O) is an unknown distribution

on co. The joint density function of the xi is therefore r haG (xi). From the
i=l

observed values xi, . ., x,n we are to form an estimator G(0; xi, . . ., x,^) of the
unknown G(0) which for large n will be "close" to G(0) with probability near 1 for
all G(0) in some class q.

Problem (II) is a generalization of a classical problem in the theory of estima-
tion. Let q be the class of distributions concentrated at some single point of w;

then the joint density function of the xi is simply r1 f (xi, 0), with 0 unknown,

and we require a consistent estimator of 0. Under certain conditions on f(x, 0)
and w, the method of maximum likelihood provides a solution:

(65) 6(xi, . . ., x,,) =that 0 in w for whichl f (xi, 0) = max .
, ~~~~~~i=l

More generally, it has been announced in an abstract [3] that under certain condi-
tions the "generalized method of maximum likelihood" provides a solution of
problem (II):

(66) G(0; x, ...x) = that G (0) inQ for whichrI h G (Xi)= max.
i51

Problem (II) is itself of interest in statistical decision problems in which there is
a prior distribution of parameters. Returning to the problem p stated at the begin-
ning of this section, if 0 is itself a random variable with known distribution G(0)
on co then the best solution of p) is that u which minimizes the integral (57). How-
ever, if G (0) exists but the statistician knows only that it belongs to some class 7,
then in the problem /)(n) he can estimate G(0) by solving problem (II) and then
determine u(x) by minimizing (57) with G(0) replaced by the estimate G(0; xi,
..., xJ) [3]. However, even the assumption of an existing but unknown prior dis-
tribution G(O) will be questionable in most applications of statistics, and we merely
mention the matter here.
We have stated that under certain conditions problem (II) can be solved by the

generalized method of maximum likelihood. Problem (I) is more difficult, and it
is easily seen that a solution of problem (I) would in general provide a solution of
problem (II). Conversely, however, as a heuristic principle we can in some cases
solve problem (I) by acting "as though" it were problem (II); in fact, any solution
G(0; xi, . . , xJ) of problem (II) which is a symmetric function of xi, . ., x,, [as,
for example, (66)] will at the same time provide a possible solution of problem (I).
In justification of this principle we point out that if 1, ..., 0a form a random
sample from a distribution G(0), then for large n the empirical cumulative distri-
bution function of Oi, . . , 0a, will tend uniformly to G(0) with probability 1 as
n -* o. Hence the random variables x;.. ., xn of problem (II) will act much
like those of problem (I), insofar as symmetric functions of the xi are concerned.
Questions of uniformity, of course, have to be considered before any precise theo-
rem can be stated, and the whole subject of problems (I) and (II) requires and
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will repay a careful treatment. In particular, the generalized method of maximum
likelihood, even if in theory it provides a solution to these problems, will in prac-
tice be extremely difficult to apply.
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