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Abstract, In this paper we establish some existence and uniqueness theo
rems for a Plateau problem at infinity for complete spacelike surfaces in Sf 
whose mean and Gauss—Kronecker curvatures verify die linear relationship 
2e(H  -  1) -  (e +  1 ){K  -  1) =  0 for - e  6 R + .

1. Introduction

The global approach to surfaces with a constant curvature is a subject of many 
studies in Submanifolds Geometry, especially of that ones whose structure equa
tions are integrable in terms of holomorphic data, because it represent a powerful 
tool in the study of these surfaces. Some representative examples are the Enneper- 
Weierstrass representation for minimal surfaces in M3 [13] and the McNertney- 
Kobayashi one for maximal surfaces in L3 presented in [9],
In this paper we will deal with spacelike surfaces in Sf, a topic developed in the 
recent years. For instance, in the compact case Ramanalhan [14] proved that every 
compact spacelike surface in Sf with constant mean curvature is totally umbilical. 
On the other hand, Li [10] showed that every compact spacelike surface in Sf with 
constant Gaussian curvature is totally umbilical.
As a natural generalization of Ramanalhan and Li results, Aledo and Galvez [2] 
characterized the totally umbilical round spheres of Sf as the only compact linear 
Weingarten spacelike surfaces.
In this work we study a special case of linear Weingarten surfaces of Bianchi type, 
in short BLW-surfaces, studied in [3], We center our attention on BLW-surfaces 
whose mean and Gauss-Kronecker curvatures verify the linear relationship

2e(H -  1) -  (1 + s)(K -  1) = 0, - e  e K+. (1)
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The paper is organized as follows. In Section 2 we introduce the notation and 
the main concepts, as well as some results exposed in [3] for BLW-surfaces, but 
rewritten in our context. These preliminary results show the existence of a special 
Riemannian metric a  on any BLW-surface and ensure that its hyperbolic Gauss 
map is conformal for the conformal structure induced by a. This fact will be the 
key to obtain a Weierstrass representation for such a surface in terms of mero- 
morphic data which generalizes the one given by Aiyama and Akutagawa [1] for 
H  =  1 and by Galvez, Martinez and Milan [6] for flat surfaces.
Using these results for the case of complete surfaces, we conclude that such sur
faces are conformally equivalent to the unit disk D and, up to a conformal trans
formation of D, they are in correspondence with the set of meromorphic maps 
G : D — ► C U {oo} with bounded Schwarzian derivative. Also we see that 
the representation formula can be written in terms of its hyperbolic Gauss maps. 
This fact allows us to prove that every complete BLW-surface satisfying (1) whose 
hyperbolic Gauss map has no poles is embedded.
Finally, we will give the existence and uniqueness results (see Proposition 1 and 
Theorem 4) for the following Plateau problem:

Given sq < 0 and a Jordan curve T on S^, =  II U {oo}, find a
complete BLW-surface fi : S  — » Sf verifying

and such that T is its asymptotic boundary.

2. Preliminaries

Let us denote by L4 the four-dimensional Lorentz-Minkowski space given as the 
vector space R4 with the Lorentzian metric {•, •) induced by the quadratic form 
—Xq +  x \  +  x \  +  x \, and consider the de Sitter space realized as the Lorentzian 
submanifold

It is well known that Sf inherits from L4 a time-orientable Lorentzian metric which 
makes it the standard model of a Lorentzian space of constant sectional curvature 
one.
We will also consider the hyperbolic space

2e0(H  -  1) -  (e0 +  1 ) ( K  -  1) =  0

and the positive null cone given by

N+ =  ^ (x o ,x 1,x 2,x-i ) e  L4 ; -  X q +  x \  +  x \  +  x \  = 0, x 0 > o j .
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In addition, L4 will be considered as the space of 2 x 2 Hermitian matrices, 
Herm(2), in the following way

(x0, x 1, x 2, xq) Xq — Xq X\ +  ix2 
XI — 1X2 Xq +  X3

where (m, m)  =  — det(m) for all m  G Herm(2). Thus, Sf corresponds to the set 
of matrices with a determinant —1. Moreover, the action of SL(2, C) on Herm(2)

g ■ m  =  g m g \ g G Herm(2) and gt =  lg

preserves the inner product, orientations and, therefore, Sf remains unchanged.
In this model the positive null cone can be regarded as the set of positive semi
definite Hermitian matrices with vanishing determinant and its elements can be 
written as wlw, where tw =  (wi,W2) is a non zero vector in C2 uniquely deter
mined, up to multiplication, by a unimodular complex number. Moreover, the map 
wlw —» [(uq, W2)} G CP1 induces one from N3/R + which identifies S^, with 
CP1. Thereby, the natural action of SL(2, C) on S2 ^  is the action of SL(2, C) on 
CP1 by Möbius transformations.
A smooth immersion ip : S  — » Sf of a two-dimensional connected manifold S  is 
said to be a spacelike surface if the induced metric via ip is a Riemannian metric 
on S,  which, as usual, is also denoted by {•, •). The time-orientation of Sf allows 
us to choose a timelike unit normal field g globally defined on S,  tangent to Sf, 
and hence we may assume that S  is oriented by g.
Associated to ip, let us consider the map <p : S  — ► N3 given by <p := ip +  g =  
(Ou. <pi,<p2 , 0:; ). Then the hyperbolic Gauss map of ip is defined as the map

G 4>i +  i(p2
4> 0 +  4>s

G C U {00}

or equivalently
ç< _  P<h <h <h_

,4>o' 4>o' <Po
c  s -  c

(see [4]). In addition, by considering the natural inclusion R3 — » L4 given by
(x\,  X2, xq) 1— > (1, x\ ,  X2 , xq) we can also identify

G
1

<Po(<po,<pi, 4>2, <t>z) G N3

Also, it is easy to check that <p can be written in terms of G and p = <p0 +  <Pq as

<p= | ( 1  -  |G |2,G  +  G , - i ( G - G ) , l  -  |G |2) g N3 . (2)

Given a spacelike immersion ip : S  — » Sf, we will denote by J  =  (dip, dip), 
I I  =  (dip, —dg) and I I I  =  (dg,dg) its first, second and third fundamental forms, 
respectively.
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Let A  be a Riemannian metric on S  and let z be some conformal parameter for the 
metric A. Given a two-form B  =  L dz2 +  2 M |dz|2 +  iYdz2, we define Q(B, A) 
as the two-form Q(B,  A) =  L d z2. Observe that, in particular, Q (II ,  I)  is nothing 
but the Hopf differential of the immersion é.
In this paper we will deal with the family of linear Weingarten surfaces in Sf whose 
mean and Gauss-Kronecker curvatures, H  and K  respectively, satisfy a linear re
lation of the type

2s(H -  1) -  (e +  1 ) (K  -  1) =  0.

We will refer to these surfaces as e-surfaces.
First, we will establish some results for e-surfaces which are included in a forth
coming paper [3]. These results work for a wide class of linear Weingarten surfaces 
containing the e-surfaces. The first one states that the hyperbolic Gauss map G is 
conformal for the structure given by the metric a = e l  — (1 + e) I I  and it shows 
the relationship between the metric of <p on N3 and a.

Theorem 1. Let ib : S  — » Sf be an e-surface, with normal q : S  — ► H3 and 
hyperbolic Gauss map G. Then a = e I  — {1 + e) I I  is a Riemannian metric on 
the chosen surface S. In addition, the hyperbolic Gauss map is conformal fo r a. 
Moreover, 1$ =  (d<f>, dtp) is a metric which is conformal to a.

Remark 1, In this setting, let z  be a local conformal parameter for a. Then, 
using (2), the first fundamental form of <f> is given by

I4> = 2(4>z ,4>s)\dz\2 = p2 \Gz \2 \dz\2.

The second one establishes a conformal type representation for e-surfaces in terms 
of its Gauss map and a solution of a Liouville-type equation.

Theorem 2. Let ip : S  — >- Sf be a non totally umbilical e-surface satisfying (1) 
with a normal q : S  — >- H3 and hyperbolic Gauss map G. Let us take f  := 
tp +  7] = (4> o, 4>i , 4>2, and p = (j> o +  4> 3. Given a local conformal parameter z
for the metric a on S ,ib  and q can be recovered as

^0

ib\ +  iip2

1

P

pG
~ Y

1
p

( l  -  (p /2)2(l +  |G |2)) -  ^  (

_  9 _ I l _  _  o  l f e l 2 ( ?
P2GZ |G2|2 p3

( - 1  -  (p/2)2(l -  |G |2)) +  ^
GPz
Gz

pz \2 (1 +  |G |2) 
|Gz|2p3

(3)

\Pzf  (1 -  \G\2) 
\GZ\2 p%G
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and

m  — ~ { l  + (pf  2)2(1 +  |G |2)) +  —23F? (~ G ^ ) +
P

, ■ _  p G  , 0  p g  , 0  | f e |2  G

m m  2 +  p2G2 +  |G2| V

|fe |2 (1 +  |G |2)
|g 2| V

(4)

% -  ^  ( - 1 +  (P/2)2(1 -  |G |2)) -  4 »  ( ^ 4 )  +
|fe |2 (1 — |G |2) 

|G2| V

where I1(vj) stands for the real part o f w 6 C. Moreover, the pseudo-metric 
Itf, = {df,  d f )  on S  has a constant curvature

K,-, = e. (5)

Conversely, let S  be a simply-connected Riemannian surface, G : S  — » S2 a 
meromorphic map, e E K. and p a solution o f the Liouville-type equation

I f i  |2

(ln P)zz = z | P •

Then the immersion given by (3) is a e-surface with normal (4) and whose hyper
bolic Gauss map coincides with G. Moreover, the conformal structure o f S  as a 
Riemann surface coincides with that one induced by a.

Remark 2. Note that (5) says that 1$ has a constant Gaussian curvature e < 0. 
This fact ensures the existence of a holomorphic function h on S  for the structure 
given by o satisfying 1 +  e\h\2 > 0, such that

1^ =  p2|dG |2
4\dh\2

(1 +e\h\2)2 '

Thus p can be rewritten in terms of G and h as

4|dft|
P ~  |dG |(l +  e\h\2) (6)

Observe that in this way, p is well defined.

Finally, we can rewrite Theorem 2 in terms of h and a holomorphic one-form on S  
given by

a  =
p|dG
\dh\ G)

because the expressions of the first and the second fundamental form of é  can be 
calculated in a simple way.
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Corollary 1. Let S  be a non compact simply-connected surface and the map ib : 
S  — ► Sf is an e-immersion satisfying (1). Then there exists a pair (h, a), where 
h is a holomorphic function and a  a holomorphic one-form on S, such that its first 
and second fundamental forms are given by

I  — —(1 +  e)adh  +  ^  £| | | |2j2 "i- (1 +  e l^|2)2|a |2^ — (1 +  £)«dh (8)

I I  = -e a d h  +  + ( ! +  e |^ |2)2|« |2)  -  eädh  (9)

respectively. In addition the metric a becomes

a — (1 +  e |/i|2)2|a |2
(1 +  e)2\dh\2 
(1 +  e\h\2)2 ( 10)

and the Gauss—Kronecker and the mean curvatures o f ib are given by

K

H  =

4e\dh\2
(1 +  e)2|d /i|2 — (1 +  e |/i |2)4|a |2 

-, , 2(1 +  e)\dh\2
(1 +  e|/i|2)4|a |2 — (1 +  e)2\dh\2

Conversely, given a simply-connected Riemann surface S, —e 6 R+ and a pair 
(.h , a) as above such that (10) is a positive definite metric, then there exists a map 
ib : S  — >• Sf which is an e-immersion, unique up to isometries o f Sf, with I, I I  
and a given by (8), (9) and (10), respectively.

Remark 3. The data (h , a) will be called the Weierstrass data for the immersion.

3. Complete e-Surfaces

In this section we establish some results about complete e-surfaces. First of all, 
note that this kind of surfaces cannot be compact. Then, we have the following:

Lemma 1, Let ib : S  — >• Sf be a complete e-surface with Weierstrass data (h , u>). 
Then S  is conformally equivalent to D and h is a global diffeomorphism onto
D£ = {z E C; \z\2 < —1/e}.

Proof: Since I  is complete and o is definite positive, we get from (8) and (10) that

and so the metric 4|d/i|2/ ( l  +  e\h\2)2 is also complete. Therefore, h : S  — >- De 
is bijective and S  is conformally equivalent to D. □
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From this lemma it follows that, given a complete e-surface with the Weierstrass 
data (h , a ), we can consider, up to a change of the parameter that S  =  D and
h(z) = z !\f-~s.

Theorem 3. Let S  be a simply-connected surface and tp : S  — » Sf a complete 
e-surface. Then

i) S  can be identified with D and h can be taken as h(z) =  z /y f ^e .
ii) The hyperbolic Gauss map G : D — » C U {00} is a local dijfeomorphism for  

which

|{0,^> | < 2(1 + E) I z € B  (11)
— £ (1 — \Z\ÀY

where {G , z )  := |  is the Schwazian derivative o f G+.
iii) The immersion and the Gauss map can be recovered as

\ f—£ |Gz|(l -  \z\2)

(  \G\2 + s \G 1l  + Gz( l - \ z \ 2) f  

X V(1 +  e \ n f ) G  +  eG~z( 1 -  \ z f ) K

and

{ l + e \ n f ) G  + eGz{ l - \ z f ) n

1 +  e\'R\'2
(12)

\ f—s \G z \(l -  \z\2)

(  \G\2 - e \ G n  + Gz ( l - \ z \ 2) f  

X V(1 -  e \n \2)G -  eG~z(l -  \z\2) n

respectively; where

(1 — s\lZ\2)G — eGz(l — \z\2)lZ

l - e l n l 2
(13)

K = -  |2 |2).

Conversely, let G : D — » C U {00} be a meromorphic map. I f  G verifies (11) 
then (12) is a e-surface with hyperbolic Gauss map G and Weierstrass data

(z /s f^S , - s f ^ ë { G , z ]  dz).

Moreover, if

l{G’z } l s ( T = W ’ 2 e B
with bo <  —2(1 +  e)/e, then the immersion is complete.

(14)
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Proof: Let ib : S  — » Sf be a simply connected complete e-surface. Then, 
from (10) it is clear that a  is positive definite if, and only if,

i i  1 + e  ld2i ™a  < —j= T x ---- ri2\2> ^ e  D. (15)y  — e (1 — Iz\l Y

The representation formula follows directly as we can take h(z) =  z j ^ f ^ e  and 
then (6) can be expressed as

4|dz|
P = /:=i |d G |( l  — \z\2)

(16)

Thus, a straightforward computation gives the formulas replacing (16) in (3) and (4). 
Recall that the immersion is written in the Hermitian model as 2 x 2 matrix.
Also, (7) can be expressed as

- 2  a  2GZGZZZ -  3(Gzzf
<h

whence from (15) and (17)

\{G,z}\ <

2 (Gzf

2(1 +e)  1

— {G, z}

—e (1 — l^l2)2 '
2 e

(17)

Consequently, G is a local diffeomorphism with bounded Schwarzian derivative. 
Otherwise there would exist a point zq such that G is not a bijection and we could 
write Gz in a neighborhood of zq as

QG
Gz = ( z -  z0)k cn(z -  z0)n

n=0

where cq /  0 and k  is a non-zero integer. But then

{G, z}
k(k  +  2) 1

2 ( z -  Zq)2
kc\ 1 
2 Co z -  Zq

+  h(z)

where h is a holomorphic function in a neighborhood of z q , which implies that 
either {G, z} = oo at zq (which contradicts the above inequality) or k = —2 and 
G has a pole of order one in z q , that is, G is locally bijective.
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The converse statement follows from Theorem 2. Moreover, if G verifies (14), the 
induced metric I  can be estimated as follows

1 =
(1 +  e)dh
1 +  s\h\- 

1 +  £

— (1 +  e \ h f ) a > ( ( l  + e)\dh\ 2 V

—e(l — |z |2) - ( i - N 2)- \{G,z}\ \dz\'

> 1 -H s
-bo

\dz\'
(1 -  |z |2)2

Thus, since bo < —2(1 +  e)/e  and |dz|2/ ( l  — |z |2)2 is a complete metric on D, 
the immersion ip is complete. □

Remark 4. Let ipo : D — » Sf be a e-surface generated by the Weierstrass data 
ho(z) =  z / y ^ e  and the hyperbolic Gauss map Go- Let us consider a conformal 
equivalence ip : D — ► D,

(C) =  é e C_+Co c e  D
CoC +  1

for certain Co G D, 9 e  R. Then

yç(C ) w 1 1 +  CoC
i - b ( C ) l 2 i - i c i 2 i + ÿ c '

Thus, the immersion ipi : D — » Sf with h\(Ç) =  Q/yf^e  and Gi(C) =  Go(ip(p)) 
verifies

G i ç ( 0 ( i  -  ICI2) =  ei0G O2y ( c ) ) (  1 -  y ( 0 i2) ^ H
1 +  CoC

K v ,(C )= e '<'K v» ( f > ( 0 ) y = |
1 +  CoC

and we have, from (12), that ipo(ip(p)) =  VhXO-

3.1. Consequences

Let S  be a simply-connected non-compact surface and ip : S  — » Sf an e- 
immersion. If we assume that G has no poles, then from [8] and up to an isometry
ipo +  ip3 >  0.
On the other hand, we can identify (Sf )+ =  {(xq, x i ,X2, xo) E Sf; 
and (L3)+ =  {(yo, yi, 2/2) G R3 ; yo > 0} by means of the map

$  : (Sf)+ — ► (L3)+

( x o , x 1, x 2,x-i ) 1— ► ^ G ^ ( 1 , x 1, x 2).

X q +  X3 > 0} 

(18)
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Under this identification the induced metric by {•, •) on (L3)+ is given by

ds2 =  ~2 ( —dt/o +  dyf  +  dy§)
Vo K }

which is conformal to the usual metric in L3, and its ideal boundary except one 
point, (S^,)*, is identified with the plane II =  {yo =  0}. Thus, the asymptotic 
boundary of the set E c  (L3)+ is

Ö00E =  cl(E) n n

where cl(E) is the closure of E in {(yo, yi, y2) G R3 ; yo > 0}.

4. The Plateau Problem

For the study of these surfaces at infinity let us consider the following Plateau 
problem:

Given eq < 0 and a Jordan curve T on S^, =  II U {oo}, find a com
plete e-surface tp : S  — ► Sf such that T is its asymptotic boundary.

Since every isometry in Sf preserving the orientation induces a Möbius transfor
mation in S^,, we can suppose that the Jordan curve T lies on II.

Lemma 2. Let tp : S  — ► Sf be an E-surface with holomorphic hyperbolic Gauss 
map G and asymptotic boundary a curve on II. Then tp is an embedding.

Proof: Relying on Section 3.1 we have that $  o tp(S) is a spacelike surface im
mersed in (L3)+ with boundary on II. Hence, the surface is locally a graph on II 
and it is proper. Therefore, it is a global graph and tp is an embedding. □

Proposition 1. Let T be a Jordan curve on II, mt(T) the bounded component o f 
C \  T and G : D — » I r  a conformal equivalence, where

I7 =  {(o, yi, y2) e  R3 ; yi +  iy2 e  m t ( T ) |.

I f  G verifies (11) for a fixed e < 0, then the immersion tp : D — » Sf associated 
with G by means o f Theorem 3 is an embedded solution o f the Plateau problem 
for  T. Moreover, tp can be extended continuously from D to D in such a way that 
tpQÿj : ÖD — » T is a homeomorphism. Even more, i fT  is C°°, then tp and its 
derivatives have continuous extensions to D.

Proof: Let G : D — » I r  be a conformal equivalence verifying (11) for a fixed 
e < 0. Then, from Theorem 3 and (18) we get that

tp(z)
^ P \ G z \ ( l - \ z f )  

1 +  e\'R\-
G + eGz{ 1 S |2 )  11 1

■ 1 +  e\JZ\2 J
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is a complete e-surface with hyperbolic Gauss map G. Observe that G can be 
continuously extended to a homomorphism G from D to

{(0,2/1,2/2) e R3 ; 2/1 + m  e r j
(see [5]). Moreover, if T is differentiable, such extension is a diffeomorphism. 
Hence

ip(z) — » (0, G) when \z\ — » 1

and from [5, Lemma 14.2.8] it follows that |GZ|(1 — \z\2) — » 0 when \z\ — » 1, 
and from [8] we have that 71 is bounded with ag < 1 +  e\R \2 < 1 where ag 
is a positive constant. Thus, taking ip(z) = (0, G) when \z\ =  1, we see that ip 
has a continuous extension ip defined on D whose asymptotic boundary is T. In 
particular, ip is a solution of the Plateau problem for the curve T. Moreover, if T is 
differentiable then G is also differentiable and Gz /  0 for \z\ =  1. Therefore, 71 
is well defined on D and ip is a differentiable extension of ip. □

Note that the normal vector field to ip points toward the interior domain bounded by 
#(D) U int(T) in the highest Euclidean point, pg, because, in other case, the hyper
bolic Gauss map cannot be bounded so that the vertical straight line are geodesics 
and so G (pg) =  00. Moreover, from Remark 4 we have that the solution to the 
Plateau problem does not depend on the chosen conformal equivalence.

Theorem 4. Let T be some Jordan curve on {yg =  0} C M3. Then, for every 
e 6 (—1/4,0), (e 6 (—1/2,0) i fT  is convex), there exists an embedded solution 
for the corresponding Plateau problem. Moreover, it is the only solution contained 
in (Sf)+ whose normal vector field points towards the interior at the highest Eu
clidean point.

Proof: Let us consider a conformal equivalence G from D into

Ir = { x i  +  1x2 G C; (2:1,2:2, 0) e int(T)}.

Then, if T is convex we get from [8, Corollary 3] that

\{G,z}\  < 2/(1 -  \z\2)2 < ( l + e ) / ( - e ( l  -  |c |2)2) for all 5 c  ( -1 /2 ,0 ) .

On the other hand, if T is not convex, from [11] we have

\{G,z}\  < 6/(1 -  \z\2f  < (1 + e ) / ( - e ( l  -  \z\2f )  for all e e  ( -1 /4 ,0 ) .

Hence, from Proposition 1, the immersion ip associated with e and G is a solution 
of the Plateau problem for T.
Let us suppose that x : S  — >- (Sf)+ is another solution for £0 < 0 and a Jor
dan curve T whose normal vector field points toward the interior at the highest
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Euclidean point. Without loss of generality we can suppose that the origin is con
tained in in t(r). Let Cq and C2 be two circles on II centered at the origin and 
bounding a closed annulus A  in II containing T in its interior. Choose Cq and C2 so 
that the totally umbilical e-surfaces (with hyperbolic normal pointing downwards), 
Sq and S 2 associated with eo and asymptotic boundary Cq and C2, respectively, 
satisfy S q is below x ß )  and x ß )  is below S 2.
Let us consider I \ ,  0 < t  < 2, a foliation of the annulus A  such that I \  is convex
for every t  e  [0,2], being To =  Cq, Ti =  T and T 2 = C2. Let Gt be the unique 
conformal equivalence from D into {x± + 1x 2 G C; (0, x±,X2) G in t(rt)}  such 
that Gt{0) =  0 and (Gt)z{0) is a positive real number. Since the curves I \  are 
convex, we have that |{Gt, z}\ < 2/(1 — |z |2)2 (see [12]) and, from Proposition 1, 
we can consider the corresponding e-surface ibt : P  — » (Sf)+ associated with eo 
and the hyperbolic Gauss map Gt- In particular, #o(D) =  S q, # i (D) =  # (P ) and 
# 2(D) =  52.
Our object is to prove that x ß )  =  # i(P ). Lirst, observe that if tn g [0,2] and 
{tn} is a sequence converging to to, then {Gtn} converges uniformly to Gt0 ([7, 
Theorem II.5.2]), where Gt denotes the extension of Gt to D.
Let us see that if 0 < t  < 1 then ipt(D) is under x ß ) -  Observe also that if

J  =  { t G [ 0 , l ) ; é t ( i ) n x ( S ) / i }

is not empty, then J  has a minimum. In fact, given a sequence {tn} c  J  converg
ing to the infimum to of J ,  there exist pn G D such that 'iptn(pn) G cl (xß) )  and a 
subsequence {pm} must converge to a point po G D. Thus, since {tptm} converges 
uniformly to ibt0, then iptQ(Po) G cl(x(S)). But po ÖD because Tt0 fl Ti =  0, 
that is, to G J.
Let us suppose now that J  /  0. Then, from the uniform convergence we have that, 
for every t  g [0, to), 'tpt and ipt0 are under x ß ) -  Hence, since ipt0 (P) and x ß )  
must be tangent at a point with the same normal vector and 'tpoß) is below xß)>  
it follows that ipt0 (D) and x ß )  agree, which is not possible because they do not 
have the same asymptotic boundary.
Therefore, it must be J  =  0 and using again the uniform convergence we have that 
# i(D ) is under x ß ) -  Analogously, we can see that x ß )  is under # i(P )  reasoning 
in the interval [1,2], and consequently # i(P )  =  x ß ) -  □
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