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Abstract. We study some properties of the tangent bundles with metrics 
of general natural lifted type. We consider a Riemannian manifold (M, g) 
and we find the conditions under which the Riemannian manifold (TM,  G), 
where T M  is the tangent bundle of M  and G is the general natural lifted 
metric of g, has constant sectional curvature.

1. Introduction

In the geometry of the tangent bundle TM  of a smooth n-dimensional Riemannian 
manifold (M, g) one uses several Riemannian and pseudo-Riemannian metrics, in­
duced by the Riemannian metric g on M. Among them, we may quote the Sasaki 
metric, the Cheeger-Gromoll metric and the complete lift of the metric g. The 
possibility to consider vertical, complete and horizontal lifts on the tangent bundle 
T M  (see [18]) leads to some interesting geometric structures, studied in the last 
years (see [1-3,8,9,17]), and to interesting relations with some problems in La- 
grangian and Hamiltonian mechanics. On the other hand, the natural lifts of g to 
T M  (introduced in [5,6]) induce some new Riemannian and pseudo-Riemannian 
geometric structures with many nice geometric properties (see [4,5]).
Oproiu [11-13] has studied some properties of a natural lift G, of diagonal type, 
of the Riemannian metric g and a natural almost complex structure J  of diagonal 
type on T M  (see also [15,16]). In [10], the same author has presented a general 
expression of the natural almost complex structures on T M . In the definition of 
the natural almost complex structure J  of general type there are involved eight 
parameters (smooth functions of the density energy on TM ). However, from the 
condition for J  to define an almost complex structure, four of the above parameters 
can be expressed as (rational) functions of the other four parameters. A Riemann- 
ian metric G which is a natural lift of general type of the metric g depends on other

198



The Sectional Curvature of Tangent Bundles ... 199

six parameters. In [14] we have found the conditions under which the Kählerian 
manifold (T M ,G ,J ) has constant holomorphic sectional curvature.
In the present paper we study the sectional curvature of the tangent bundle of a 
Riemannian manifold (M, g). Namely, we are interested in finding the conditions 
under which the Riemannian manifold (TM, G), where G is the general natural 
lifted metric of g, has constant sectional curvature. We obtain that the sectional 
curvature of (T M, G) is zero and the base manifold must be flat.

2. Preliminary Results

Consider a smooth n -dimensional Riemannian manifold (M ,g ) and denote its 
tangent bundle by t : TM — > M . Recall that TM  has a structure of a 2n - 
dimensional smooth manifold, induced from the smooth manifold structure of M . 
This structure is obtained by using local charts on TM  induced from usual local 
charts on M . If (U, <p) = (U, x 1, . . . , xn) is a local chart on M , then the cor­
responding induced local chart on T M  is (t -1 (U) , $) =  (t -1 (U ),x 1, . . . ,  x n , 
y1, . . . , yn), where the local coordinates x\  yj , i, j  =  1, . . . ,  n , are defined as fol­
lows. The first n local coordinates of a tangent vector y G t -1 (U) are the local 
coordinates in the local chart (U, ^>) of its base point, i.e., x* =  x* o t , by an abuse 
of notation. The last n local coordinates yj , j  =  1, . . . ,  n , of y G t -1 (U) are the 
vector space coordinates of y with respect to the natural basis in Tty  M  defined by 
the local chart (U, ^>). Due to this special structure of differentiable manifold for 
T M , it is possible to introduce the concept of M -tensor field on it. The M -tensor 
fields are defined by their components with respect to the induced local charts on 
TM  (hence they are defined locally), but they can be interpreted as some (partial) 
usual tensor fields on T M . However, the essential quality of an M -tensor field on 
TM  is that the local coordinate change rule of its components with respect to the 
change of induced local charts is the same as the local coordinate change rule of 
the components of an usual tensor field on M with respect to the change of local 
charts on M . More precisely, an M -tensor field of type (p, q) on T M  is defined by 
sets of np+q components (functions depending on x* and y*), with p upper indices 
and q lower indices, assigned to induced local charts (t -1 (U) , $) on T M , such 
that the local coordinate change rule of these components (with respect to induced 
local charts on TM ) is that of the local coordinate components of a tensor field of 
type (p, q) on the base manifold M (with respect to usual local charts on M ), when 
a change of local charts on M (and hence on T M ) is performed (see [7] for further 
details); e.g., the components y\  i =  1, . . . ,  n , corresponding to the last n local 
coordinates of a tangent vector y, assigned to the induced local chart (t -1 (U) , $) 
define an M -tensor field of type (1, 0) on TM  .A n usual tensor field of type (p, q) 
on M may be thought of as an M -tensor field of type (p, q) on T M . If the con­
sidered tensor field on M is covariant only, the corresponding M -tensor field on
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T M  may be identified with the induced (pullback by t) tensor field on T M . Some 
useful M-tensor fields on T M  may be obtained as follows. Let u : [0, œ ) — > R 
be a smooth function and let ||y||2 =  gT(y)(y, y) be the square of the norm of the 
tangent vector y G t - 1(U). If öj are the Kronecker symbols (in fact, they are the 
local coordinate components of the identity tensor field I  on M ), then the com­
ponents u (||y ||2)öj define an M-tensor field of type (1,1) on T M . Similarly, if 
gij (x) are the local coordinate components of the metric tensor field g on M  in the 
local chart (U, >̂), then the components u(HyH2)gij define a symmetric M-tensor 
field of type (0,2) on T M . The components g0i = y kgki define an M-tensor field 
of type (0,1) on T M .
Denote by V the Levi-Civita connection of the Riemannian metric g on M . Then 
we have the direct sum decomposition

T T M  =  V T M  ® H T M  (1)

of the tangent bundle to T M  into the vertical distribution V T M  = Ker t* 
and the horizontal distribution H T M  defined by V . The set of vector fields 
(dyr, . . . ,  on t - 1(U) defines a local frame field for V TM  and for H T M

we have the local frame field ( A , . . . ,  A ) , where

0   d   rh  d rh    ykrh
öxi =  d x i 0i dyh, 0i =  y ki

and V!hi (x) are the Christoffel symbols of g.

The set (gyT, . . . ,  , . . . ,  defines a local frame on T M , adapted to the
direct sum decomposition (1). Remark that

A -  f  A  A A -  f  A  A
dyi V dxv , öxi Vdxi /

where X V and X H denote the vertical and horizontal lift of the vector field X  
on M  respectively. We can use the vertical and horizontal lifts in order to obtain 
invariant expressions for some results in this paper. However, we should prefer to 
work in local coordinates since the formulas are obtained easier and, in a certain 
sense, they are more natural.
We can easily obtain the following

Lemma 1. I f  n > 1 and u, v are smooth functions on T M  such that

ugij +  vgoigoj = 0
on the domain o f any induced local chart on T M , then u  =  0, v =  0.

Remark. In a similar way we obtain from the condition

uöj +  vgoj y i =  0
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the relation u = v =  0.
Consider the energy density of the tangent vector y with respect to the Riemannian 
metric g

t
1
2

2 1
2gT(y) (y, y)

1
29ik (x)yiy k,

Obviously, we have t G [0, to) for all y G T M .

y g t -1 (U).

3. The Sectional Curvature of the Tangent Bundle with General 
Natural Lifted Metric

Let G be the general natural lifted metric on T M , defined by

G ( i X  ■ j  = cigi i + d1g0ig0> = G j

G ( d ? ' lj )  = C2gij +  d2g0ig0j = Gj

/_d_ J _  
V dyi , fixj

/_5_ _d_ 
V fix'1, dyj c3gij + d3g0ig0j g (3)Gij

(2)

where c1, c2, c3, d1, d2, d3 are six smooth functions of the density energy on T M . 
The Levi-Civita connection V of the Riemannian manifold (TM, G) is obtained 
from the formula

2G (V x Y, Z ) = X (G (X, Z )) +  Y (G (X,  Z )) -  Z (G (X,  Y )) +  G ([X,  Y ], Z )
-  G([X, Z ], Y ) -  G ([Y, Z  ], X  )

for all X, Y, Z G x (M ) and is characterized by the conditions

VG =  0, T  =  0

where T  is the torsion tensor of V.
In the case of the tangent bundle T M  we can obtain the explicit expression of V. 
The symmetric 2n x  2n matrix

( Gj  j

associated to the metric G in the base ( JxT, . . . ,  , gyT, . . . ,  has the inverse

/ H ij H ij \| H (1) H (3) !
Hij Hij
H(3) H(2)
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where the entries are the blocks

H I) =  Vi9kl +  QiVk y l

H(2) =  P29kl +  q2Vk Vl (3)

H(k3l) =  P39kl +  q3Vk Vl.

Here gkl are the components of the inverse of the matrix (g j ) and pi, qp p2, q2, 
p3, q3 : [0, to) ^  R, some real smooth functions. Their expressions are obtained 
by solving the system

r i (1) T j hk I r i (3) T j hk   rk
Gih H (1) +  Gih #(3) =

Glh)H('3)+ Glh)H|2) = 0  

Glh)H(hk+ C l ? # “  = 0
G(3) Hhk I C(2) phk   rk
Gih #(3) +  Gih #(2) =  °i

in which we substitute the relations (2) and (3). By using Lemma 1, we get p 1, p2, 
p3 as functions of c1, c2, c3

P1 =
C2

2 ,C1C2 -  C3
p2 =

C1
2 ,C1C2 -  C3

p3 =  - _Ç3___
C1C2 -  c3

(4)

and q1, q2, q3 as functions of c1, c2, c3, d1, d2, d3, p 1, p2, p3

q1

q2

q3

C2d1 p1 -  C3d3p1 -  C3d2p3 +  C2^3p3 +  2d ^ p ^  -  2d2p1t 
c1c2 -  c3 +  2c2d1t +  2c1d2t -  4c3d3t +  4d1d2t2 -  4d312 

_  d2p2 +  d3p3 (
C2 +  2 d2t

+ (c3 +  2d3t)[(d3p1 +  d2p3)(c! +  2djt) -  ( d ^  +  d3p3)(c3 +  2d3t)]
(c2 +  2d2t)[(c1 +  2d1t)(c2 +  2d2t) -  (c3 +  2d3t)2]

_  (d3pj +  d2p3)(c! +  2djt) -  (djp! +  d3p3)(c3 +  2d31)
(c1 +  2d1 t)(c2 +  2d2t) -  (c3 +  2d3t)2

In [14] we obtained the expression of the Levi-Civita connection of the Riemannian 
metric G on T M .

Theorem 1. The Levi-Civita connection V  o f G has the following expression in
__  jp_ _s_

vdy!, . . . , dyn , fe1, . . . , Sxnthe local adapted frame ( j y i , . . . ,  dyn, j f i , . . . ,  ^xn)

y  d _ Qh d +  q h ^ y  d _ (rh  +  ph ) d +  ph ^
V dyi dVj =  Qij dVh +  Qij f e h, V y? dVj =  (i ij +  Pji) dVh +  Pji f e h
y  ^ _ p  h ^ +  p  h d y7 ^ _ (rh  +  ph ) ^ +  s h d
V -Ü j =  Pij 6xh +  Pij dVh, V yXi j =  (i ij +  Sij ) 6xh +  - h8yz
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where r j  are the Christoffel symbols o f the connection V and the M-tensor fields 
appearing as coefficients in the above expressions are given as

Q ] = 2(»-GS ’ +  d jG’!? -  d k + 1(9 .G ‘Ï  +  djG ^ H g )

Qh = |(0 iG jk ) +  djg (2) -  dkGj2)) H $  + i(a ,G < ï +  djG ^ H g )rkh

Pih = |(0 iG jk ) -  dkG!?)H kh + i( a ,G j! ) +  R0jkG ^ H " )

Pth = 2 (diGj ï  -  dk j H *  + i ( 9,Gjk) +  R0jkG^ Hg)2 t ~rjk ^k^ i j  ) (2) ' 2 î~'l^Tjk ' ''Qjk^li

s ]  = -  2(dk G!j2) +  RQij G((k))H(kh) +  caRiQjfc H $

V2K irkhSihj =  -  2 (dk G!1) +  RQij G((k))H(kh) +  caRiQjk Hkh

2

\ ( dk Gij

where R !hij are the components o f the curvature tensor field o f the Levi Civita 
connection V  of the base manifold (M, g).

Taking into account the expressions (2), (3) and by using the formulas (4), (5) we 
can obtain the detailed expressions of P j , Qhj, S] , P j , Q] , S] .
The curvature tensor field K  of the connection V is defined by the well known 
formula

K  (X , Y )Z  = V x  V y  Z  -  V y  V x  Z  -  V [x,y ]Z, X ,Y ,Z  g r ( TM  ) .

By using the local adapted frame ( V , d j , i , j  =  1, . . .  ,n , we obtained in [14], 
after a standard straightforward computation

K A  A  -
bxi, bxj J bxk

X X X X h b
kij bxh

+  XXXYkh d
kij dyh

K

K

A  M  A  =  X X Y X h A  +  X X Y Y h A
bxi, bxj /  dyk kij bxh + kij dyh

i  X  = y y x x ^ „ X + YYXYkij ̂
(  d d
V dy%' dyj J bxk

K

K

K

d d
Lkij bxh 

b\ d b d
tt- , TT- =  YYYXk j —^  +  YYYYjhii— -rdy11 dyj J dyk j bxh j dyh

—  —  \  A  =  Y X X X h A  +  YXXY h A
dyi, bxj J bxk kij bxh + kij dyh

A  A  VA =  YXYX h A  +  YXYY ]  A
dyi , bxV dyk kij bxh kij dyh

where the M -tensor fields appearing as coefficients denote the horizontal and ver­
tical components of the curvature tensor of the tangent bundle, and they are given
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by

X X X X k i j  

X X X Y k ij =

nh ni I ph ni nh nl ph nl i ph i pi phSilSjk ' Pli Sjk SjlS ik PljS i k ' R kij ' R0ijPlk
ni h n h i ni h n h i n h i SjkS il + Pli Sjk S ikSjl PljS ik + Plk R0ij

-  1 V iR j  G% }Hh3) +  csV iR2 j 0kh

X X Y X h i3 nl h l nh nl h l nh l nhPkj Pli + Pkj S il PkiPlj PkiS jl + R 0ij Qlk
XXYYfhij = 

Y Y X X h j  

Y Y X Y k ij 

YYYXkhij 

Y Y Y Y k ij 

Y X X X k hij

YXXYjhij =

nl nh l h nl nh l h l h hPkj Pli + Pkj S il PkiPlj PkiSjl + R0ij Qlk + Rkij
h h nl nh l h nl nh l h° iPjk -  °3 Pik + Pjk Qil + Pjk Pil -  Pik Qjl -  Pik Pjl

nh nh nl h l nh nl h l nh° iPjk -  °3 Pik + Pjk Qil + Pjk Pil -  Pik Qjl -  Pik Pjl

diQ )k -  dj Q hk + Qjk Qü +  Q jk Pü -  QlikQ fl -  Q\k Pjl

jk
f). nh I nl n  h I cl ph nl ph pi nh pr p (2h r ( 3)U-iO jk + SjkQil + SjkPil PikPlj PikSjl V 3 R 0ikGrl Hhl
f). Qh I a l r ) h I n l p h p i  p h p i  n h p r r<(2Kj(l)diSjk + SjkQil + SjkPil PikPlj Pik Sjl V 3 R0ikGrl Hhl

h
ik S jl 

h

YXYXkhjj = d iP hj+ Pkjq ü + Pkjpü  -  QikPih -  Qik j

Y X Y Y khij =

h
diP kj + P kj Qil + P kj Pil

nh nl h l nh l nh nl h° iPkj + Pkj Qil + Pkj Pil -  Qik Plj -  Qik Sj l .

We mention that we used the character X  on a certain position to indicate that the 
argument on that position was a horizontal vector field and, similarly, we used the 
character Y  for vertical vector fields.
We compute the partial derivatives with respect to the tangential coordinates y i of
of Gjak and H j^ , for a  =  1,2,3

diG (a)
jk

» 3
a ß j o f , )

cag0ig jk + dag0ig0j g0k + dagij g0k + dag0igjk

p,agjk 90i +  q'a 90iyj yk +  qadj yk +  qayj sf

ca g0ig0j gkl +  ca gij gkl +  da g0j g0k g0l +  dagij g0kg0l +  dag0j gik g0l 

+ dag0jg0kgil + dag0igjkg0l + dag0ig0kgjl + dagjkgil + dagikgj l .

Next we get the first order partial derivatives with respect to the tangential coordi­
nates yi of the M -tensor fields Pi), Qü , S ü3 , Pij, Qfjj ,ij ij ij ij ij ij

diQhk 1 ö iH fo id j Gk f +  dk g)  ) -  d j  

+ 1  Hh)(did3Gkf) +  didkGGf -  didiGjk)
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2 ( d  Gif’ +  a,:. g (3)' 1

d j  =  2 S.H jj')O jG ,2’ +  9 ,Gj2’ -  d j

+ 2  ̂ ( “ (d  Gif’ +  d,  Gj f )  + -  Hh) (did , Gif’ +  9.9,  Gjf3’)

+ 1 H h )(9.9,G,2’ +  9 .9 ,G<? -  9.9,G<2’)2 h (3)VUiUl Gkl ,, Tjk

+ 2  SiH f/’O j Gif’ +  d,  Gjf ’) + -  H “ ) (9.9j Gif’ +  9.9,  G,  ’) 

1

ï(3)) 1

(̂3)' ■ 1
=  2 ̂ ’( d  Gi?  -  d j  +  2 H (2l)(d.dj Gi?  -  Gj3i))

+ 2  d.H((fi) (dj Gi ^ + Ro,i g ,  )

+ 0  Hh3i) (d.dj Gi ^ + RriiGr j + R0ii d.Gr? )(3)td.dJu i M  R m Grj ~T R0iid.Grj

9 .P 'i  =  - 9 .H '‘fi)(9jG if’ -  diG ji’) +  - H ^ M j G i f ’ -  9.9>Gjf’)
1

2 2 H (3) Vd.dj Gii

+ 2  d.H (ii) (dj Gi ^ + Roii Gr j )

1 H"hi2 H (i) (d.dj G,i+ 0 H m  (d.dj Gi^  +  RriiGr j  +  Roii * Gj )

d. j  =  -  2[(d.dr G^i’ +  R iji G ^ f f g  +  (dr G ,,’ +  R j  G((r2’)d.

+ c3g0.Rj0ir H (3) +  c3(Rj.ir  H (3) +  Rj0ir d.H (3))

d. j  =  - 2  [(d.drG^i’ +  Ri j iG ^ H ^  +  (drGj i ’ +  RojiG(r2))d.

oj
r(
3)

oj
r(

H r(

H r(

+ c35,0.Rj0ir H (1) +  c3(Rj.ir  H (1) +  Rj0ir d.H (1)) .

It was not convenient to think c1; c2, c3, d1; d2, d3 and p 1; p2, p3, qi, q2, q3 
as functions of t since RICCI did not make some useful factorizations after the 
command TensorSimplify. We decided to consider these functions as well as 
their derivatives of first, second and third order, as constants, the tangent vector y 
as a first order tensor, the components G j1’, G(2), G j , H j , H j , H j  as second 
order tensors and so on, on the Riemannian manifold M , the associated indices 
being h, i, j ,  k, l, r, s.

The tensor field corresponding to the curvature tensor field of a Riemannian mani­
fold (TM, G) having constant sectional curvature k, is given by the formula

Ko(X, Y)Z  =  k[G(Y,Z)X -  G(X, Z)Y ].
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After a straightforward computation we obtain

Ko

K o

Ko

Ko

K  ( ±  M  A
V6x* ’ 6xj )  öxk

K  (  A  A  ̂  A
V Sxl ’ 6xj /  dyk 

d d \  6 
dy* ’ d y v  6xk 
d d \  d

6

dy* ’ dyj 7 dyk

A  A  ̂  A
dy* ’ 6xj /  6xk 

(  d 6 \  d 
V dy* ’ 6xj /  dyk

X X X X  A  6xh 
6

X X Y X  A  6xh 
6

Y Y X X  A  6xh  
6

YYYX 0« j 6 ?
6

Y X X X  A  6xh 
6

Y X Y X  A  6xh

d
+ X X X Y  A  dyh

d
+ x x y y  a  dyh

d
+  Y Y X Y  — h

d
+ YYYY A  ̂

d
+  y x x y  a  dyh

d
+  YXY Y  A  dyh

where the M-tensor fields appearing as coefficients are the horizontal and vertical 
components of the tensor Ko and they are given by

X X X X 0hij =  k j h  -  A 6 h ]  , XXXYOhij =  0

XXY X 0hij =  MG^A -  A j  X X Y Y 0 hkl3 = 0

YYXX0hij =  0 , YYXYOhij =  k j h  -  G ^  j

Y Y Y X 0hij =  0, YYYY0hij =  k j h  -  A A
Y X X X  0hij =  -k G (3 )6h, Y X X Y  0hj =  kG jkA

Y X Y X  0hij =  -k G (2)6h, YXYY0hij =  k G ^ A

In order to get the conditions under which (TM, G) is a Riemannian manifold 
of constant sectional curvature, we study the vanishing of the components of the 
difference K -  Ko. In this study it is useful the following generic result similar to 
the Lemma 1.

Lemma 2. I f  a , . . . ,  a 10 are smooth functions on T M  such that

a 16hgjk +  a 26jj gik +  a 36hgij +  a 46hg0ig0j +  a 56jh g0ig0k +  a 66hg0jg0k

+  a 7 j  go *yh +  a 8 g*k goj yh +  aggij gok yh +  a iogo*goj gok yh =  0

then a 1 =  ■ ■ ■ =  a 10 =  0.

After a detailed analysis of several terms in the vanishing problem of the compo­
nents of the above difference we can formulate the following proposition.
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Proposition 1. Let (M, g) be a Riemannian manifold. I f  the tangent bundle T M  
with the general natural lifted metric G has constant sectional curvature, then the 
base manifold is flat.

Proof: For y =  0 the difference X X Y Y /h j — X X Y Y 0 fkij reduces to R j  •
If the sectional curvature of the tangent bundle is constant, this difference vanishes, 
so the curvature of the base manifold must vanish too. □

4. Tangent Bundles with Constant Sectional Curvature

Theorem 2. Let (M,  g) be a Riemannian manifold. The tangent bundle T M  with 
the natural lifted metric G has constant sectional curvature if and only if the base 
manifold is flat and the metric G has the associated matrix o f the form

cgij ßgtj +  ß ' goigoj
ßn + R'n n an + a'ß2+2a'ßß't—2aß’2t g g \ßgij + ß g0ig0j agij + ß2 g0ig0j

where a and ß are two real smooth function depending on the energy density and 
c is an arbitrary constant. Moreover, in this case, T M  is flat, i.e. k =  0.

Proof: In Proposition 1 we have proved that the base manifold of the tangent bun­
dle with constant sectional curvature must be flat. By using the RICCI package 
of the program M ath em a tica , we impose the vanishing condition for the curva­
ture tensor of the base manifold in all the differences between the components of 
the curvature tensors K  and K 0 of T M . After a long computation we find some 
differences in which the third terms are of one of the Forms' , 2C3d—rr rr S i in the

case of the differences Y X X X k j — Y X X X 0jjij and Y X Y Y ^  — Y X Y Y 0jji j , 

2CC2—C> nijSh for ,he difference — Y X X Y and 25: ^ nij
for Y X Y X h i j  — Y X Y X k i j •
As all the coefficients which appear in these differences must vanish, we obtain 
d\ = 0, because ci and c3, or c2 and c3 cannot vanish at the same time, the metric 
n being non-degenerated.
If we impose d1 =  0 in XX XYjhjj — X X X Y 0 ^  we obtain that this difference 
contains the factors c1c/1(c/1c3 — c1c/3 +  c1d3). Thus, for the annulation of this 
difference, we have the cases c1 =  ClC3—Clda or c1 = const (c1 =  0 being a 
particular case).

The first case, c1 =  ClC3 Cld3 is not a favorable one, because the difference 
Y Y Y Y k j  — Y Y Y Y 0^- contains two summands which cannot vanish

1
2t njk Sh

1
2tRik Sj .
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In the case c1 =  const we obtain

X X X X k j  — X X X X ohij =  -c ik (g jk5? — gtkô j  

from which ci =  0 or k =  0. If ci =  0

X Y X kij — X X Y X  °kij = —k(c3 gjk5  — c3gik 5j — därfgoigok +  d3ôh goj gok ).

As we considered c1 =  0, we cannot have c3 =  0 because the metric g must be 
non-degenerated, so the parenthesis cannot vanish and it remains k =  0. Now we 
can conclude that the tangent bundle with general natural lifted metric cannot have 
nonzero sectional curvature.
We continue the study of the general case ci =  const, since the case ci =  0 is a 
particular case only. Because the sectional curvature of the tangent bundle, k , is 
null, we obtain that the difference X X Y Y ^j — X X Y Y 0?ij- vanishes if and only 
if d3 =  c3. This condition makes vanish all the differences that we study, except 
YYYXjhij — YYYX0?ij-. From the annulation of this last difference, we obtain

d2 — c2 +  2t
C2C3C3 c2c32

C2c3

If we denote c1 by c, c2 by a  and c3 by ß, we obtain that the matrix associated to 
the metric G has the form given in Theorem 2.
Therefore, Theorem 2 gives the unique form of the matrix associated to the metric
G. □
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