
Eighth International Conference on 
Geometry, Integrality and Quantization 
June 9-14, 2006, Varna, Bulgaria 
Ivaïlo M. Mladenov and Manuel de Leon, Editors 
SOFTEX, Sofia 2007, pp 312-321
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Abstract, The membrane shape equation derived by Helfrich and Ou-Yang 
describes the equilibrium shapes of biomembranes, built by bilayers of am
phiphilic molecules, in terms of the mean and Gaussian curvatures of their 
middle-surfaces. Here, we present a new class of translationally-invariant 
solutions to this equation in terms of die elliptic functions which completes 
die solutions found earlier. In this way, all translationally-invariant solutions 
to die membrane shape equation are determined. Special attention is paid 
to diose translationally-invariant solutions of the membrane shape equation 
which determine closed cylindrical (tube-like) surfaces (membrane shapes). 
Several examples of such surfaces are presented.

1. Introduction

Within the framework of the Helfrich spontaneous curvature model [3], the equi
librium shapes of a biomembrane, assumed as a bilayer of amphiphilic molecules 
(phospholipids, for instance), are described in terms of the mean H  and Gaussian 
K  curvatures of its middle-surface S  by the membrane shape equation [7, 8]

2kcA H  +  kc (2H +  li) (2H 2 - h H -  2K)  -  2XH + p = 0 (1)

where kc, li and A are real constants representing the bending rigidity, spontaneous 
curvature and tensile stress of the membrane, respectively, while p is the osmotic 
pressure difference between the outer and inner media assumed to be a real constant 
loo. Here, A is the Laplace-Beltrami operator on the surface S.
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In a previous study by the present authors (see [10]), it is established that the 
six-parameter group of motions in the three dimensional Euclidean space is the 
largest group of point transformations admitted by the membrane shape equation 
in Mongé representation. In that work, all types of non-equivalent group-invariant 
solutions of this equation are identified via an optimal system of one-dimensional 
subalgebras of the symmetry algebra and the corresponding reduced equations are 
derived. In [10], special attention is paid to the translationally-invariant solu
tions of the membrane shape equation assuming that the osmotic pressure differ
ence p /  0 since the case p =  0 is thoroughly studied elsewhere (see [4, 5,9,11]). 
All translationally-invariant solutions to the membrane shape equation that can be 
expressed in elementary functions and some solutions that are given in terms of 
elliptic functions are obtained in [10]. The aim of this study is to determine all 
other translationally-invariant solutions of the membrane shape equation in Mongé 
representation.

2. Translationally-invariant Solutions

In [10], it is shown that the translationally-invariant solutions of the membrane 
shape equation (1) in Mongé representation correspond to cylindrical surfaces in 
R3 whose directrices are plane curves T of curvature Ik(s) =  2H(s)  that satisfies 
the equation

d2lk
2 - ^ -  +  Ik3 — /ilk — a  =  0 (2)

where
„ o 2A 

/i -- I l H-- ---, a =
2 p
kc

s being the arc length of the respective curve T. The generatrices of the foregoing 
cylindrical surfaces are perpendicular to the plane the directrices T lie in. Once a 
solution Ik(s) of equation (2) is known in an explicit form, it is possible to recover 
the embedding s >— > (x(s) ,z(s))  of the corresponding curve T in the X O Z  plane 
(up to a rigid motion) by solving the system

dx(s) d2z(s) 
ds ds2 

/  dx(s)
I ds

d2a:(s) dz(s) 
ds2 ds =  k(s)

=  1.
(3)

Thus, the main problem to solve is to find the solutions of equation (2).
This equation is studied by Arreaga et al [1] with the aim to determine the equilib
ria of an elastic loop in the plane subject to the constraints of fixed length and fixed 
enclosed area. In the three dimensional case considered here, each such loop will
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determine a directrix T of a cylindrical surface that corresponds to a translationally- 
invariant solution of the membrane shape equation. In [1], the determination of the 
curvature Ik at equilibrium is reduced to the study of the motion of a particle in a 
quartic potential. Indeed, equation (2) is the Euler-Lagrange equation associated 
with the functional

in which Ik, T  and U can be thought of as the displacement, kinetic energy and 
potential energy, respectively, of some fictitious particle. In this setting, s plays 
the role of the time. Using this analogy, the authors succeeded in obtaining a 
purely geometric construction for determination of the curvature of the loop pass
ing through a given point of the plane without a reference to explicit expressions 
for the solutions of equation (2).
However, in our opinion, the knowledge of the solutions of this equation in an 
explicit form is an important and powerful tool in determination of the surfaces 
that are translationally-invariant solutions of the membrane shape equation. For 
this reason, the authors determined some explicit solutions in the previous study 
[10] and complete this problem here.
Evidently, equation (2) admits the one-parameter group of translations of the inde
pendent variable s as a variational symmetry group. Hence, by virtue of Noether’s 
theorem, there is a conservation law of density E  =  T  +  U, further referred to as 
the total energy, that is a first integral

that holds on its smooth solutions. In characteristic form (see [6]), the above con
servation law reads

Therefore, each solution Ik =  Ik(s) of equation (2), which is not identically a 
constant, corresponds to a certain real value of the total energy E,  and satisfies the 
equation

Bearing in mind that the coefficients of the polynomial F(Ik) are real numbers, 
the foregoing value of the total energy E  is such that the polynomial F(Ik) has 
at least two different real roots, otherwise the function F(Ik(s)) could not take 
non-negative values as required by the first relation in (5). In the light of the above, 
there are only two possibilities for the roots of the polynomial F(lk), namely: I) the
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four roots are real; II) two of the roots are real and the other two tire a complex 
conjugate pair. Now, we denote by a , T, 7 and 5 the roots of the polynomial P(Ik) 
and specialize to the cases in which P(Ik) has simple roots, so that without loss 
of generality in the first case we consider a  < ß  < 7  < 5  and in the second 
one a, ß  e  K, a  < ß  and 7 , ö G C \  K, ö =  7 . Thus, the polynomial P(Ik) is 
uounegalive in the intervals a  < Ik < ß  and 7 < Ik < J, in case I), and in the 
interval a  < Ik < T, in case II). These situations tire depicted as c) and d) cases in 
Fig. 1.

P p

p

- 2 - 1 0  1 2

Figure 1, Four different types of polynomials P(lk): a) two real roots 
-  one simple and one triple, ß =  1.89, a =  —1, E  =  2.72; b) three 
real roots -  two simple and one double ß =  4.06, a =  — 1, E  =  0.06; 
c) four simple real roots, ß =  3, a =  —1, E  =  —0.1; d) two simple 
real roots and a pair of complex conjugated roots, ß =  1, a = — 1, 
E  =  1.

All solutions in elementary functions of equation (2) corresponding to the multiple 
roots of the polynomial P(Ik) tire presented in [10]. That is why, only the cases, in 
which P(Ik) has simple roots tire considered here.
It should be noted that the roots a , T, 7 and 5 of the polynomial P (k) can be 
expressed through its coefficients ß, a and E  as follows

a  =
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k =  3 (3V 2 +  y/x) ~ d (V  + 2332f )

X = 3 (23E  ( j j i 2 + 8 E ) 2 -  3?2fMT2'Sj  -  a 2 (2p3 -  3V ) )

O
~2

By Vieta’s formulas we also have

p. = —~ (a ß  + 07 + aS + ß x  + ßS + yS) 

a = ~ (a ß x  + aßS  + ety S + ßy 5)
4

E  = - - a ß x  S.

(6)

and

a  + ß  + y  + S = 0 (7)

due to the absence of a term with Ik3 in the polynomial F  (Ik). The condition a ß  0 
implies

a  +  0 /  0, «  +  7 /  0, 0 +  7 /O .  (8)

3. New Explicit Solutions

Explicit expressions for the solutions of equation (2) are given in Lemma 1 and 
Lemma 2 for cases I) and II), respectively. Lemma 3 shows that any other periodic 
solution to equation (2) coincides (up to a shift of the independent variable) with 
one of these solutions.

Lemma 1. Given p, and a, let E  be such that the roots a, ß, 7 and 5 o f the cor
responding polynomial F(lk) are real numbers ordered in the following manner: 
a  <  ß  < 7 < 5. Consider the functions

lki(s)

Jk2(s)

________( ß - a ) ( ß - ß )
('5 — ß)  +  (ß — a )sn2(us, k )

-  i l - ß ) ( ß - ß )
’ (S — ß) — (S — 7 )sn2(us, k )

(9)

( 10)
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o f the real variable s in which the parameter u and the elliptic module k are given 
by the formulas

u = ^ ( 7  -  a)(S -  ß), k  =

Then, both functions (9) and (10) are real-valued, they are periodic with period 
(2/ u )K(k )  and satisfy equation (2).

l( ß - a ) ( ß - l )  
(7 — a) (5 — ß) ( H )

Proof: It is easy to see that the condition a < ß < " f < S E K .  and expres
sions (11) imply « e l  and 0 < k  < 1. Therefore, both functions (9) and (10) are 
real-valued. Evidently, these functions are periodic due to the fact that the function 
sn2 (us, k) is periodic with period (2/u )K(k) .  Finally, substituting each of the 
above functions into equation (2), one can easily verify that they satisfy it. □

Lemma 2. Given p and a, let E  be such that two o f the roots, say a  and ß, o f 
the corresponding polynomial P (Ik) are real numbers ordered as follows: a  < ß, 
while the other two roots, denoted by 7 and 5, are a complex conjugate pair, that 
is 5 = 7 . Consider the function

M « )  =

ble s in v 
are given by the formulas

(A ß  +  B a)  +  (A ß  — Ba)cn(vs,  k)
(A + B)

o f the real variable s in which the parameters

A =  sjAi f  +  (3a +  ß)2

v  =  - V  AB,
4

K =

(12)
vs, k )

and the elliptic module k

(13)

(14)

where q =  (7 — 7 )/2i. Then, this function takes real values, it is periodic with 
period (4/ v ) K( k) and satisfies equation (2).

Proof: Evidently, in this case, the condition a  < ß  e  R. and expressions (13) 
and (14) imply v  e  R. and 0 < k < 1. Hence, function (12) is real-valued. 
Obviously, this function is periodic because the Jacobian elliptic function en (-us, k) 
is periodic with period (4/ v ) K( k). Finally, substituting the above function into 
equation (2), one can easily verify that the latter equation is satisfied. □

Lemma 3. Given p, a and E, let Iki(s), i = 1,2, be two periodic real-valued 
functions o f the real variable s with periods Ti, respectively. Let

dlkj(s)
ds * C I-,
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and a =  lki(0) =  1*2(0) is the minimum value o f both functions. Then

ii(s) = k2(s).

Proof: Obviously the functions lq (s) are invertible for s c I,, respectively. Let 
us denote the corresponding inverse functions by fiq (Ik). Then, differentiating 
the relations

s =  Ik” 1 (Ik) =  Ä” 1^ ) )

one can see that for each Ik e  (a, b) where b = min ^Iki , Ît2 ( ^ ) )

d i ” 1^ )  _  1

d i  y/PQia)

Thus, for Ik e  (a, b)

= o
dlk v 7

and therefore there exists a real constant sq such that

i 2 ( i )  =  ( i )  +  Sq.
So,

ta 1 (lki(s)) =  lkx 1 i ( s ) | +  sq =  S +  SQ, s e  m in(ii, h )

and hence
lki(s) =  i 2(s +  so), s e  m m (ii,I2).

For s =  0 this implies 1*2(so) =  Iki(O) =  1*2(0) which means that sq is a period 
of the function 1*2(s) and hence the above relation reads

lî*i(s) =  Jk2(s), s e i .

which completes the proof. □

4. Curves and Membrane Shapes

Now, having obtained the solutions of equation (2) in explicit form, one can pro
ceed with constructing the corresponding curves T in the X O Z  plane by solving 
system (3). Thus, given fi, a  and a solution Ik =  lk(s) of the corresponding equa
tion (2), without loss of generality, one can represent system (3) in the form

ip(s) = j  lk(s) ds,
d x(s)  

ds
cos <p(s),

dz(s)
ds

=  sin</>(s) (15)

Then, using the results presented in [1,2], which can be cast in the form

x(s)
d x(s)  

ds
+ z(s)

dz(s)
ds

2 dlk(s) 
a ds
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l W Ë î W _ z(s)Ë£W = I ( k W 2 - „ )
ds d s o

and taking into account relations (15), to write down the explicit expressions

1
-COSip{s) + 

o as a

( 1 2< z(s) = - -

, x 2 dlk(s)x(s) =  - cos</>(s) H---- ^lk(s)2 — f i j  s i n ^ ( s )

2 dlk(s) l / 2 \
------  — - s m w ( s ) ----- Ik(s) — u)  cosuns)
a as er V '

(16)

for the components of the position vector of the corresponding curve I \  Computing 
the respective integrals in (15) one obtains

= Ss — -------II ( ---- - ,  am(us, k) , k
u 0 - 5

Ô — 'y (  Ô — ■■'y
ip2 (s) =  0s — ------ - n  ( -----am(«s, k) , k

u \o  — 0

(17)

(IB )

A0 -  B a  (A +  B)(oi — 0) (A - B f
m{s)  = - Ä Z b ~ S + 2v(A -  B)  n ----- am (™’ K)’ "

a — 0
arctan

2 (A — B ) 2 sn(vs, k) 
4A B  dn(-us, k)

(19)

for the solutions lki(s), i = 1,2,3,  specified in equations (9), (10) and (12). Thus, 
given any solution in one of the above forms, we can draw the corresponding curve 
by substituting the respective angle (17), (18) or (19) in the expressions for the 
components of the position vector (16). Closed curves are generated by the respec
tive solution presented in (9), (10) or (12) if there exist some integers m  and n such 
that

2(A ß -  B a)  
v(A  -  B)

5 . a  — 5 _  f  a  — ß

+ ! ^ n  ( 1 4 *u ’ u \  0 — 5 
) +  (A + B) (a -  0 )^  f  

v(A  — B ) \

7rm 
n 

7rm
n

{A -  B f  
AAB

K
irm
n

Several examples of closed curves T corresponding to solutions of form (9) and (10) 
of equation (2) with coefficients /j, =  11.82 and a  =  —13.3 are presented in Fig. 2 
and Fig. 3. It is worthy to underline that in this case, two distinct curves correspond 
to the same value of the total energy E.
Other examples of closed curves T corresponding to solutions of form (12) of 
equation (2) with coefficients fi =  — 1 and a = 1/2 are presented in Fig. 4.
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Figure 2, Closed self-intersecting curves and cylindrical surfaces 
obtained by the solution (9) corresponding to ß =  11.82, a =  —13.3.

Figure 3, Closed self-intersecting curves and cylindrical surfaces 
obtained by the solution (10) corresponding to ß =  11.82, a =  —13.3.

Figure 4, Closed non-self-intersecting curves and cylindrical surfaces 
obtained by the solution (12) corresponding to ß = — 1, a =  1/2.
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