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Introduction

In 1935 J. L. Doob published a paper [2]' in which he derived the limiting
distribution of a function of four sample means from one homogeneous sample.
This work is susceptible to an easy generalization and supplies a powerful
weapon with which to find the limiting distribution of a vast number of
statistics. But since publication its importance seems to have been overlooked.
A generalization of Doob’s theorem to any number of sample means was given
by the author [7].

In the first part of this paper two theorems are proved which embody a
further generalization of Doob’s result to the case of several samples of dif-
ferent sizes, and numerous examples are given to illustrate their wide appli-
cability.

These examples are confined to the limiting distributions of given statistics,
but in the second part a much more important constructive application is
made. Two hypotheses of a general character, concerning one sample and
several samples respectively, are formulated, and a systematic method of
constructing a test function for each hypothesis included in the two general
ones is given. The construction is done in such a manner that, as a consequence
of the results obtained in the first part, (i) the test function has for its limiting
distribution the x? distribution with a known degree of freedom when the
hypothesis tested is true, and (ii) the power of the test tends in general to
unity as its limit. Special hypotheses and their large sample tests are treated
as examples in the second part of the paper.

I

The limiting distribution of functions of sample means

1. The mathematical model of k samples.—Let there be given k random
vectors of m components each, "

(1) u, = [Ula: U2n’ ) U‘mﬂ]y a = 1: e )k,
possessing finite second moments. Let

2 E (Ui) = pia, E(UUjs) = piaktia = Nija-
1 Boldface numbers in brackets refer to references at the end of the paper (p. 402).
[359]
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By a sample of size N, of u, is meant a system of N, mutually independent
rapdom vectors,

(3) Uer = [Ulcr; U2¢r, ottty Umar], r= 1) Tty Na,

each of which is distributed the same as U,. Thus the k vectors (1) give rise to
k samples, namely, the vectors (3) wherein a takes the values 1,- - -, k.
The total number of such vectors is

N=N+N:+ - - - +N&

We shall also assume that two vectors belonging to two different samples
are always independent. Then about the distribution of the N vectors u.. we
know the following facts: (i) w., and ug, are independent if either a #= B or
r ¥ s; (ii) for every fixed a the vectors w., (r = 1, - - -, No) are equi-dis-
tributed; (iii) each u,, has finite moments of the first two orders given by (2).

2. Sample mean and normalized sample mean.—If U is any random variable
and if Uy, - - -, U, are a sample of size n, we shall term the quantities

- 1 -
U=;L(U1+ -+ + 4+ U,) and #*{U — E(U)} the sample mean and the nor-

malized sample mean of U respectively. Thus the samples (3) give rise to the
sample means

1 s
Uia = — Us'a.r
N &
and the normalized sample means

Ziu = Nia ((jia - Ilvia)-
Hence

€)) Ui = pia+ Na 2.

We recall here the well-known central limit theorem 2

As N>, the distribution law of the vecior [Zia, - + + , Zms) tends to the
m-dimensional normal law with zero means and the dispersion matriz [7:;)-

3. The statistic T.—Consider a function of mk real variables,

(5) S@u, -, Tmy o Tyt Tmk),
defined in the whole mk-dimensional space and possessing continuous deriv-
atives of every kind of order two or three, as the case may be, in the neighbor-

hood

(6) | Zia = pia| <8, i=1,- - -,mja=1-+ - -,k

2 Cf. Cramér [1], Chap. 10, theorem 20-a.
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Write
of ?f of
Ju = waf = iihafy =
0%ia fi 0z:.97;8 ’ Finaer 0%:.07;60T 1y ’
a =f(”'ll, ot yMmly MLkt ﬂmk),
bia=fs'a (lln, Sty Mm1y o Mkt ,Mmk),

Cijap =ft'1'¢ﬁ(ﬂll, oty Mm1y ot Mkt ,Mmk)-

If in f each argument z, is replaced by UL, the result is a statistic,

(7) T=fUn- + Un;+ = ;0w - -, Uni).
By (4) we have
(8) T=f(uu+NZn, - - -5 - -5 tme+ N Zoi).

The main purpose of the first part of this paper is to derive the limiting
distribution of 7" when the sample sizes become infinite simultaneously. It is
necessary to impose a restriction on the manner in which these sizes grow.
We put

© N. = Ng., a=1,- - -,k ot - +a=1

regard the g, as fixed, and allow N to grow indefinitely. The method is based
on the Taylor expansion of (8) in the neighborhood of

1) | NFVZo| s i=1,---,mja=1 - -,k

If all the second derivatives exist and are continuous in (6), then in (10) we
have

(11) T=a+N'R+NY visZilZis,
,7,0,8
where

R=7 07" buli,
@iios = Y5(9:96) " fiiop (um + ON'yZy, + - 50 s 5t Hmk
+ N Z i), lo] =1.

Again, if all the third derivatives exist and are continuous in (6), then in (10)
we have

(12) T=a+N'R+NS+N? 3 irasy ZiaZip Ziy,

4.7k, B,y
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where

S = %~-2, (9e98) ™ Ciiop Zia Zis,

4.,

Giinaty = ¥ (9og89y) " fiinapy (pn F+ON1 Zayy - - 5 0 0 e
+ N Z,h), lo| =1.

4. The limiting distributions of R and S.—In view of the central limit theorem
(sec. 2) and the independence of the vectors [Zy, + - -, Z ] for different
values of a, we obtain immediately the following lemma.:

Lemma 1. As N— o, the distribution law of R tends to the limii

z
4

1 =iy
13 —— € dy,
(13) \/21r d
where
(14) ) o?= z ga_l biubja Nisa
e

provided o® # 0. If o* = 0, then R = 0 with unit probability.
On the same ground we conclude:

Lemma, 2. As N— o, the distribution law of S tends to a limit which is the
distribution law of the quadratic form

(15) i;B (9ag8) ™" Cijap Wia Wig,
where the W, are normal variates having zero means and the same second mo-
ments as the variables Uy — .

It turns out that the limiting distribution of S is the distribution of a certain
quadratic form in normal variates. In most of the actual cases that we en-
counter this form is semi-definite. Hence we shall complete the solution of the
limiting distribution of S by a lemma, given in the next section, about the
distribution of semi-definite quadratic forms in normal variates.

5. Distribution of semi-definite quadratic forms in normal variates.—Suppose
that a semi-definite form @ in normal variates with zero means is reduced in
any manner to a sum of squares,? '

(16) Q=We+ W2+ - - - +Wg

where the W’s are themselves normal variates with zero means. Let

(17) E(W.W,) = Wyj.

Let the dispersion matrix [w;;] be of rank p>0 and let its non-vanishing
latent roots, which are necessarily positive, be \;, - - -, \,. Then it is always
possible to apply an orthogonal transformation on Wy, - - - , W, to get a new

3 If Q is negative, we have only to give the right-hand side of (16) a minus sign.
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set of normal variates with zero means, W', - - -, W', such that @ =
WA - - +Weand
(18) EWW')=0,GC#j); EWIH=N@GE=1,- - -,0);

E(Wliz) =0: (’b=p+l, co 1Q)°

The last equation of (18) implies that all the W’; (¢>p) vanish with unit

probability. Hence @ is essentially equal to W24 - - - 4+ W’,2 and so its
distribution law is
2 2
19 (21r_”)\°°°)\_’ ex (—gl__..._..yL)d oo dy..
(19) )N p) vt Ey,zgz 2\ 2)\,, % Ye
If, further, the relations
q
(20) ; Win Wjn = Wi, =1+ -,q

are satisfied by the w;;, then [w;]? = [w;] and so all the \; are unity. Then
(19) reduces to the familiar x2 distribution with p degrees of freedom,

-1 z
{2*"1‘(%;:)} f y*eVdy.
0

In this case it is also easy to find p. In fact, p = 2\ = Zwi.
We have therefore established the following lemma:

Lemma 3. The distribution law of Q is (19) in general. If, in particular, the
relations (20) are satisfied, then the distribution is the x* distribution with p
degrees of freedom, wherep = wn + + -+ + + wgq.

6. Limiting distribution of T.—We shall use £ to denote the negation of an
event E, (E;; Ez) the conjunction of two events E; and E;, and P (E) the proba-
bility of E.

Theorem 1. If the function f in (5) possesses continuous second derivatives of
every kind in the neighborhood (6), then the limiting distribution of N*(T-a) ¢s the
same as the limiting distribution of R. Consequently this limit is the normal law
(13), provided the quantity o® in (14) does not vanish.

Proor. We have seen that, when Z,, satisfy the inequalities (10), T may be
expressed as in (11), namely,

(21) T=a+N'R+4+N-'R,,

where N-1R; denotes the last term in (11). Let us denote by E the event that
all the inequalities (10) are true, and by F(x) the distribution law of N*(T —a).
Then

F(z) = P{NYT — a) < z; E} + P{N¥(T — a) < z; E}.
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But

(22) P(E;E) < P(E) £ D P(Zr 2 N = 1 37 gotnue = o(1)
1,a N82 e

for every event E;; hence

(23) F(z) = P{NXT — a) £ z; E} 4+ o(1).

Using (21), we have
NYT — a) = R + N*R, in conjunction with E.
Besides, in the neighborhood (10) the functions ;. are continuous and there-

fore bounded. Let A be a common upper bound of the absolute values of all
these functions. Then we have

R = A(X

Z ia

2
) in conjunction with E.

Hence

P{R + N4 (z

Ha

Z ia

)2 = x;E}é P{N‘(T —a) = x;E} =

P{R — N4 (E )2 < X; E}

t,a

Zl'u

Using (22), we get

(24) P{R + N4 (}:

2 )'s x} +o(l) S F@) S

P{R ~ N4 (Z

%,a

Zi

)2 < x} + o(1). |

Now it has been shown by Doob [2] that if X has a limiting distribution and
if ¥ tends to zero in probability, then X + Y has the same distribution as X.
This theorem may be applied to the two extreme terms in (24), because
evidently N™*(2| Z.|)? tends to zero in probability. Hence both these terms
are equal to P(R < z) + o(1) and consequently

F(z) = P(R = z) +0(1), q.ed.

Theorem 2. If the function f in (5) possesses continuous third derivatives of
every kind in the neighborhood (6), and if quantity o® in (14) vanishes, then the
limiting distribution of N(T-a) s the same as the limiting distribution of S.
Consequently this limit is the distribution law of the quadratic form (15).
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We shall merely sketch the proof, which is similar to that of theorem 1.
Denoting the distribution law of N(T—a) by F1(x) we have, as analogy of (23),

Fi(z) = P{N(T — a) = z; E} 4 o(1).

In conjunction with E, T may be expressed as in (12), whereby the second
term may be dropped, since now ¢ = 0 and so R is essentially zero. Hence

N(T —a) = 8+ N7'S,,

where N~ S, denotes the last term in (12). As before, we have
3
<B (}: )

in conjunction with E, where B is some constant. Then we obtain the analogy
of (24),

P{S +N~'B (Z‘,

4,a

|S1 Zia

Z ta

)3 < x} +o(1) £ Fi(®)
< P{S — N7'B (Z

1,0

Ziu.

)3 < x} + o(1),

which leads as before to the result
Fiix) = P(S<z)+0(1), qed

With the help of lemma 3 the limiting distribution of 7' is completely solved,
provided the quadratic form S is semi-definite.

Let us summarize the results contained in theorems 1 and 2: In order to
obtain the limiting distribution of T, which is a function of the sample means
U.., make the substitution (4) and compute the Taylor expansion in powers of
N~ to three terms,

(25) a+ N7'R+ N-18.

If the quantity ¢® in (14) does not vanish, the limiting distribution of N*(T—a) is
the normal distribution with mean zero and variances?. If 6 = 0, then N(T'—a)
has the same limiting distribution as that of S, and this latter is the distri-
bution of a certain quadratic form in normal variates. If the form in question
is semi-definite, the explicit formula of its distribution law is given in lemma 3.

In what follows, when we are dealing with cases of a single sample (k = 1),
we shall drop the index a from all the letters.

7. Probabilities of events.—Consider a set of events, By, - - -, Ep, forming
a complete disjunction and having the probabilities p1, + - -, pm. Let X; be
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the random variable such that X; = 1 or zero according as E; happens or does
not happen. Then we have a random vector [X;, - - -, Xn] with

(26) EX)=p, EX)=p, EX:X)=0, 15#4].

A sample of size N corresponds to N trials of experiment, and the sample
means Xy, + - -, Xm are the relative frequencies n,/N, - - -, n./N, where
n; denotes the number of happenings of E; in N trials. The quantity ¢2 in (14)
has a simple expression. We have, by (26),

2
@2n F= z bipi(1—p:) — z#: bibipip; = Z pbd — (Z pibe>
[ 5] T [
=D plbi — 2 pbI®
8. Example 1: The x? statistic—This classical statistic is defined as

Z"‘: (n: — pN)?
1] p‘ON

and is used to test the hypothesisthatp = p®, ( = 1, - - -, m). As explained
in section 7, we have n; = NX;. Hence

\

The expansion (25) of Ti/N is

m 2
a+N”z bZ; + N—! z:
y

0 ?
=1 M
where
m 0)2 . — p0
E ) b, = Ps ops .
=1 z ps’

If the hypothesis is false, p; # p® for some 7. Then, by (27), the quantity o®in
(14) takes the value
m 2
o= Di (bi - Z p;bs) #= 0.
1=1 1=1

For, if oy2= 0, b; would be independent of 7 and so p;=Ap,? for all <. Since
Ipi = 1 = Zp?, we would have p; = p for all 7, contrary to our assumption.
Hence the limiting distribution of N*(N-*T; — a) is the normal distribution
with mean zero and variance o,2.

If the hypothesis is true, then ¢ and all the b; vanish. Hence the limiting
distribution of 7' is the same as that of

M

Z; )2
VvV pd .
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This limit is the distribution law of W2 + - - - + W,2, where [Wy, - - -,
W] is a normal vector having zero means and the same dispersion matrix as
the vector
[Xl_ Plo ... Xm - pmo]
Vs "V
Hence

wi=BWW) =1—p8G=j),=—Vpps G =j.

It is easy to verify that the relations (20) are satisfied, and that Swy; = m — 1.
Hence the limiting distribution of T is the x? distribution with m—1 degrees
of freedom.

9. Exzample 2: The mean square contingency.—Let E,, - - -, E, and E',,
+ -+, E'; be two sets of events, each forming a complete disjunction. Then
the st events E;; = (E;; E’;) form a complete disjunction. Let

P(E)=pi, PE)=2.pi=p, PE)=2.pi=0"
J [
Let n;; be the number of occurrences of E;; in N trials, and let
n;, = Z Nz n’,» = Z: Ny;.
Ei [

The mean square contingency is defined as

8 ¢ (n' — n n’i)2
T,=NY, >\ N

nin';

=] j=1

It is used to test the hypothesis of complete independence of the two sets of
events, that is, that p;; = pp’; forall fand j.

We define st random variables X;; such that X;; = 1 or zero according as
E; happens or does not happen. A sample of size N gives the sample means

X, = M-
N
Let also
— o n’.

Then
' T _ 5 X — XX)?

N & XX

Upon substituting p;; + N3Z;; for X; we obtain the three-term expansion
of Ty/N,
@+ N"'R + N8,
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where
(pii — pip')?
a= —_—
%) PP

Pij — DD’
R= Z ’p‘zpliz 1{21"1"@:' — (pii + pp") 0Z'; + P'iZi)} ,

(%]

Do — 02 s — 1':7)2
S=Z{( = p.Z,' P'iZ) +(m—pm’,-)Q.-,-},
W pip;

Z; = 2’ Zsj, Z';= Z‘: Zyj,

and the Q;; are certain quadratic forms in the Z;;.
We have

R = Z bi; Z;,
42

where

b,-,-—%— pr_ ,227’#:

p:p; Pt o Piw=1Du
According to (27) the quantity ¢? in (14) has the value

o’ —Z pu( Zps: u)
Toby=2 T B P 5 B g,

w7 piD; T Do’y J PP i

0'22-_— E ;piibzii-
ny

If the hypothesis is false, p; # pp’; for some (¢, 7). Then ¢,?5£0. For ¢;? can
vanish only when all the b;; = 0, and this implies that

0_2plp1bu_2_z pW_me — 22 pu

But

Hence

1y p,p 4 i pnpz J ptpz
.. — 1. )2
_- — 22 (pi Z:tp i) ,
7 b

that is, p:;=pp’; for all (¢,5). Therefore in this case the limiting distribution
of N}(N'T — a) is the normal distribution about zero with variance o5%.

If the hypothesis is true, p;;=pp’; for all (¢, 7). Then a and all the b;; vanish.
Hence the limiting distribution of T, is the distribution of

2
2 W,
%7
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where the W, are normal variates with zero means and the same second
moments as the system

Xi—pi—pi(X'j— ') — 0 i(Xi— D)) — -
i Pii 7 i X = ZJ:X,-,-, X = Z X .

Direct computation gives the values of these moments.:
([ A=-p)(A—p) Hi=pj=»,
— A =p)VP v ifi=pj*y,
- (=2 )Vpmp Hixpj=y,

. VoD ifd 7 pj=r

Wiy = E(WiiWur = 3

It may easily be verified that relations (20) are satisfied:
;wﬁah“’mah = Wijury 1'.: b= 1’ 0,8 j;v =1 .- -,4
and that Zw;;; = (s —1) (¢t — 1). Hence the limiting distribution of T, is the

x2 distribution with (s — 1) ({ — 1) degrees of freedom.
10. Example 3: “Student’s” t-statistic.—Let X be a random variable having

EX) =t E{X-9=1 E{(X—8" =0, E{(X—H}=u<o.

Let X3, -+ + +, Xx be a sample. Then “Student’s” is defined, except a factor
depending on N, as
X
T3 = V;,

where X and V are the mean and the variance of the sample.
Consider the random variables

U1 = X, Uz = Xz.
They have the means
E{U)=¢ EU)=1+8,

and the sample means

U1= X, Ug =—A-];Z.X"2 = V+ L—712.
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Hence
Ts = U(U, — U7},

The two terms of the Taylor expansion are
E+NTH (14 &) 2 — 1EZ,) .

The quantity ¢2in (14) is the expectation of the square of

(28) QI+ X-9H-KBX2-1-8
and has the value
032=%(a4—1)f’— asf+1.

If (28) does not vanish with unit probability, then 3270 and the limiting
distribution of N*(T;— &) is the normal distribution about zero with the vari-
ance o2

If (28) is essentially zero, then o3> = 0 and therefore £ > 0. The random vari-
able X can take precisely two values, namely,

a=lte+Vite . 1+e-Vite

£ £
Let
P(X =a) =p, PX=b=1-—0p.
Then we must héve
1 2p — 1)V
t=pat (1—p)b= -f-“?-l—(?’E ) +E”
whence
_Vitg-—1
V14 g
Among the N numbers Xy, - - -, Xy, let n have the value a and N — n have
the value b.
Then
n
b —b) —
+ (a )N

Ts =

.
|m4|£—£>
N N2
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As explained in section 7, n/N is the sample mean of a random variable which
takes the value one with probability p and zero with probability 1 — p. On
substituting p + N~Z for n/N, we obtain the expansion

2(1 + £)?
- > 72
£+ NE
Hence the limiting distribution of N(7';— £) is the same as that of 25-3(1+ £)222.
But limiting distribution of Z is the normal distribution with mean zero and
1
the variance p(1—p) =Z£2(1+£2)‘1. Hence the limiting distribution of 2N¢

(14+8)1(Ts— £) is the x? distribution with one degree of freedom.
11. Example 4: The ratio of moments—Let X be a random variable having

EX) =0, E(X?) =1, E (X9 = a, asm < o from some integer
m=3,and X,, - - -, Xybeasample. Consider the statistic
Sm
Ti= 23
! S2T ’
where

When m =3 and m =4, Ty becomes the familiar b, and b, of K. Pearson.
The random variables

U= X', i=1,- - -,m,

have the means a; and the sample means

- 1 X
Ui= = i
23
We have _ o
T — Um—mUlUm—l+ ct e
4= = =
(U,— Up)'"
Making the substitution
U1 = N'*Zl, L-]2= 1+ N—’Zz, lji= o + N_‘Z{, T = 3, M ,m,

and computing the two-term expansion we obtain
am + N_*(Zm - %mamZZ - mam—lzl)-
The quantityes? in (14) is the expectation of the square of

(29) X" — ap — $Mman(X? — 1) — man X,
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and has the value

1 1
04 = Gam — MamOmsz = 2Mom-10mi1 — 5 (M—2)%an’ + 7 MPasan’

+mPazam—10n + m?a’n_; .
Hence, if (29) is not essentially zero, the limiting distribution of N*(T; — a.) is

the normal distribution about zero with the variance o2
12. Functions of variances and covariances; a simplification.—We are going
to study a pair of statistics, denoted by Ts and T, which are formed of one
homogeneous multivariate sample and are functions of the variances and

covariances.
Let

(30) [Xl) © o, X

be a random vector having finite fourth moments and not satisfying any
linear or quadratic relation with unit probability. Let

E(X;) = &, E(X: X)) — &&= 045
Let
[Xln' * "Xpr]:r'_‘l,' * 'yN;

be a sample of size N and let
1 1 & =
Xi= ﬁ; Xy v4= ﬁ; XX — XiX;.
Let T be any statistic which is a function of the v;; only:
(1) T =F(vu, v * *, Vp1yp Vpp)-
The 3p(p+1) random variables
U=Xi— &  Usy= X&) (X;— &), =
have the means
E(U:) =0, E(Uy) = oy

and the sample means
(7=X;— iy 17;,'= U;,’+ 0.'(7;'.
Hence

T= F((ju— (712, Um— L71172, ) ijp— Upb). .
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On substituting N~*Z; for U; and ¢;;+N"*Z;; for U;; we obtain the three-term
expansion of T,

3 A+N ; BiZi;+ N _l(% zs: CiiwliZw — zg: B,-,-Z.-Z,-) )
= 15 =

usv
where

A = F(ou,013, * * *,00p),

a
Bij = — F(ou, 01, + - - :o'zm)’
0'ij

32

0‘;,'60’“,

Ciiwr =

F’(O'u,dm, tt ,0'”).

If B;; > 0 for some (z, 7) t,hen the term

> BiZy,

15

being the normalized sample mean of
Z Ba‘{ Xi-8 X, — & — Wz‘} )
PES)

cannot vanish with unit probability. Therefore it is sufficient to have the two-
- term expansion,

(33) A+ N BiZy.

4]

If B; = 0forall (¢, ), then (32) becomes

(34) 1 1 ConZiZu

l<]
ySv

But (33) and (34) are precisely the expansions that we shall obtain if we make
the direct substitution v;;=0:;+N"*Z;;in F. Hence we have the followmg rule
of simplification:

In order to obtain the limiting distribution of (31), make the substitution
vi; = aij + N *Z;; and then follow the steps described at the end of section 6.

This rule of simplification can be extended immediately to the case of k
samples.

13. Example &: The hypothesis of independence and Wilks’s test function.—
Consider again the random vector (30). The hypothesis of independence is the
following: X1, - - -, X, are classified into x mutually independent sets con-
sisting of 83, + - -, s, members respectively:

(35) [Xl: cte )Xh]) [X81+1; vt )sz-H:]: Sty [X8|+-"+8x._1+1) tte ;Xp]
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This hypothesis was first studied by Wilks [10], who applied the principle of
likelihood on the assumption of normality of (30) and obtained the test
function which we now define.

Let the matrices
V="_[v;], M=][oy]
be so partitioned that
I-Vll V12 ¢t le‘l [Mll M12 Mlx-)
R RG] P bl
Vxl .x2 Vxn I_M «1 M «2 M XK.
where V,, and M,, have s, rows and s, columns, (u,» =1, - - -, ). Let also

Va 0o —‘ [M 1 o _l
vi=| . , M= . .
0 'V“J |,o ' M,,J
Then Wilks’s test function is

4

Ty=1 1.
BRIA

Let us now study the limiting distribution of 7’s. Suppose first that not only
is the hypothesis of independence false but actually some of the covariances
oi; lying in the matrices M,,, (r>v), are not zero. Following the rule of simpli-
fication in section 12 we make the substitution v;= ¢;; + N*Z;; in T and ob-
tain the two-term expansion,

. y
a+aN*> (a — Bi)Zi,
“2;1 i — Bii)Zi
where

a;; is the element (¢, 7) of the matrix M~ and B:; that of M,~*. By our assump-
tion M s M, hence a;; — B;; cannot vanish for all (z,7). The quantity ¢*in (14)
is the expectation of the square of

(36) @), (e — i) (Us— o) = a ZJ: (asj — Bii) Ui

and has the value

o5 = az.z (aii - Bij) ((lp- - an) Tijuy y

A0



LIMITING DISTRIBUTION 375

where

(37 oiw = E{(X: — &) (X; — &) (Xu — &) (X, — &)} .

Since (36) cannot be essentially zero, the limiting distribution of N* (Ts — a)
is the normal distribution about zero with the variance a5 > 0.

Suppose next that the hypothesis is true, so that the sets (30) are independ-
ent. Then we can assume without loss of generality that o;; = 1 and o;; = 0 for
1#7,@j=1, - - -, p). For,if these are not true, we can subject each set in
(30) to a linear transformation so that for the new variables the variances are
one and the covariances are zero. The new sets of variables are still independ-
ent whereas 75 is invariant under such a transformation. Hence our problem
reduces to finding the limiting distribution of 75 under the assumption that

(38) M=1

and that the sets (30) are independent.
Remembering the rule of simplification (sec. 12) we make the substitution
vi =1+ N7*Zy, v = N7'Z;;, (i # j), in Ts and obtain

_ I+ Nz |

39 =Lt N 2|
(89) T T+ Nz

where Z and Z, are the matrices obtained on replacing each v;; by Z;;in V and
V1. The three-term expansion of (39) is the same as that of

-

1+N% 4+ N
1+ N+ N1’

where b is the sum of the diagonal elements of Z, ¢ is the sum of the two-rowed
principal minors of Z, b; and ¢, are the same functions of the elements of Z;.
Since evidently b = b;, we have the expansion

1-— ler (a—o.
Obviously
(40) a—c= 222,
. i<j

where =’ denotes summation extended to those (;,;) for which the position of
Z; in Z is the position of a zero in Z,. Hence the limiting distribution of
N(1 — Ts) is the same as that of (40), that is, the distribution of

(41 2 Wi
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where the W; are normal varieties having zero means and the same second
moments as the set U;;. Under the assumption of independence and (38) we
have, for all the W;;in (41),

EWi?) = ouji = aioii = 1,
E(WijW“y) = Oijpy = Oipljy = 0; (1:,.7) #= (“7 ")'

Hence the W;; in (41) are independent unit normal variates. Thus the limiting
distribution of N(1 — T5) is the x? distribution whose degree of freedom is the
number of terms in the sum (41), namely, Zs;5; (654;4,7=1, - - - ,x).

14. Example 6: The hypothesis of independence and homoscedasticity and the
likelthood ratio test.—Consider the following hypothesis: The random vari-
ables X; in (30) are independent and o1y = 622 = - - - = 0y,. If we regard the
distribution of (30) as normal and apply the principle of likelihood we easily
obtain the test function

oo VI
6= )
l(”11+ Cor st V)
p

which is the ratio of the geometric mean of the latent roots of V to their
arithmetic mean.

Suppose first that not only is the hypothesis false but the relations
(42) on = * * =0pp a; =0, t1#7,

are not all true. Making the substitution v; = ¢;; + N*Z;; we get the two-term
expansion

P
a+aN_’ZbefZii, Zi= 2y,
$,7=1
where '
| M]>
a=l ,
—(out+ - - -+ o)
p
1 1 1 ..
bi == au — ’ bi'=_a!"7 1#7,
P on+ - - - top ' p '

and the aj; are the elements of M. Since some of relations (42) are not true,
the b;; cannot all vanish. The quantity ¢*in (14) is the expectation of the square
of
(43) a Z bii (Ui — i) = a ZJ: b;Uy;
1.7 1
and has the value
o = a? ) bibu s,

0,80
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where ¢, is defined in (37). Since (43) cannot be essentially zero, the limiting
distribution of N*(Ts — a) is the normal distribution about zero with the vari-
ance o’ # 0.

Suppose next that the hypothesis is true, so that X3, - - -, X, are inde-
pendent and have a common variance 5. Making the substitution v;; = 9
+ N7*Z, vij = N7'Z;;, (¢ # j), in Ts we get the three-term expansion

1 1 1 2
- { 52 Z:‘i2 - EE)(Z: Zii) + ; Zt':'z} .

pNy

Hence pN (1 — T) has the same limiting distribution as that of

1
Zé Z (Zn - - Z Zn) + Z Zu 'Eéj Yiiz;

7 TR
where

l 1 ..
Y“ ( - Zu>, Yt" = - Zi', 1<].
\/217 Z i . i J

The Y’s are the normalized sample means of the following system of variates:

1 1 ..
(44) ( 5 — U,.) - Uy, 1<J.
\/— 2 Z ’ i ’
The limiting distribution in question is the distribution of
45
(45) ; W2,
137

where the W; are normal variates with zero means and the same second
moments as (44). Under the assumption that the hypothesis is true, we have

EU®H = ws—7', EUPH =7, 1<,
E(U;U) =0, (Z,7) #= (4, v),
where
ws = E {(Xi — &)4}.

Then it is easy to compute the second moments of the W;:

EWw® = 1 Z Ml —2 Bi P 1 ,
R 2p
1 M4 (Mu + mi) 1 ..
EWiW;) = — — ==\ )+ 1#),
WalVs) = s E 7”  2p\ 7 2p
EWiW,) =0, u<v,
EW,? =1, 1<},

E(Wiquv) = 07 7'<.7) ] < V; (7’)]) 7£ (N’y V)'
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It is thus seen that the distribution of (45) is the composition of two inde-
pendent parts: the part contributed by ZW,2, (¢ < j), and that contributed by
ZW2. The former is x? distribution with ¥4p(p — 1) degrees of freedom; for
the latter we apply lemma 3. Let w;; = E(WxWy) and Ny, - - -, A1 be the
non-vanishing latent roots of (w;;), which is of rank p — 1. Then the distribu-
tion of (45), that is, the limiting distribution of pN(1 — T) is

1
; X
(21‘_)“27—1)2}21(12—1)11 (i' p(p—l))()q .. 'M-l)
1p(p—1)—1 Yt Ypr® z)
2 exp{ —=——+ - - —=Z——_Jdy; - - - dy,dz.
./1;1’+...+yp’.1+z§: p( P . 2/ Yo

A sufficient condition for this distribution to be the x? distribution with
}/(p + 2) (p — 1) degrees of freedom is that uy = 39* for all 7, for then )\
= =N\ =1

It may be noticed that, although the limiting distribution of N(1 — T%) is
always the x? distribution when the hypothesis of independence is true, re-
gardless of the distribution of (30), the limiting distribution of pN(1 — Tb),
even when the hypothesis tested is true, still depends on the fourth moments
of (30), and becomes the x? distribution under the condition that

E{(X;— &)*} =3 [E{(X: — &)*}]?foralls.
15. Problems of k samples and the statistics L and Ly.—Let
Xy - -, Xk
be k random variables having

E(X.) = &, E{(Xo— &)} =n.#0, 1 B{(Xa — &)} = @,
1 2E{(Xo — £&)*} = ba< .
Let
Xa, -+, XaNa a=1,- - -k

be k samples of sizes Ny, - - -, N Consider the following two hypotheses:

H: & - =fandm = - - - =g

H:m=- - - =
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With the help of their method of likelihood ratio applied to normal distribu-
tions, Neyman and Pearson [9] obtain the following test functions for H and
H'’ respectively:

L= (f] Y. ){ z: .Y+ i: ga(Xa — 7)2}_1,

a=1

L= (ill Ya"“> (Z:; Ja Ya>_l,

where the g, are defined in (9),

_ 1 Na _ k _ 1 Na
Xa = — Z Xar, X = Zga.Xa, Ya.= - Z (XM' - Xﬂ)z'
Na r=1 a=1 NT:I

We shall call L and L, respectively T7 and T and find their limiting distri-
butions when the sample sizes N, become infinite in the manner specified in
section 3, from arbitrary parent distributions.

16. Example 7: The L-statistic.—The random variables

Ula. = Xa - Eu, U2a = (Xd - Ed)zi

have the means
E(U]a) = 0, E(U2a) = Na,

and sample means
fjlﬂ = XB - Ea: [j% = Yu + Ulaz-

Hence

k - _ k - -1
4 T=1={T[On - O 0~ 02 =23 0t~ DUut o},
a=1

a=1

where
Ui =D guUi i=1,2

g = z Gk, ‘752 = E gu(fa - E)2
If the hypothesis H is false, we make the substitution
Ula = Na_;Zla, (.724 = Na + Na.—}Zza 3
in T and obtain the two-term expansion

a+aN~*Y (AZia + BiZsa),
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where

a= (H"“n) .(Zguﬂa'l'dtn)_l )

a

20.' (£ — §) (1 1 )
Ai="—"""—, B,=g}\——=——"—).
Zguﬂa + 052 g e Z Jae + of’

The A, and B, cannot all vanish, for otherwise H would Be true. Let
Va = Au(Xa - Ea) + Ba{(Xa - Eu)2 - 770«} .

The quantity ¢* in (14) is equal to a?ZE(V,?), (a = 1, - - + , k), and has the
value

o = @) {Ane + 24.Bugens’ + Bana(ba — 1)} .
Suppose that one at least of the V, is not essentially zero. Then the limiting
distribution of N*(T; — a) is the normal distribution about zero with the

variance o7 = 0.
If the hypothesis H is true, so that

L =&, N =17, a=1;"'7k7
then (46) becomes \
T7 = { IIl ((jh. - ljlaz)ga} ((72.; - (712)_1 .

Making the substitution Uy, = No"'Zy, and Uz = n + N~'Z,, we obtain the
three-term expansion

11 1 2 1 Z 1 E 2
1—=<=U 2% - - Z"‘Z“) ' = ( “%Z)}‘
N{n]a:!: ! _n(ug ! +2"72“ i 2n? ag,za
Hence the limiting distribution of N(1 — T%) is the distribution of

Q=2 W - (E g,*Wl,)z + ‘2 W — (Z gJWz.)2,

where Wy, W, are normal variates with zero means and the following second
moments:

E(W‘GWiﬂ) = 07 a ﬁ,’&,j= 1y27

EW) = B0 =1, EWw) = LE(U -t} =L0.- 1.
n 292 2

E(W.Wa) = #E(U“* = \l/_2_a‘.
Nz
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Let us treat in detail the particular case where the a, and the b, are inde-
pendent of a:

1 1
aG.=4, —(b.—1 =B, a=1,---,k.
V2 ’ 2( )

It is possible to perform an orthogonal transformation to each of the vectors
[Wa, - - -, Wal:

[(Wa, - - - ,Wa] = [Wa, - - -, W] 1=12),
so that
EW W) =0, a¥B;4,j=12,
k-1
EWA=1, EWw.Ww=4, EW.)=B, Q=3 (Wi+Whd.

a=1

We now apply lemma, 3. The dispersion matrix being
I Al
Al BI |’
its A-equation is easily reduced to

An (2— (1+B\+B— A1=0.

If each X, can take essentially two values, then B = A? and so the only non-
vanishing root of (47) is 1 + B of multiplicity k¥ — 1. In this case Q/(1 4+ B)
has the x? distribution with & — 1 degrees of freedom. In the contrary case,
B > A? and the equation (47) has the roots

n=3[1+B+{(1-B)*+44%}'], r=4[14+B—{(1-B)*+44%}'],

both of multiplicity ¥ — 1. The distribution law of @ is then

oy 1)}"" f HE—3) (_ n _?ﬁ_)
(48)  (4mrr2) {I‘ (—2 R(ylyz) P\ = 5 " 20 dy:dy: ,

where R is the region 0 < 1,0 < 2, %1 + y2 < z. The necessary and sufficient
condition for v; = vz is that B=1and A = 0, that is, b, = 3 and a, = O for
all «. If this condition is satisfied, then v, = ¥; = 1 and (48) becomes the x*
distribution with 2k — 2 degrees of freedom.

17. Example 8: The Ly-statistic.—We have

Ty=L, = (f[ Y,“) (Zk: g.Y.,)_1 .

a=x] a=1

Following the rule of simplification in section 12 we make the substitution
Y. = 7. + N."*Z, and expand the result.
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If the hypothesis H’ is false, the two-term expansion is

a+ aN"i A.Z,,

a=1

o =(@) (Zom),

1 1
ruliogt)
Na Zgan

.
a

where

The A, cannot all vanish, for otherwise H’ would be true. Let
Ve=A.{(Xa — £&)? — Na} -

The quantity ¢*in (14) has the value
o=a ) E(VD) =a, A(b.—1).

If the V, are not all essentially zero, the limiting distribution of N*(Ts — a)
is the normal distribution about zero with the variance as? = 0.

If the hypothesis H’ is true, then 4, = 9, (e = 1, - - - , k). Making the sub-
stitution Y, = n + N,~* Z, in Ts we obtain the three-term expansion

e (T

2N 1]2 a

Hence the limiting distribution of N(1 — T%) is the distribution of ZW,2 —
(ZgW.)?, (a=1,- - -,k), where the W, are independent normal variates
with zero means and E(W.2) = (2p)E[{(Xs — £)2 — 9}2] = $(bs — 1). In
particular, if each b, = 3, the limiting distribution of N(1 — Tj) is the x2
distribution with £ — 1 degrees of freedom.

A 11
Application to testing hypotheses

18. Lemma 4. Let w = [Wy, - - -, W1] be a normally distributed vector such
that each E(W,) = 0 and the dispersion matriz ® is non-singular. Let C be any
real matriz of order h X 1, (h < 1), and rank h. Then the quadratic form

 C W
C 0 o
w o o0

(49) X=- l“’ ¢

¢ O

has the x2 distribution with 1 — h degrees of freedom.
This lemma becomes familiar when & = 0, for then C does not appear and
X is the quadratic form w & w'.
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Proor. By (49) we have

X = [w,o0] [‘(I; g’]" [j)"] — Wb — wB1C"(CB1C") IO’ |

Since ® is positive definite, there is a real non-singular G such that G&—¢" = I.
Hence

(50) X =yy —yB'(BB')"'By’,

where ¥ = wG! is again a normally distributed vector and where B = C%~1G"
has the same order and rank as C.

The components of y are independent unit normal variates, because the dis-
persion matrix is E(y'y) = E(G'~w'wG) = G"~1®G@! = I. The matrix of the
quadratic form (50), I — B/(BB’)"'B = A say, has the property that A2 = 4.
Hence the latent roots of A are either zero or unity. This shows that by an
orthogonal transformation X can be reduced to a sum of squares. Hence
the x? distribution is established. Tlte number of such squares is ird =
l — trB’(BB)'B = | — tr(BB’)"'BB’, which gives the degree of freedom,
q.ed.

19. The case of one sample: the hypothesis H.—Let

[le' * ';Um]

be a random vector, possessing finite second moments and a non-singular dis-
persion matrix. Let

EWU) =pi, EWUU) — pini = ;-
Let
[Ulr,”',Umr], r:l’...,N,

be a sample of size N, and U;, Z; be respectively the sample means and the nor-
malized sample means.
We call the hypothesis H the following hypothesis,

h
(51) H: f)«(ﬂly"')ﬂm)'—‘E;chPlI’ )‘=1:°"7l;
¢=1

which asserts that [ given functions of m populational constants are expressible
as linear combinations of h unspecified parameters p, with known coeflicients
¢a- The three integers m, [, and h shall satisfy the relation

0Sh<l=m.

If h = 0, the right-hand side of (51) means zero.
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Concerning f and ¢, we make the following assumptions:
(i) Each fi(zy, - - - , ) is defined in the whole m-dimensional space and
possesses continuous third derivatives of every kind in the neighborhood of

(“l" * ';”'m)'
fl(l) P fl(m)
Fel| — — _ _
[fl(l) e fl(m) ]

(ii) The matrix
where
f)\(i) = i.fk(”’ly ce )%)
O

isof rank [ for all uy, - - -, unm satisfying (51).
(iii) The matrix

is of rank h. !
20. The unstudentized statistic D.—Writing

YX:fX(L-’h'°')U_m)) y=[Y17"':Yl]’

on = Z AP, &= [en] = Flng]F,
1,)=1

we define the statistic D as

P (T4 ’
(52) p==|C o0 © |‘é’,g|
Y 0 O

We shall show that, when the hypothesis H is true, the limiting distribution
of ND is the x2 distribution with ! — h degrees of freedom. For this purpose we
follow the procedure described at the end of section 6. Expanding

YX =f)‘(”l+N—‘Z1) cet )“‘m+N_’Zm)

to two terms and using (51) we obtain

h
(53) Z capg + N ~R\ ’

g=1
where

Ry = ifx“)z.-.

=1
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When (53) is substituted for Y, in (52), the terms 6, = Z,ap, may be can-

celed, because [y, - - -, 6;] is a linear combination of the rows of C. Then we
get
@ C r
1 ® C
(54) -1 C 0 0 ’ l )
N r 0 0 c 0
where
r=|[Ry,---,R].

The expansion (54) represents the three-term expansion (25) of D. Hence the
limiting distribution of ND is the distribution of

® C w
-1 CcC 0 0 l ‘ ,
w 0 O
where w is a normally distributed vector having zero means and the same dis-
persion matrix as the system

Zf)\(i)(Ui'_”‘i)y )‘=1:"'7l‘-

=1

This dispersion matrix is ®, which is non-singular under our assumptions. The
result now follows from lemma 4.

21. Studentization of D.—In order to construct a test function for the
hypothesis H, we still have to studentize D, that is, to replace the unknown
populational constants in ® by quantities computable from the sample. For
this purpose we may replace the set ¢\, by any functions y», of sample means
(so that the procedure described at the end of section 6 may be applied),
provided that when each argument of ¥, is replaced by its expectation the
result is ¢,,. The studentized statistic

v y’ ’
ND,=-N|cCc o o |:|Y ¢ , V= (Y5,
c 0
y 0 0

thus obtained has the same limiting distribution as ND when the hypothesis H
is true, for evidently the expansion (54) is not affected through the replace-
ment of o) by ¥a,. In their generality the functions ¥», cannot be specified by
any fixed rule. In concrete cases, as manifested by the examples given below,
most natural functions playing the roles of the ¢, suggest themselves.

A practical difficulty in significance tests is that there are many conceivable
composite hypotheses for which one does not know how to construct a test
criterion even to satisfy the single requirement of exactness. The hypothesis H
has many special cases of this kind. When the sample is large, ND, may be em-
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ployed as a test function as its distribution in the limit is known and is inde-
pendent of any nuisance parameters. The actual test consists in computing
ND, and referring to the x2 distribution with I — h degrees of freedom, large
values of ND, being significant. A further justification of the test is that its
power tends generally to unity as its limit, as will be shown in the next section.

22. Power of the test.—If the hypothesis H is false, then in the expansion of
D, the constant term is

® (¢ a ’
a=—-|C 0 0 "g g >0,
a O 0
where
a'_‘[al;"':al]’ ak:fk(ﬂlr""l"ﬂA)’

and the term with N~ is not in general essentially zero. Hence N*(D;, — a)
tends to be normally distributed about zero with a dispersion ¢ > 0. If the
test criterion based on D, is to reject H when ND; = ¢, then the power of the
test is asymptotically equal to

1 e~ g

Y
V2w oJ NY(N-c—a) ’

which tends to one as N—> .
In the following six examples we consider a random vector

(55) [Xl, v 1XP]

as in section 12. The letters &;, 0i;, X, v4j, Us, Us; have the same meaning as in
that section. Besides, we write
1 ¥ -
Oijkl = E(UinUkUl); Uikt = ﬁ E (Xir—Xi) (Xir—Xi) (Xkr—Xk) (Xlr—Xl) .
r=1

The relations
(56) Gijil = 0506 + oo + oaok L5, kl=1---,p,

which hold true if the distribution of (55) is normal, will be called the normal
moment relations. In the first two examples the conditions that the fourth
moments are finite and that the X; do not satisfy any quadratic relation with
unit probability may be removed.

23. Example 1: To test the hypothesis H,.*

Hy: &=0, i=1---,p.

4 The hypothesis & = £°, (i = 1, ..., p), may be reduced to this by using X; — £&° in-
stead of X.
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We have

~

D=- : | M|,

o 8

where M = [0} and & = [X;, - - - X,]. In order to studentize D it is natural to
employ v;; in the place of ¢;;. Then

|4

j’ . —3 4.
(57) NDi=-N| . . 2| v], V= [v].

The expression (57) is Hotelling’s T?-statistic (see [3] and [6]) except for a
factor depending on N. Its limiting distribution when H, is true is the x2 distri-
bution with p degrees of freedom, valid for arbitrary parent distribution.

24. Example 2: To test the hypothesis He.

H2-° £i=£) i=1""7p"
Here
M]l j,
p=—|i o oM I i-wyeee,
E 0 0
v g :
(58) ND,=-N|j 0 0© IV {)
E 0 0 J

The statistic (58) has been studied elsewhere (see [6]). Its limiting distribu-
tion when H, is true is the x? distribution with p — 1 degrees of freedom, valid
for arbitrary parent distribution.

25. Example 3: To test the hypothesis Hs.

HS: oip = *°° = 0pp-.

Here
1
R R
D=- . /e B
'{’m ' '{pp 0 ('))pp Vo1 cye 1|7
' Upp 0 0 1 -1 0
where

Yij = Oiijj — 0ii0jj -

If no further knowledge is assumed about the parent distribution, we may
use vigj; — viv;; in place of v;; for studentization. If the normal moment rela-
tions are assumed, then

Yii = 20.’,’2 .
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We may studentize D by using v;; foroy;, (¢ 7 j), and v = 1 (o + - - -+ vpp)
P

for each o;. Then

202 2032 - - - 202 1 oy \ \ )
(59) Qom? 2% - - - 20, 1 33 ) 2;;2 s gzmz i
NDj=—-N| —— — — — — — — ) 21 2p
L P
1 1 1 00 fvm fvm .120 (1)
VI s v, 0 0

The limiting distribution of (59) when Hj is true is the x? distribution with
p — 1 degrees of freedom. If p = 2, (59) reduces to

N(vu o 2122)2
(vu + v20)? — 4012

which is the test function obtained by C. T. Hsu [5].

26. Example 4: To test the hypothesis, H,, that X,, - - - , X, are tndependent
and homoscedastic.

As a consequence of H4 we have

(60) oi=1n, o05=0, 3 j; Gi=1-++,p.
Then
™ . . 0 1, vtl T 0 1
(61) Yop 1v,p 1
Yrp
g110n 0 vse o 0
D=- o103 0 vy noz
. 1033 0
0
0 p1,p-16pp 00p1,» ’ ’
U] Op—1,p10pp O
1 .--10 0--- 000 {1 --.100 --- 0 0
i - cUppti2 Vis - - cVpayp 00

because under the hypothesis H, the dispersion matrix of the vector
[Un—on, -+, Up — 0pp Uny, Ui, * » *, Up-1,]

is the diagonal matrix figuring in (61).
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We may studentize D by using v;;; and v;; in place of ¢44:; and o;, assuming
nothing further about the parent distribution. If the normal moment relations
are assumed, then, taking into account (60), we have

gi =1, i =297

Hence

D= l(li (v — )2+ Z 1)1’1'2).
P \2 /5

i<i
In order to studentize D we may replace n by 5. Then

62 ~ND=Y

GZ(U._ 17)24_2 v.z) =N(_1_§‘: v.z_p)
02 2 s i e~ (7] 2 1'}'2 7 .
When H, is true, the limiting distribution of (62) is the x? distribution with
3 (p + 2)(p — 1) degrees of freedom.

27. Example 5: Given that p = 4, to test the hypothests that the three tetrad
differences are zero.

This is equivalent to
Hy: 0619034 = 013024 = 014023 = 0.
We have
1 Y
gi :: ::: 1 Y: en e e 1
1
(63) D=—| o ¢ ¢33 1 Ys | : Y1 P2 P23 L
1 1 1 00 T,
Y, Y. Y; 0 O
where
Y1 = vip034, Y. = w1304, Ys = viavs.

In the expansions of the Y; the coefficients of N are
031z + 012234, 024213 + 013224, 093214 + 014223,

where Z,; is the normalized sample mean of U;; — oy;. Hence [ ¢;;] is the disper-
sion matrix of the three variables

034U1e + 612U3ss — 2012034, 024U1s + 013U24 — 2013024,

0‘23U14 + 0’14U23 — 2014093 .
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Y =aq ssfo1192 + 015203344 + 20103401934 — 401’0 342,
Y2 = oalonss -+ 018%02044 + 20130240 1324 — 4015%004° )
¢33 = 028°01144 + 01470233 + 201409301408 — 401470257,
P12 = 01201302344 + 01202401433 + 01303401492 + 02403402311 — 4019013024034,
@13 = 01201402433 1+ 01202301344 + 02303402411 + 01403401302 — 4012014023034,
@23 = 01301403422 + 02302403411 + 01302301244 + 01402401233 — 4013014023024 .

With no further knowledge on the parent distribution we can only studentize
D by means of the fourth moments. If the normal moment relations are as-
sumed, then

o1 = 011022034 + 0330440127 + 20012034,
2 = 011033024° + 02044015° + 20015024,
@33 = O1044023° + 00330142 + 20014033,
o1z = b + 4019013024034 ,
Q13 = b + 4012614023034 ’
@23 = b + 4013614023024 .

Where

0 = 019034+ 013024014023 , b = 011023024034 0220130140 34+ 033019014024+ 0 44012013023,

If H;is true, then
o = 0110220°34% + 0330140127 + 667 ’
P22 = 011633024° + 020140157 + 602,
. 33 = 011044023 + 02033014 + 662 )
P12 = 13 = @23 = b+ 462,

Substituting in (63) we get by an easy computation

D= c(Ye — Y3)? 4 cp(Y3 — Y1)2 + ¢3(Y1 — Yo)?
a3 + €361 + cics ’

where
€1 = 0102034 + 03300012 — b + 262,
C; = 011033024% + onouo1s® — b + 262,
€3 = 011044028° + 0n0350142 — b + 262,

If now we replace o;; by v; and 8 by 3(Y1 + Y2 + Y5) for studentization, we ob-
tain after an easy reduction

64) ND =N d1(r157raa—T14723)? + do(riares—T19734)? + da(T12r'3a —T13724)2
dods + dsdy + dide ’

where the r;; are the correlation coefficients of the sample and

d = et + 149,
d=nf+nitg,
ds=nrl+nr’tg.

g = % (7‘127'84+7‘137'24+7'147' 23)2 - (712?13723+712714724+7'137'14?‘34+7'237'247‘34) .
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When Hj is true, the limiting distribution of (64) is the x? distribution with
two degrees of freedom.

The following example is taken from a paper by D. N. Lawley: a sample of
size N yields the correlational matrix

" 1 -4
-4 1
L 47

-2 -3
The expression (64) has the value 0.001085N. If the hypothesis H is true and
N is large, the probability that (64) may exceed this is approximately ¢—0-00064N
which will be significantly small only when N is several thousand. In his paper
Lawley proposed another test criterion whose limiting distribution under the
hypothesis H; is also the x2 distribution with two degrees of freedom and whose
value for this example is 0.00113N. !

28. Example 6: To test the hypothests, Hg, that the first s and the last t, (s+t=p),
of the variables X; in (55) are independent.

Under this hypothesis we have

-4
-7

1
-3

- Co Co b

(65) ;i =0, i1=1---,8 Jj=s+1,---,841¢.

Let the dispersion matricesof [ X7, - - -, X;] and [ X4, - - -, Xt ¢] be respec-
tively M, and M, and let the matrix V = [v;;] be partitioned:

| Vu Vi
V‘[Vn sz]’

where V;; has s rows and columns, V3, has ¢t rows and columns.
On the basis of (65) we construct

by By b, v,
P P Dy Vs @y - Dy,
D= —| — — — — — — SR
Pq By - &, v, &, - >,
41 V2 Vs 0
where
Vs = [I),',,_H, DI ,1)"',_'_‘] 5 ’i = 1, < 0,8,

and ®;; is the covariance matrix of the vectors [Us sq1 — 0iot1,y * © * Ui a4t —
0'1',,.+z] a;nd [Uj,.+1 — O+l * ° ° Uj,.+g - Uj,.+t] . If H(; is true, then

@i,‘=6;,'Mz, i,j=1,-~,s.
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[ Py - - Py, :|_1 l: oMy - - achz_l:l
—_— = —_- ,
Dy - D,, acle—l A auMz—l

where the a;; are the elements of M;~1. Then

By Py, [T
D=1[vy---,0]| —— — .
By - - - By [ . J

v,

= aipilMe™W'; = tr My 'V 'V 5

$,)=1

Hence

in other words, D is equal to the sum of the roots of the equation
| ViaMs1V"s — MMy | = 0.
In order to studentize D we have merely to substitute v;; for o;;. Then

Dy = trVu WiV W'y,

or the sum of the roots of the equation
I Vszz"IV'm - )\Vul =0.

Hence D, is the sum of the canonical correlation coefficients of Hotelling [4].
The limiting distribution of ND; when Hj is true is the x2 distribution with st
degrees of freedom.

Let us consider the particular case of two sets of events. Let By, - - -, B,y
and E', - - -, E',11 be two sets of events each forming a complete disjunction,
and let the letters pqj, ps, D', 735, s, n'; represent the same quantities as in sec-
tion9.If X;, (=1 - - -, s), is one or zero according as E; happens or does not
happen, and if X,; (=1, - - -, ), is one or zero according as E’; happens or
does not happen, then H¢ becomes the following hypothesis:

p"i=pi'p,i7 i=13"';8+1;j=1""9t+1-
Set
’

mg="2d, i=1c et li=10 0041,

&
[
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nm 0 n’1 0
dll du 1 . 1 .
D =l 5 Al = - , A2 _— —
[ dal dstJ N N ’
0 n, 0 'n'g
1 1
a='ﬁ[n1) ’nG]) b=27[n,1’°",n1£].
Then clearly
Vu= A —ada, Vo= A = b'b, V12=%D.
Hence
Vit = Art+ g, Vet = o+ N j,
N1 e’
where
Je=1[1,1,---,1], (q elements) .
Hence

NDy = NtrViu V1.V 1V’ 12 = %tr (A;‘l +

,J.) (A2-1+ -flj'g;) D
n.+1 N1

N J:DADY, + J:D’ Dy’

1
= ﬁ (tTAl—lpAg_lD' +

Net1
N2
+ (5D ]*
Naga 141
_ N( 2 ¢ d{,‘z 1 z‘ s+1,7 4+ — - 175,841 +d2‘+1"+1)
& = n{n'j Nap1 4=t 7 n IR oy B (% 'ns+1n'¢+1

= mean square conlingency.

29. Extension of example 6 to several sets of variables.—If the hypothesis is that

(Xl7 T ’Xﬂ)’ (X81+1' ) X83+8:) y Tt (sz+ ceeteeatly TOT T Xn+ .. °+u)

are mutually independent vectors, then our method of construction gives the
test function D, = ZDy(3j), (7,7 =1, - - ,x; % < j), where D,(¢7) is the D, in



394 BERKELEY SYMPOSIUM: HSU

example 6 for the sth and jth vectors. The details of the construction are
omitted. The limiting distribution of ND; when the hypothesis is true is the x?
distribution with Zs;s;, (2,5 = 1, - + -, «; 7 < j), degrees of freedom.

30. The case of k samples, the hypothesis H', and the test function NA,.—In
this section we consider again the k random vectors (1) ; the notation used here
is the same as in section 1. Let fi(zy, - - - ,Zm), A =1,- - -, ;I <m), bel
functions defined in the whole m-dimensional space and possessing continuous
third derivatives of every kind in each of the neighborhoods of the points
(10, * * *, Bma), (@ =1, - -+, k). It is assumed that the matrices

fla(l) e . fla(m)
Fo=| ———— ) a=1,"',k,

fu® - - o fl™
where
ad

o _
f e 6,4,-,

fl(l-"la.’ tt 7””"“) ’
are of rank I. Let

bra = N(piaey * * * ) tma) , A=1---,lLia=1---,k.

We call the hypothesis H’ the following hypothesis:

H: u=te= - =0bu, A=1---,1.
Let
Y).a=f)\(l7]¢7' Y ﬁmu); yl= [Ylﬂ). * ',Ylu],
l'<I> o I 'y 1
g v ~ g, o I
. . . ()1
A= — ,
0 1 )
— I ! 1
gkq’k Yk 0 E;‘I’k I
I -.-1 O 0
i - 0 O I I 0

where the g, are defined in (9) and &, = Fq[7:;]F’s. ®. is the dispersion matrix
of [Ru, « *  , Ri], where Ry, is the coefficient of N™* in the expansion of ¥».
and is non-singular under our assumptions. If the hypothesis H’ is true, the
limiting distribution of NA (as the sample sizes become infinite in the manner
specified in section 3) is the x? distribution with I(k — 1) degrees of freedom.
This proposition is a consequence of theorem 2 and lemma 4. Its proof is
similar to that for the limiting distribution of ND as set forth in section 20,
and is omitted.
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Now, if we write

y= [yl)' : 'ryk])
1—@1 o I
g1
b = ,
1
O _ék I
gk
I - I 0
then
A= [y,0]2[y,0]
gt O [ S
=y . — . (gl@l_l.*_ .« . '+gk¢k—1)_l[gl®f_l, PPN )gkék_l] y'.
0 kP! %

Hence
(66) NA= ZN‘,ya@;‘y'“ - (ZN,@&:‘) (ZN@:‘)_I <Z:N.,q>,—lyg).

If £ =2, we write
nty=s, Nn—y=d,
so that
n=%@+d, p=31E-4d,

and substitute in (66). Direct computation shows that the result is independent
of s and is equal to

%d{N 1217 + No@yt — (N 1P - N 2‘1’2_1) (N 19,1
+ N:®; )7t (N1 @it — No® ) }d’ .
But

Ni® 7+ No®ot — (N1 — No®o ™) (V1@ 4+ No®e )7L (N1 — NoBeY)
= N1® 1+ No®y ' — (N1®, 7+ No®y ' — 2N 8 1) (N1 1Ny 1)t
2N®1 ™ — Ni&1 7 + No@y !

-1
= 4N1qu)2_l (qul’l_l + Nz@z_l)_l <I>1_1 =4 (l %, + L ‘I>2> .
Ny N.
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Hence (66) reduces to

(67) NA = (y1— ) (;}1 + 32)_1 W=y,
, N,

a result which is to be expected.
If & = ®for all a, then (66) and (67) reduce to

69 Na= TNaay.- L (Tha)er (Than),
’(69) NA = (]%1 + 1%2) (1 — )@ W — o), if k=2.

When the unknown populational constants involved in the &, in (68) are
replaced by appropriate functions of sample means, we have a studentized
statistic whose limiting distribution is the same as that of NA when the
hypothesis H’ is true. This statistic we shall call NA; and propose to use as a
test function for H’ when the samples are large. The actual test consists in
computing NA,, referring to the x? distribution with I(k — 1) degrees of free-
dom, and rejecting H' if NA, is significantly large. The power of the test tends
in general to unity as its limit, a fact which may be deduced in the same manner
as done in section 22.

In the four examples which follow we consider k£ random vectors

(70) [Xla,"‘,Xpa], a=1,-..’k’

each having the properties of (30) described in section 12. In example 1’ only
the finiteness of the second moments and the non-singularity of the dispersion
matrices need be assumed. The meanings of the symbols £i, 0ija, Giikiay Xa Viia,
ijuie are self-evident.

31. Example 1’: To test the hypothesis Hy' :

Hll: £i1=£i2="'=£ik) 1,=1,’p
Here
&, = Ma = [‘Tiju] .
Using (66) and (67) we have
NA = Y NogM. 2,7 — (ENJ.M:I) (EN,M.—I)—I (ZNGM:Ix:I) ,
where _
Lo = [Xla, A ;X;m] ’
and

-1
Na= (ﬁI—:Ez)(I%M1+N1-M2) @ —&), ifk=2.
1 2
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If no further knowledge is assumed about the parent distributions, we may
studentize NA by employing V, = [v;;,] for M,. Then

NAy = X N&EVoE, — (ZN,@V.-I) (ZN.,V.:I)_l (ZNGV;%’,>,
(71)
—1
NA = (31— &) (N Vi4+ — Vz) @ -3y, fk=2.
1

The limiting distribution of (71) when H’; is true is the x? distribution with
p(k — 1) degrees of freedom.
If Oija = 055 for all 1:, j, and a, we write M = [0’,‘,'] and get

NA =) NizM%, — NiM~'¢ ,

where & = XII-Z N,Z, is the row vector whose components are the grand means

X, - - -, X, Hence, writing [ a;;] = M, we have
(72) NA = ZN 2 0 X i Xja — NZ 0 XiX; = Z:a.,( NXiXja N_~",~)
a=1 3,5=1 1,7=1

= Zaﬁz NX —X) X — X))
%, a
In order to studentize (72) we use

Vg = Z Z (Xsar - Xt) (Xia.r - XI)

a=1 r=1

in place of ¢;;. Setting [ai;] = [v;]~! we have

(73) NA = ; aij GZN X —X) X — X)) .
Consider now the particular case of & sets of events. Let

(74) Eiy Bz, + -+ Ema, a=1+-+,k,

be k sets of events, each forming a complete disjunction. Let P(E;) = pia . If
Xi,=1,- -+ ,m—1;a=1,- -+ ,k),is one or zero according as E;, hap-
pens or does not happen, then H’, becomes the hypothesis

(75) Pa=Da=""*=DPi=Di, t=1c,m.
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Since
Oiia = Pia(l — Dia) ,  Giia = — PiaDia, 177,

we have, when (75) is true,
gia =p(1 — D),  oiu= —pip;, T,

Hence (73) can be used. Now if N, trials of experiment are made on the ath
set (74), if the number of happenings of E,, is n.,, and if n; = Z Nia, then

Xiﬂ.=£‘i¢) X’.-_—I’i‘,
N, N

vis'=]7\i;(1—£‘)’ v"j=_nmi z;é]; 'L;j= 1)"')m—1'

N ..
a;=—+—, a; = —, t#],
. d nm

m niNa. 2
(76) Nay = zzk;N("‘“"T)'
1=1 a= T

The limiting distribution of (76) when (75) is true is the x? distribution with
(m — 1)(k — 1) degrees of freedom.
32. Example 2': To test the hypothesis H',:

H';: Oija = Oij 'i,j=1,---,p;a=1,°--,k.

Here

Yo = [V110, V120, * * * , U220y V230, * * * , Vo1, p0, Uppal
and therefore ®, is dispersion matrix of the system
Una — 0110, Utza — 012, * * * , Up—1,50 — 051,98, Uppa — Oppa,
where
(77) Uiie = (Xia — &ia) (Xia — &ia) -
The elements of ®, are

(78) E { (Uijc - aija) (U kla = o'kla)} == Ojjkla — Oija0kla -
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If nothing is assumed about the parent distributions, we may employ ;. for
studentization. If the normal moment relations (56) are assumed for each
vector (70), then (78) reduces t0 o:xe0;1a + 7i1a0%a, Which under the hypothesis
H', is equal to cucji + di0jx. Hence @, = ® and the formula (68) can be used.

1
Replacing each o;; by &; = N Z Nuvije in ® we get the studentized statistic

N A, whose limiting distribution when H’; is true is the x? distribution with
3p(p + 1)(k — 1) degrees of freedom.
33. Example 3': To test the hypothesis H';:

H's: Pija = Pij, i,j=l,"',p:a=1,--',k,

where py;, 18 the correlation coefficient of X i, and X;a.
Here

Yo = [Tl2a., T13ay * * * 3 723qy * * ° ,Tp—l,pa] y

where the ry;, are the sample correlation coefficients.
Now

Uiin - Uia ljia
Tije = —= T Nt (77 T ot
(Uiia - Uiu ) ((]iia - l]iﬂ )

where Ui, = Xio — £ia and Uy, is defined in (77). Setting Ui, = NoZio, Uija=
piia(0iia0iie)} + No ?Zije in 7:j, and expanding in powers of N,~* we obtain the
following coefficients of N,~*:

Zija. 1 Ziiu ZJ'fa
= g P\ — +— ),
V GiicOjija Oiig O jja

which is the normalized sample mean of

Tijo = —&— — 3 Pije (U'“ + %> .

\/ Ciia0jja Oiia Gjja

Hence ® is the dispersion matrix of the system

Tl2a, TlSa, DY T23¢7 DY Tp—l,pa .
The elements of &, are

(79) E(TaTx1a) = Tijhta— % pije(Tiikta ™ Tiitta) — % Pria(Thriia = Titiia)

+3 pijapria(Tiskka+ Tistta+ Tijkkat Tiikka)

where
O'ijkla

Tijkle = e — %
\/0 100 jja0 kkal lla
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With no further knowledge on the parent distributions we can only stu-
dentize by means of v;;z;,. If the normal moment relations (56) are assumed for
each vector (70), then

Tiikl = PijaPila + PikaPita + PitabPika -

If the hypothesis H’; is also taken into account, (79) becomes

pirpi + papir — (pipapir + piipiwoit + pupinon + papipir)
~+ % piipri(pa? + pi + pin® + pit?) -

Hence in this case ®, = ® and the formula (68) can be used. The studentiza-
tion consists in replacing p;; by one of the following functions:

I']é Z rt'ia ) % Z N alija y Za:N avt':'a/ za:N u(viiu.viia)i .

Then we get a test function N A; whose limiting distribution when H’; is true is
the x2 distribution with 3 p(p — 1) (k — 1) degrees of freedom.
34. Exzample 4" : Given that

(80) Ciia = 0ii i=1,---,p;a=1,--:,k,
to test the hypothesis H'4:
H’4: Oija = 0ij , ’i?fj;'i’j=1’--.,p;a=l’...,k.
Here

Yo = [7)12«, V13ay * * * 5 V23ay * * ° 7vp—l,pa.] .
Hence &, is the dispersion matrix of the system
U12¢ — 012q, Ul3¢ " O13ay " * °, U23n. =02y ° ", Up—l,pa. — Op—1,pa -
&, is a certain arrangement of the elements
(81) Tiikla = TsjaTkla -

Without any further knowledge about the parent distribution we have to
employ v, for studentization. If the normal moment relations (56) are as-
sumed for each vector (70), then (81) becomes ¢ir.0j1a + 5100k = Tixoj1+0:10 %
under the assumption (80) and the hypothesis H’,. Hence formula (68) can be

1 .
used. Replacing each o;; by #:;; = % E Nauvija, we get a test function NA,

whose limiting distribution when H’; is true is the x? distribution with
3p(p — 1)(k — 1) degrees of freedom.
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A final remark

One of our assumptions on the statistic T in (7) is that the function f is de-
fined in the whole mk-dimensional space. But we give examples in which the
functions playing the role of f have less extensive domains of definition. This
difficulty may be overcome by observing that we can extend the definition of
the functions in question by assigning any constant value, for example zero,
as the value of the functions outside their natural domains of definition. The
same consideration applies to the functions in sections 19 and 20.
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