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1. Introduction

It is well known that Student’s ¢-distribution yields a confidence interval for
the ordinate, ¥, of a regression line corresponding to any fixed valued of x, under
the assumption that the sample x’s are fixed variates and the corresponding sample
ordinates are independently normally distributed about the regression line with a
common variance. Less well known is the result of Hotelling and Working [1] in
which a confidence band is obtained for the entire regression line, although with
the additional assumption that the common variance of the sample ordinates
is known.

Confidence bands are a particularly useful tool in those sampling problems that
produce an estimate of a curve, such as a growth curve. Very often such curves
can be treated as special cases of linear regression in several variables. It is not diffi-
cult to extend the methods employed in [1] to linear regression in several variables
and thus obtain confidence bands for such curves.

In attempting to obtain a confidence band, it is desirable to seek for one that
is as narrow as possible, in some sense, over the range of interest. The confidence
band obtained in [1] was derived with mathematical convenience in mind, rather
than with optimum properties dominant. The purpose of this paper is to derive
confidence bands from an optimum point of view and to study the extent to which
the confidence band of [1] is optimum. For simplicity of explanation, the discussion
will be limited mostly to the regression line; however a generalization to linear
regression in several variables is straightforward.

2. General confidence bands

This section will be concerned with deriving the equations that define a fairly
general confidence band for a regression line. Consider a fixed set of 2’s: %1, %2, . . . ,
%,. Let y; corresponding to x; be normally distributed with mean a + B(x; — %)
and variance 0% and let the y, be independently distributed. It will be assumed
that ¢? is known; however in a later section this restriction will be removed. Let

Z (2, — %) y;
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where 7 52 = E (x,— &) 2.1t is easily shown [2, p. 550] that u and v are inde-

pendently normally distributed with zero means and unit variances.

One method for finding a confidence band for the line y = a + B(x — %) de-
pends upon finding the envelope of a single parameter family of lines obtained by
restricting a and B to satisfy a certain functional relationship. The following deriva-
tion proceeds along such lines. For this purpose let g = g(#?, ?) be a single valued
function of the random variables # and v that possesses a probability density func-
tion, f(g), which is positive, except possibly at its extremities. Let g. be the value
of g such that

[1ag=c.

It will also be assumed that the function g is such that the equation
(2) g () =g

defines a closed curve in the %, v plane and that this equation may be written in
the explicit form

W=t @),
and hence in the form

(C) ’ u=+h().

For the equivalence of (2) and (3), it suffices that g possess continuous derivatives
with respect to %2 and ? and that the derivative with respect to #* does not vanish.

For a given sample, % and v are functions of a and B8; consequently the equation
of the regression line y = a 4+ B(x — %) may be written in the form

[

where % and v are now treated as the unknown parameters. If # and v are restricted
to satisfy (2), a single parameter family of possible regression lines will be obtained.
There will be two such families, corresponding to the two signs in (3). The equa-
tions of these two families, with v as the parameter, will be

(2

) y=a*i-\;——nh(v)+(ﬁ*+slﬁv)(x—a'c)-

If these families of lines possess envelopes, the equation of either envelope may
be obtained by eliminating » between equation (4) and the equation obtained by
differentiating (4) with respect to . The derivative of (4) reduces to
x—%

S1 )

(5) 0=+ 4"(v) +

Treating v as the parameter, equations (4) and (5) yield the following equations
of the two envelopes, expressed in parametric form:

(6) x=%— s1h' (v)

y =t h () —(s*+ .~ v) sab’ (9)
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and
(N x=%+ s;h’' (v)

(4

*___9 * ’
y=a \/;h('l))‘*—(ﬁ +sl\/;7))$1h (v).

Now consider the restrictions that must be placed on 4(v) in order that (6) and
(7) will yield envelopes that will determine acceptable confidence bands for the
regression line. It will suffice to inspect (6). It is essential that the envelope (6) be
single valued, that it exist for all values of x, and that all members of the family lie
on one side only of the envelope. It is clear from (6) that the first two of these
properties will be satisfied if, and only if, 4’(v) is a monotonic function of » which
takes on all real values. For convenience, %(2) as given by (3) will be defined so
that %'(v) is a decreasing function. It is readily verified that the third condition
will be satisfied with the preceding restriction on %(v) and that the two envelopes
defined by (6) and (7) always exist, with the curve (6) lying above the curve (7).
Furthermore, all lines of the families (4) will lie between these two curves. Since
the two families of (4) correspond to a single family for restriction (2), curves (6)
and (7) will be called the upper and lower branches of the envelope of the regression
lines obtained by restricting # and v to satisfy (2).

Now suppose that g(u?, 1*) of (2) is such that if g. is decreased the new curve
will lie inside the old curve and that every interior point will lie on one such curve.
From (4) it is clear that every pair of values of » and v that satisfies the inequality

(8) g (W, ") < g

will correspond to a regression line that lies between the curves (6) and (7) because
the value of 4(v) for any fixed v will be decreased, whereas the slope of the line will
be unchanged. Thus, if # and v satisfy (8), the true regression line will lie between
the two branches of the envelope given by (6) and (7). Since g. was selected so that
the probability is ¢ that (8) will be satisfied, the region between the two curves
whose equations are given by (6) and (7) will constitute a confidence band for the
true regression line with confidence coefficient c.

3. General optimum confidence bands

It is desirable to find a confidence band for the regression line that will be as
narrow as possible. The natural geometrical property to seek is minimum area in
some sense. Since the area of such a band is infinite, whereas extreme values of the
line are of little interest, it is necessary to introduce a weight function that will
make the weighted area finite and that will weight y relative to the frequency with
which its corresponding «x is likely to occur. Although the x’s are treated as fixed
variates, their values are often obtained from sampling a bivariate population.

If the weight function selected is denoted by w(x), a confidence band with confi-
dence coefficient ¢ will be said to be optimum if it minimizes the weighted area of
the band, that is, if it minimizes the integral

‘I=/_.:(yz—y1)w(x) dx,
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subject to restriction (2), where y; and y, are the upper and lower envelope curves
given by (6) and (7). If w(x) has been normalized, I may be treated as the expected
value of y2 — y; hence

I=E(y)—E@).
The weight function that will be chosen here is the normal function
e —~(z~5/al)’/2

51\/2‘"' :

Since the x’s are treated as fixed variates, % and s; are known constants. Because
of the symmetry of w(x), it follows from (6) and (7) that

9 w(x) =

_9_

E(y) =a*+=E(h) ——=E ('),
E(y) =a*—7=Eh) +—/=E(wk),
and hence that
I=%[E(h) —E(oh')].

Changing variables from x to » by means of (6), it follows that
_ 1 %, —G)/2
E(h)_——rﬂfm W e dv,
where 1 and v, correspond to — « and + «. Similarly,

E(oh') = ‘T/lﬁf ke 2y

Since, by (2) and (3), 4(2) is an even function, it suffices to integrate over positive
values of v only; hence these two results give

= 4o TNy -2
I——\/mjo-h(h k') e do.

Now from (1), together with symmetry and the equivalence of (2) and (3), it
follows that condition (8) can be written in the form

v, h T
—(utto)/2 —
(10) _/0. _[e dudv 5

Shifting to more customary notation, the problem of finding an optimum confi-
dence band for a regression line has been reduced to finding a function y(x), satisfy-
ing certain conditions enumerated earlier, that minimizes the integral

11) - “ " (y — xy') e-—(y') /2dx
( f0 y (y — =y
subject to the restriction
a v
12 k= —e/2 —#12dtdx .
(12) _[ e /(; €

At first glance, this problem appears to be a standard problem in the calculus of
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variations; however unless the class of admissible arcs is restricted properly, the
solution will be the trivial one in which y(x) is constant. But, as was pointed out in
the discussion following (7), y'(x) must be a monotonic function taking on all
values if an acceptable confidence band is to be obtained.

4. Special optimum confidence bands

The confidence band derived in [1] is easily seen to correspond to choosing the
curve (2) to be a circle. The simplest class of arcs that will satisfy the essential
conditions on y'(x) and contain a circle as a special case is the family of ellipses
with axes coinciding with the coordinate axes; hence y(x) will be so restricted. The

equation of this family will be written in the form y = 5Va? — 22
For the purpose of minimizing J, consider its derivative. J may be treated as
a function of g, since 4 is a function of ¢ through (12). Then diﬁ'erentiating (11),

—=—f§(y—xy)——(xy +yy'y" —xy y") +y f g,

because the integrand of J vanishes at the upper limit. By integrating by parts and
applying boundary conditions, it follows readily that

a Y —ane @ 3y _u"'e
— ’ — ” Il 1947
fu (y xy)——aae dx fo(xy +yy'y —xy y)——aae dx.
Consequently,

aJ _ 8y —w'/2
da _/‘;y Er dz.

Since y = bV/a? — 2 here, calculations yield
aJ _ . — x2) —3/2 2 42} —1 _ dbd
(13) %—abf (a?— x2) /[ab(a x?) “12 4 (g2 — x2) 12 ]

X e ¥ aE =gy

An expression for % may be obtained by differentiating (12), thus

¢ db
= —_ -1/ — /! —(22+2)/
(14) 0 [ [ab (a*—a?) =/ (a? x2)l2da]e G
If the change of variable x = a/ is made in both (13) and (14), and then (14) is

solved for % and substituted in (13), it will be found that (13) reduces to

g d_{_ 2 b?/z( ! —2) —2,—br/2(1—12) J; ! — 12} —1, —b2/2(1—1t?)
(15) So=b if" (1—12) ~2¢ dt f0(1 1) ~le dt

1
f (1 — 12) ~1/2g —a*(1—b)er/2gy
0
X 1
f (1 — 2) /2g —a*(1—b0)e2/24 ¢
()

5. Classical confidence band

The procedure employed in [1] consists in recognizing that %2 + v possesses a
x?-distribution and then constructing a confidence band with given confidence
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coefficient by choosing the curve (2) to be the proper circle. This case is obtained
by letting b = 1, in which case (15) reduces to

aJ . 1 1
8 _ e — 2} —2, —1/3(1—%) ] — 43y =1, —1/2(1—12
A R R

Calculations show that the value of this expression is not zero; therefore the classi-
cal confidence band for linear regression is not optimum as defined in section 3.

For a given confidence coefficient ¢, it is possible to solve the equation g——'; =0

by using (12) to obtain the numerical relation between ¢ and b and then making
successive approximations to the root of the equation. If ¢ is chosen as .95, it turns
out that the optimum ellipse has semiaxes of 2.62 and 2.32 as compared to the
classical case with 2.45 and 2.45. Since the optimum ellipse differs so little from
the classical circle, it is illuminating to compare the values of the integral J. It will
be found that the classical case yields a value of J which is less than 19, larger
than that for the optimum ellipse. Thus, the classical approach based largely on
mathematical convenience turns out to be surprisingly efficient as judged by a more
critical approach. Although the optimum curve satisfying the essential restrictions
may not be an ellipse, the restrictions are such that it appears that the optimum
curve is likely to differ but little from an ellipse, and consequently the optimum
value of J is likely to be only slightly smaller than that for the circle.
If the normal weight function (9) is replaced by the weight function

wiw =[1+(EE) ],

and if families of ellipses only are considered, it will be found that the classical
confidence band corresponding to a circle will now be optimum.

6. Unknown variance

The preceding sections have assumed that o was known. When ¢ is
unknown, it suffices to consider the additional variable £ = no*?/¢?, where

ng*?= 2 [y;—a*— B*(x;—%)]12. Then the variables y = «Vn — 2/& and

z =9vVn — 2/ will possess Student’s f-distributions, and hence any prob-
ability density function g = g(3?, 2*) will possess a distribution that is independ-
* ent of a, 8, and o. The methods of the preceding sections now apply to the vari-
ables y and z instead of the variables % and z. Restriction (8) gives rise to a more
complicated expression than (10); consequently it is formally more difficult to
study optimum properties when ¢ is unknown. Since the results of the preceding
sections are independent of #, a confidence band with ¢ unknown will not be opti-
mum for general # if it is not optimum when ¢ is known.

7. Multivariate regression

Since confidence regions for linear regression in several variables do not seem to
have been considered in the literature, for completeness their derivation will be
outlined here. If the regression equation is

(16) y=a+ Bt — &)+ .. 4 Be(wx— %),
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and ¢ is known, one employs the variables

(a—a) vn  _ (B1—B) Vs

1
g

a7 u=

o = (Bx— BE) Vnsy
=,

g

which will be normally distributed with zero means and unit variances. If one con-
siders a function g such that

(18) g v, ..., %) =g

defines a closed surface with properties analogous to those for g of (2), one pro-
ceeds exactly as before to derive an envelope surface for the family of planes given

by (16), (17), and (18). Its equation in parametric form with parameters e, . . . , o
will be
x1=9'01$ Sll’l]_, c ey xk=o'ck¥ Skhk,

g —_ a —_ —_— g
y= a*i‘. W h +(3t+m '1)1) stk F ... +<5I+EW vk) Skhe,
where %, denotes the derivative of % with respect to v; and where the two sets of
signs correspond to the upper and lower surfaces that bound the confidence region.

If o is unknown, one introduces a generalization of £ given in section 6 and em-
ploys the variables

=% g, =1
y Ea °1

which, when multiplied by the proper constant, will possess Student’s ¢-distribu-
tions. The methods employed here are the same as those for the case when ¢ is
known.
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