
Comments 

The early works of Iwasawa before around 1950 are mainly 
devoted to group theory in a wider sense. Groups (finite or infinite) 
with various additional structures or satisfying certain specific conditions 
are studied, often ending up with a complete classification. We give 
brief comments on some of them. 

In [3] the structure of a finite group whose lattice of all subgroups 
satisfies a lattice-theoretic condition is thoroughly studied. (E. g. when 
the lattice is modular the group is called an "M-group".) This was 
a starting point of early works of M. Suzuki. The structure theorem 
of finite M-groups is generalized in [6] to the case of infinite M-groups 
under an assumption that a group under consideration is finite if it 
satisfies chain conditions. (Later it appeared that this assumption was 
not satisfied in general.) 

A method employed in [1] in order to prove a finite group to 
be solvable has proved to be very powerful and later, with a generali
zation by N. Ito, found many applications. (E.g. it was used in [3].) 
[2] is a very short but important paper, in which a new method to 
prove the simplicity of PSLn(K) (except the case n=2, K=F 2, F3) 

is given. The method depending on the group action on the flag space 
seems to be suggesting the later development of the theory of BN-pairs. 

In [7] I wasawa considers conditionally complete lattice groups. 
He proves a conjecture of G. Birkhoff that such a group is always 
abelian, and gives a complete structure theorem. In [17] he determines 
the structure of linearly ordered groups, giving a standard construction 
for all such groups. 

In [5] and [10] (in Japanese), of which [11] is a short survey, 
the correspondences between (continuous) representations of locally 
compact groups and their suitably defined "group rings" are discussed. 
[12] gives a basic theory of nilpotent topological groups. (These may 
be regarded as a preparation for [21].) [18] and [22] deal also with 
topological groups. In [16], establishing an analogue in the theory of 
Lie algebras of Artin's splitting groups, he gives a purely algebraic 
proof of the faithful representability of any finite-dimensional Lie 
algebra over an arbitrary field, generalizing a theorem of Ado and 
Cartan in the classical case. 

[13]-[15] are concerned with algebraic geometry. In [13] the 
classical Bezout theorem on intersection numbers is generalized to the 
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case of an algebraic curve and a hypersurface in a multiple projective 
space over an arbitrary ground field. A special case of it is used in the 
theory of algebraic correspondences of two algebraic curves developed 
in [14], [15]. 

In [25] in collaboration with T. Tamagawa (a Japanese survey 
[20]) a new algebraic proof is given for the finiteness of the auto
morphism group of an algebraic function field of genus greater than 
one over an algebraically closed field. His book [63] published in 1952 
contains a beautiful exposition of the classical theory of algebraic 
functions (up to the theorem of Abel and Jacobi) from both historical 
and modem points of view. 

However, the most important contribution of Iwasawa in this 
period is perhaps his work on locally compact groups and (L)-groups 
([21], expository surveys [19], [24]) which gave an essential step to
ward the solution of the fifth problem of Hilbert. 

The fifth problem of Hilbert can be formulated as follows: "Is · 
any locally Euclidean topological group a Lie group?" If the answer 
is affirmative, then it gives a topological characterization of Lie groups 
among topological groups and, at the same time, opens a way to apply 
the powerful algebraic and analytic methods in the theory of Lie groups 
to general locally compact groups. 

In the mid 1940's, when Iwasawa started his study, the fifth 
problem of Hilbert had been solved affirmatively only for compact 
groups (J. von Neumann, 1933) and for abelian groups (L. Pontrjagin, 
1934). He was also informed that it was solved for solvable groups 
(C. Chevalley, 1941 and A. I. Mal'cev, 1945). 

In [21] Iwasawa first makes a detailed study on the structure of 
solvable topological groups and that of Lie groups (in which appears a 
decomposition of a real semisimple Lie group, now called an "I wasawa 
decomposition"). He establishes among other things an extension 
theorem for Lie groups, saying that, for a locally compact group G, 
if there is a closed normal subgroup N such that both N and GIN 
are Lie groups, then G itself is a Lie group. He then introduces a 
notion of (L)-groups: A locally compact group G is called an (L)
group, if there exists a system of closed normal subgroups {Na}; such 
that (i) G / N. is a Lie group, and (ii) n Na= e. If G is connected, 
this is equivalent to saying that G is a projective limit of Lie groups. 
He shows that the class of (connected) (L)-groups is closed under the 
usual group-theoretic operations, i.e. taking (connected) subgroups, 
forming factor groups and group extensions. Compact groups and 
locally compact abelian groups are (L)-groups and hence, by virtue of 
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the extension theorem, so are also connected locally compact solvable 
groups. He also gives two (local and global) structure theorems on 
connected (£)-groups. In particular, he shows that a connected locally 
compact group G is an (£)-group if and only if it is locally the direct 
product of a local Lie group and a (small) compact normal subgroup. 
It follows that, if an (£)-group is locally connected and finite dimen
sional (e.g. if it is locally Euclidean), then it is a Lie group. Thus the 
fifth problem of Hilbert is solved for all (£)-groups. 

As a by-product, he gives some important results on locally com
pact groups in general, for instance, the unique existence of the 
maximal solvable closed normal subgroup (called the "radical"). At 
the end of [21] he mentions the following conjecture: 

(C1) Any connected locally compact group is an (£)-group. 
This has a close connection with the following conjecture of Chevalley: 

(C2) A connected locally compact group with no small subgroup 
is a Lie group. 
(C2 ') A connected locally compact group with no small normal 
subgroup is a Lie group. 

Actually, Iwasawa shows that (C1) and (C/) are equivalent. Of course, 
(C2') trivially implies (C2). [A little later, but independently, A. M. 
Gleason introduced also a notion of "generalized Lie groups" which 
was similar to that of (£)-groups and obtained some of the above 
results of Iwasawa.] 

After Iwasawa a number of mathematicians such as Gleason, 
Montgomery, Zippin, Kuranishi, Yamabe, etc. continued the study on 
these conjectures. In 1952, Gleason confirmed the conjecture (C2) for 
finite-dimensional groups, which led to a general solution of the fifth 
problem by Montgomery and Zippin. In 1953, H. Yamabe (Ann. of 
Math. 58) proved that (C2) implies (C/) and gave a proof of (C2), 
whence follows that all the above conjectures are true. Since the 
Hilbert conjecture was known to be true for (£)-groups, it was proved 
once again and thus all basic questions about the relation between 
locally compact groups and Lie groups were completely settled. 

There is another indirect, but no less important consequence. It 
is clear that from a very early stage of his study, Iwasawa was among 
the few number-theorists (like Artin, Chevalley and Weil) who recog
nized that the theory of locally compact groups would provide very 
powerful tools in number theory. Perhaps the first appearance of such 
applications was [23] and [26]. In the latter, a simple characterization 
of the adele rings of a number field and of an algebraic function field 
by their properties as topological rings is given. The techniques in 
totally disconnected groups, especially pro-p-groups, are indispensable 
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in his later works in number theory. (Ichiro Satake) 

{The above comments on [l], [2], [3] and [6] are due to a communication 
with M. Suzuki, to whom the commentator wishes to express his hearty thanks.} 

From the early 1950's onwards, all of Iwasawa's published papers 
are devoted to algebraic number theory. Their influence has been 
enormous over the last 20 years, having pioneered a method which now 
appears widely applicable, and they have earned him a place amongst 
the select few who have made major advances in a subject which is one 
of the oldest, most highly developed, and beautiful in all of mathematics. 
The evolution of methods and ideas in these papers, as well as the 
elegance and precision of their style, can only be fully appreciated by 
reading the original papers themselves. However, it is hoped that the 
following brief comments, which concentrate on those aspects of Iwasa
wa's work which appear most important today, will serve as a rough 
guide to the mathematician who wishes to embark on reading the original 
papers. I have also briefly indicated where important progress has been 
made on the problems raised by Iwasawa. The references are to the list 
of Iwasawa's publications given in this volume. 

The note [23] at the 1950 International Congress indicates that 
Iwasawa had independently of Tate discovered the adelic approach to 
Hecke's L-functions and their functional equation. However, the domi
nant theme of Iwasawa's work in algebraic number theory is his revolu
tionary idea that previously inaccessible information about the arithmetic 
of a number field F (by a number field, we mean a finite extension of the 
rational field Q) can be obtained by investigating certain infinite towers 
of number fields lying above F. The archetypal example (see his com
ments in the introduction of [371), to which he returns repeatedly as his 
ideas evolve, is the classical theory of cyclotomic fields. For each 
integer m> 1, let µ"' denote the group of m-th roots of unity in some 
algebraic closure of Q. Let p be a prime number, and define 

(1) 

Since the time of Kummer, number-theorists have studied the field F=P, 
but it was Iwasawa who discovered the importance of the infinite tower 
P n (n= I, 2, · · ·) above P. However, from his first paper [35] on these 
questions, he clearly saw that many aspects of his theory were not special 
to the cyclotomic theory. Thus, more generally, he considered infinite 
towers of the form 
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F=F 0CF 1C · · · CFnc · · ·, F®= U Fn, 
n:.eo 

xxi 

where, for all n> 0, Fn is a cyclic extension of F of degree pn. Initially 
[35], he called such towers I'-extensions of F, but subsequently [52] 
introduced the now standard terminology of ZP-extensions (indeed, F00 is 
then an infinite Galois extension of F whose Galois group is topologically 
isomorphic to the additive group of the p-adic integers Zp)- Class field 
theory shows that such ZP-extensions abound in nature (every F admits 
at least I+ rz(F) independent ZP-extensions, with equality if the units of 
F are p-adically independent; here rz(F) denotes the number of pairs of 
conjugate embeddings of F in C). In what follows, we write I' for the 
Galois group of F00 over F, and I' n for the subgroup of I' which fixes Fn. 

The first major group of papers on ZP-extensions are [35], [36], [37]. 
They are algebraic in nature, in the sense that the methods used in them 
do not involve special values of zeta and L-functions attached to F. The 
paper [35] lays the groundwork for the algebraic theory of ZP-extensions, 
and implicitly (but not quite explicitly) introduces what we now call the 
Iwasawa algebra of I', namely 

(3) R= Um Zp[I' Ir nl, 
n 

where Zp[I' / I' nJ denotes the group ring with coefficients in ZP of the 
cyclic group r Ir n of order pn. Let A=Zp[[T]] be the ring of formal 
power series in an indeterminate T with coefficients in ZP. The arguments 
given in [35] about the classification of compact R-modules were simpli
fied by Serre (Sem. Bourbaki, 174, 1958-59), who pointed out that R is 
topologically isomorphic as a ring to A, whence Iwasawa's results could 
be obtained from the known classification theory of finitely generated 
A-modules. Compact R-modules arise naturally in the theory of ZP
extensions as follows. If N 00 is any abelian p-extension of F 00 , which is 
Galois over the base field F, then the Galois group G(N 00 / F 00 ) is a com
pact Zp-module (because it is a projective limit of finite abelian p-groups) 
on which I' acts continuously via inner automorphisms (if x E G(N 00 / F00 ) 

and g e I', define g(x)=gxg-1, where g is any lifting of g to the Galois 
group of N 00 over F00 ). This action then extends by linearity and con
tinuity to a continuous action of R on G(N® / F®). The main arithmetic 
result of [35] asserts that, if we take N 00 to be the maximal unramified 
abelian p-extension L 00 of F00 , then G(L®/ F®) is a finitely generated 
torsion module over R. Let An be the p-primary subgroup of the ideal 
class group of Fn. By identifying An with certain quotients of the R
module G(L 00 / F00 ), Iwasawa deduces his asymptotic formula for the order 
of An, namely that there exist integers l>O, µ>O, u such that, for all 
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sufficiently large n, 

(4) 
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#(A,.)= pln+µpn+•. 

These results are valid for all base fields F, and all ZP-extensions over F. 
Paper [37] returns to the classical situation (I), and is largely concerned 
with the study of the R-module G(M 00 /P 00 ), where M 00 denotes the max
imal abelian p-extension of F00 , which is unramified outside p. Today, 
[37] should be read in conjunction with § 1-9 of [52], since many of its 
results are extended there to the cyclotomic Zp-exten:sion of an arbitrary 
base field F (by the cyclotomic ZP-extension of F, we mean the com
positum with F of the unique ZP-extension of Q contained in P 00 ). 

A second theme that recurs throughout Iwasawa's work is the 
search for analogies between ZP-extensions of number fields and the 
constant field extensions of curves over finite fields. Since the analogue 
of the invariant µ appearing in ( 4) is O in the function field case, he 
already begins to investigate in [33] whether µ is always O for the ZP
extension P 00 / P. Subsequently, this has been proven for the cyclotomic 
ZP-extension of any abelian extension F of Q (Ferrero-Washington, Ann. 
Math. 109 (1979), 377-395, Sinnott, Invent. Math. 75 (1984), 273-282), but 
remains an open question for the cyclotomic ZP-extension of an arbitrary 
base field F. On the other hand, Iwasawa later constructed [53] examples 
of (non-cyclotomic) ZP-extensions F 00 / F where the µ-invariant is positive. 

The next group of papers to consider are [38], [39], [41], [42], [45], 
[46], [47] and [48], of which [41] and [48] are the central ones. They are 
all concerned with the classical case (I) (although [48] deals with all Diri
chlet characters), and are analytic in the sense that the deepest results in 
them depend ultimately on the special values of the Riemann zeta and 
Dirichlet L-functions. In my view, they are the most significant of all, 
since they lead inexorably to the main conjecture, via a remarkable series 
of related results. Taking p odd, let U,. be the group of units in the 
completion of P,. at the unique prime above p, which are = 1 and have 
norm 1 to QP. Let C,. be the classical group of cyclotomic units of P 11, 

which are also = 1 modulo the unique prime above p. Write LI for the 
Galois group of P over Q. The principal result of [41] is the complete 
determination as both a LI-module and an R-module of 

(5) Yoo=lim (U,./C,.)+, 
n 

where C,. denotes the closure of C,. in the p-adic topology, the + denotes 
the elements fixed by complex conjugation, and the projective limit is 
taken with respect to the norm maps. The arguments used are very 
ingenious, and depend on the explicit reciprocity law of Artin-Hasse 
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(today a simpler proof can be given using a suitable generalization to 
fun Un of Kummer's notion of the higher logarithmic derivatives of an 
element of U0, cf. Chap. 13 of the book Cyclotomic Fields by Washington). 
The determination involves certain twisted versions of the classical 
Stickelberger ideals for the extensions P,J Q (n=O, I, .. · ), but the 
startling significance of this only emerges in [48]. Let X be the character 
of the Galois group G(P 00 /Q) with values in the units of Zp, which is 
given by the action on µpoo=Un:eiµp"· Noting that G(P 00 /Q)=flXI', 
we define 

w=Xlfl, p=XII', 

Since the values of p lie in the units = 1 mod p, p' is defined for all s in 
Zp and extends by linearity and continuity to a ZP-algebra homomorphism 

(6) 

Let ¢ be any p-adic character of fl with ¢( -1) = - 1, and suppose for 
simplicity that ¢=/=-w. Then Iwasawa shows in [48] that natural elements 
in the Stickelberger ideals for G(P nl Q) define an element L 1 of R which 
satisfies the remarkable interpolation property that 

for all integers m < 0 such that xm I fl= <p; here i;;(s) denotes the Riemann 
zeta function, and we recall that its values at the odd negative integers 
are non-zero rational numbers. In particular, p'(L 1), for s ranging over 
Zp, is essentially the Kubota-Leopoldt p-adic £-function of the character 
wcp-1 of fl. Thus, combining the results of [41] and [48], one obtains a 
complete determination of the module Y00 in terms of the Kubota
Leopoldt p-adic £-functions. In itself, this is a deep generalization of 
results going back to Kummer, but it is not the ultimate goal since Y00 

cannot naturally be identified with the Galois group over P 00 of some 
abelian p-extension of P 00' Let L 00 be the maximal unramified abelian 
p-extension of P 00 , and put X 00 =G(L 00 /P 00 ). Now fl also operates on X 00 

via inner automorphisms, and X 00 can be decomposed Xoo=EBX~>, where 
,fr runs over the p-adic characters of fl, and X~l denotes the submodule 
on which fl acts via ,fr. If A and B are two R-modules, A - B will mean 
that there is an R-homomorphism from A to B with finite kernel and 
cokernel. Take ,fr=</>, where¢ as above is any odd character of fl distinct 
from w. Iwasawa points out that the results of [48], together with the 
classical Stickelberger theorem, imply that L1 annihilates the module 
X~>, and that if p satisfies Vandiver's conjecture (i.e. p does not divide 
the class number of the maximal real subfield of P), then 
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(7) 

It is now an obvious step to pass to the formulation of the main 
conjecture, which avoids the seemingly inaccessible Vandiver conjecture. 
The algebraic arguments of [35] show that there exists a pseudo
isomorphism 

(8) 

The main conjecture asserts that, up to a unit in R, the product of the 
elements h,v, (l<i<rv,) appearing in (8) is equal to Ly,. But it says 
nothing at all about the integer ry, occurring in (8). Iwasawa probably 
correctly sensed that it needed ideas from outside the theory of cyclotomic 
fields to prove the main conjecture. Indeed, after a beautiful initial 
breakthrough by Ribet (Invent. Math. 34 (1976), 151-162), it was proven 
in the great paper of Mazur-and Wiles (Invent. Math. ,76..(1984), 179-330), 
using methods from modular forms*l. Subsequently, Wiles has even 
established an analogue of the main conjecture for the field obtained by 
adjoining all p-power roots of unity to an arbitrary totally real number 
field. Finally, while we have stressed the importance of this group of 
papers for the discovery of the main conjecture, there is much else of 
interest in them. For example, [46] establishes a general formula for the 
Hilbert norm residue symbol in the completion of P n at the unique 
prime above p, which does much to explain what lies behind the explicit 
formulae of Artin and Hasse (for a generalization to Lubin-Tate formal 
groups, see Wiles, Ann. Math. 107 (1978), 235-254). 

Most of the subsequent papers contain further developments of the 
theory of ZP-extensions, and, for brevity, we only mention two speci
fically, which both pursue aspects of thej,arallels between the cyclotomic 
ZP-extensions of number fields and curves over finite fields. The latter 
part of [52] gives the detailed construction of a skew-symmetric bilinear 
form, which is analogous to the Weil pairing on the Tate module of the 
Jacobian of a curve over a finite field (see Wingberg, Comp. Math. 55 
(1985), 333-381 for an alternative description of this bilinear form). 
Paper [58] elaborates work of Kida on an analogue for the A-invariant 
appearing in (4) of the classical Riemann-Hurwitz formula for the genus 
change in a covering of compact Riemann surfaces. Finally, the paper 
[56] takes up again the question of possible generalizations of the classical 
Stickelberger theorem on annihilators of ideal class groups. 

(John Coates) 

*> Since these comments were written, V. Kolyvagin (extending earlier work of 
himself and F. Thaine) has found a remarkable new proof on the main conjecture, 
which uses only classical methods from cyclotomic fields, together with Iwasawa's 
work (notably his determination of Y =), 




