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Abstract, Here we derive a new formula for the exponent of an arbitrary 
matrix in the Lie algebra of the Lorentz group. Our considerations are based 
on the fact that for each constant electromagnetic field there exist an iner­
tial system in which one can easily solve the respective Lorentz equation 
and therefore to find the explicit formulas describing the trajectories of the 
charged particles in this field.

1. In troduction

Many mathematical models of processes in Physics, Biology and Chemistry are 
based on systems of linear, ordinary differential equations with constant coeffi­
cients. For example, by rewriting the classical Lorentz force law equation in the 
relativistic form (see [1], [3] and [7] for more details about this issue), the mo­
tion of a charged particle in a constant electromagnetic field can be described by a 
system of four linear differential equations -  the so called Lorentz equations

ATJa
——  =  afFgTJP, a, 3 =  x, y, z, t. (1)
d r

Here and below U denotes the particle four-velocity (column) vector with respect 
to the fixed inertial system

U = H U \  Uv, U \  U*), * =  transpose (2)

with

IP  =  ^  7 =  x, y, z and Ul =  — (3)
d r  m

being its space, respectively lime components, r  is the proper lime on the world 
line, while E  is the particle energy, m  is its mass al rest and a summation over
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repeated indices is implicitly assumed. The real parameter a embodies the physical 
constants, more precisely a = e /m , where e is the electric charge of the particle. 
Finally, the time independent electromagnetic field with respect to the same fixed 
inertial reference system is represented by a second order tensor T

0 Bz - b 2 E i
- E 3 0 E i e 2

b 2 - E i 0 E ,
E i E_> E , 0 .

where E \, E->. E :> and B \, B 2, E3 are the components of the electric, respectively 
magnetic fields, measured in the fixed inertial system [8], and we suppose units 
chosen so that the velocity of light is unity, c =  1.
Introducing

T] =

1 0 0 0 ■
0 1 0 0
0 0 1 0
0 0 0 - 1  .

(5)

it is a trivial matter to check that any T  from (4) satisfies the identity

^ r j  + r/ E  = 0 (6)
and the latter means that T  belongs to the Lie algebra so (3,1) of the Lorentz
group

SO (3,1) =  {A e  G L (4,R ); tk r \k  =  tj, det A =  1}. (7)

If we choose another reference system, the matrix which represents the electro­
magnetic field there, transforms into a new matrix by an inner automorphism 
C e  In t(so(3 ,1)) of the Lie algebra so (3 ,1).
On the other hand the general solution of equation (1) is

U(t ) =  Exp (clE t )U  (8)

where Exp is the exponential map for the Lorentz group and U = U(0) is the 
initial value of four-velocity vector (at the proper time r  =  0).
Before we solve the problem of finding out the exponent of an arbitrary matrix 
E  of type (4), we will show that any such matrix can be mapped via a proper 
inner automorphism £ into a matrix C(E) =  E,  which is of much simpler form. 
Physically this is equivalent to the statement that with respect to a proper reference 
system the electromagnetic field which the observer sees, consists of either parallel 
or perpendicular electric and magnetic fields. In Section 4 we will determine the 
trajectories of a charged particle in terms of the coordinates in such a properly 
chosen inertial system.
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Before that in Section 2 we will prove that for any matrix from (4) there exists a 
reference frame in which it can takes just one of the two possible (in some sense 
canonical) forms and in Section 3 we will derive two explicit formulas for the 
matrix exponentials for the Lorentz group -  one of them being new, while the 
other one was known for some time in a slightly different setting (cf. [16]).

2. Canonical Form of so (3,1) Matrices

First of all we will fix an isomorphism between Lie algebras so(3,1) and sl(2, C). 
The matrices

1 ' 0  - f 1 '  0  r 1 ' i  O '
6 l  =  —  

2 - i  0 . ’  6 2  =  2 - 1  0 . ’  6 3  =  2 0  — i_

1 '  0  - r 1 ' 0  - r 1 T  0  '

6 4  =  2 - 1  0
, e 5  -  2

. i  0 .

, e 6  -  -

0  - 1 .

form a basis of sl(2, C), treated as a real Lie algebra. The commutators of the 
matrices in (9) are

[61,62] =  63 [61,63] =  —62

[ e i ,e e ]  =  —65 [6 2 ,6 3 ] =  e i

[62, eg] =  64 [63, 64] =  65

[6 4 ,6 5 ] =  —63 [64, eg] =  62

[ei,e4] =  0

[6 2.6 4 ] =  — eg

[6 3 .6 5 ] =  — 64 

[65, ee] =  —ei.

[ e i ,  65] =  eg 

[ 6 2 ,e 5 ] =  0 

[e3 , e 6] =  0

The set of matrices

X,

0 0 0 O' r ° 0 1 O' r° -1 0 O'
0 0 -1 0 X. 0 0 0 0 v  1 0 0 0
0 1 0 0 ’ X * ~  -1 0 0 0 , X 3 -  L 0 0 0
0 0 0 0. L0 0 0 0. L0 0 0 0.

'0 0 0 r '0 0 0 O' '0 0 0 O'
0 0 0 0

, X-,
0 0 0 1

, AT
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
.1 0 0 0. 0 1 0 0. 0 0 1 0.

(10)

(11)
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form a basis of so(3,1). The corresponding commutators are 

[Xi,X2] = X 3 [Xi,X3] =  - X 2 [X4 ,X4] =  0 [X !,X 5] = X 6

[Xi,X6] = - X 5 [X2 ,X3] = X 4 [X2 ,X4] =  - X 6 [X2 ,X 5] = 0

|X2.X„I x., [X3 ,X 4] = X 5 [X3 ,X 5] =  - X 4 [X3 ,X 6] = 0

(12)

[X4 ,X 5] =  - X 3 [X4 ,X 6] = X 2 [X5 ,X6] =  - X i .

Comparing (12) and (10) we find out, that the linear map 9, defined by

9 :st(2 ,C ) ^ s o (3 , l ) ,  9(et) = X t , i = 1 ,2 , . . . , 6  (13)

provides an isomorphism between the Lie algebras sl(2, C) and so (3 ,1). This fact 
and the Lemma below are indispensable for the main result of the paper.

Lemma 1. For each nonzero element X  G sl(2, C) there exists an inner automor­
phism (  G Int(sl(2, C)), such that either

I) c m
a 0 ’ 
0 —a a e C *

or

II) cm '0 c
0 0 ’ cG C *

and there is not an inner automorphism that maps some element o f type I) into an 
element o f type II).

Proof: Let X  be an arbitrary element in sl(2. C), i.e.,

Then obviously

X  = r p
q —r P, q, r G C.

X 2 =  (pq +  r 2)I2

and there are two possible cases.

(14)

(15)

First case: pq +  r 2 /  0. In this case the element X  is semisimple. Hence, there 
exists an invertible matrix g g GL(2,C) such that g X g ~ x is a diagonal matrix. 
Let us factorize the above matrix g in the form yTlet g g with g G SL(2, C). Since 
g X g _1 =  g X g _1, the map

C :s I (2 ,C )^ s l(2 ,C )  C ( Y ) = g Y g ~ 1
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is an inner automorphism of sl(2, C). Moreover, because g X g -1 is a diagonal 
matrix, Q(X) is a diagonal matrix too. Hence, there exists some complex number 
a E C* such that

C(X) =  g X g - 1 a 0 ’ 
0 —a (16)

It is convenient to choose

25?(a) =  a — 23(a) =  a  where a , a  e  R. 

and with this notation (16) can be rewritten in the form

=  a ( —6 3 ) +  ae% =  — ae% +  oe%.
a 1 O' a ' - i  O'
2 0 - 1 . +  2 . 0 i

Second case: pq +  r 2 =  0. In this case the element X  is nilpotent and therefore 
there exists an invertible matrix g e  GL(2, C) such that g X g ~ x is a strictly upper 
triangular matrix. Let us use again the factorization of g in the form \/d e tg  g, with 
g E SL(2, C). Since g X g ~x =  g X g -1 the inner automorphism

C : s l(2 , C) —» s l(2 , C) C( Y ) = g Y g ~ 1

maps X  this time into a strictly upper triangular matrix ( (X) ,  i.e., there exists a 
complex number c e  C* such that

C(X) = g X g - 1 =
0 c 
0 0 '

Since det '0 c 
0 0 =  0, and det a 0 

0 —a

of s l(2 , C), which maps an element of type 

does not exist.

/  0, it follows that an inner automorphism 

into an element of typea 0 
0 —a

0 c 
0 0

Lemma 2. For each strictly upper triangle matrix X  =

exists an inner automorphism (  E Int(sl(2, C)) such that

1  i 
i - 1

'0 c 
0 0 X  e  sl(2, C) there

C(X) = |c|:

Proof: If g = P Q 
r s E SL(2, C), then g~x =

s - q  
— T p and

g Xg  1 = =  c
—pr p

2—r pr
'p ql [0 c] [ s —q 
r sj [0 OJ [—7* p

If we take the following values for p, q, r, s

p =  \/i5 q =  0 r  =  isfiS s = 1/p

(17)
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and replace them in (17) we end up with the desired result

g X g - 1 = |c|2 |  .

Making use of (9) this can be rewritten finally as

g X g -1 =  2|c|2(e6 -  ei).

Combining Lemma 1 and Lemma 2 produces the following

Proposition 3. For each dement X  G sl(2, C) there exists an inner automorphism 
C G Int(sl(2, C)) such that either

I) C(X)  =  — ae3 +  creg a, a  G R.

or

II) C(x )  =  2/(e6 -  ei) 2/GR+.

There does not exist an inner automorphism which maps an element o f type I) into 
an element o f type II).

The set of the inner automorphisms of the complex Lie algebra sl(2, C) coincides 
with the set of inner automorphisms of sl(2, C), treated as a real Lie algebra. 
Furthermore, the map 9 in (13) is an isomorphism between real Lie algebras and 
therefore we can reformulate Proposition 3 as

Proposition 4. For each element X  G so (3 ,1) there exists an inner automorphism 
(  G In t(so(3 ,1)) such that either

|" 0 a  0 O'

i) c(j ) =  - « i 3 + ^ 6 =  r "  111
L o o a o.

a,<j G R

p) 0 0 0‘

II) cm = -  A-o = ° "

L0 0 2/ 0.

2/ G R +.

There does not exist an inner automorphism that maps an element o f type I) to an 
element o f type II).
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3. Two Formulas for the Exponents of so (3,1) Matrices

In this section, using the results from the previous, we will derive two formulas 
for the exponential map Exp: so (3 ,1) —» SO (3,1). By its very definition the 
exponential map for any square matrix X  of dimension n is given by the convergent 
power series

OG

Exp : 0l(n,K ) -» GL(n,K), Exp(X ) =  In +  T T ’ K =  R or C (18)
k = i k -

where In is the identity matrix in the respective dimension. We will deal with 
an arbitrary nonzero matrix E  from so (3 ,1) in a form specified as in (4), where 
the triples (E\,  E 2 , Ef )  and (B i, B 2, Bf )  are considered as vectors and denoted 
respectively by E and B. The standard notation E.B mean the scalar product of the 
vectors E and B, i.e.,

E.B =  E 1B 1 + E 2B 2+ E 3B 3 E2 =  E l + E l + E l  B2 B j - B z  -B 'L  (19)

The characteristic polynomial P(z)  of the matrix E  is calculated following the 
elegant procedure explained in [6] to be

P(z)  = z4 + (B2 -  E2)z2 -  (E.B)2 (20)

and hence

det(.F) =  -(E .B )2. (21)

From Proposition 4 we deduce, that there exists an inner automorphism (  such that 
( ( E)  is a matrix either of type I) or type II). As one can see, the matrices of the 
type II) are nilpotent, hence if ( (E)  is of that type, E  must be nilpotent as well and 
conversely if E  is nilpotent then ( (E)  must be of type II) since a matrix of type I) 
is not nilpotent. The last statement implies that ( (E)  is of type II) if and only if E  
is nilpotent, and the latter is equivalent to E.B B3 E2 =  0, (see (20) and (21)) 
so we have proved

Proposition 5. Let E  G so (3 ,1) be an arbitrary element in the form  (4) which 
satisfies

E .B  B 2 E 2 0. (22)

Then there exists (  G In t(so(3 ,1)) such that ( (E) is o f type II).
I f  either E .B  ^  0 or B 2 — E 2 ^  0 then there exists (  G In t(so(3 ,1)) such that 
C (E ) is o f type I).

Thereby we may consider the following two cases.
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First case: Let either E.B /  0 or B2 — E2 /  0. In this case as we have explained 
in Proposition 5 C(^) must be of type I), i.e., we have

CC-O =  T

■ 0 a 0 O'
—a 0 0 0
0 0 0 a

. 0 0 a 0.

a ,  o  e (23)

Since we exclude the trivial case T  =  0 from our considerations for obvious rea­
sons, then either a  /  0 or a  /  0.
The characteristic polynomial of C(^) is

4 i / 2 2\ 2 2 2z  -)- ( a  — a  )z  — a  a  . (24 )

Because C is an inner automorphism, i.e., a conjugation, then the characteristic 
polynomial of T  is the same and, therefore,

a 2a 2 = (E.B)2 a 2 -  cj2 =  B2 -  E2. (25)

From these relations we obtain

E2 -  B2 +  J (B2 -  E2)2 +  4(E.B)2

a  =

On the other hand

E xp

/  [ 0 a  0 O'
— a  0 0 0
0 0 0 £T

V L o o o.

E xp
0 a  

—a  0

0 E xp
0 cr 
a 0

and, therefore,

Introducing

E xp(.F ) =

ri o o o' 
0 1 0  0 
0 0 0 0 

Lo 0 0 0.

cos a sin a 0 0 '
- sino: cos a 0 0

0 0 eh cr shcr
0 0 shcr ehcr_

ro 0 0 O'

o 0 0 0
Jtj o 0 i 0

Lo 0 0 l.

(26)

(27 )

(28)

(29)
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one can easily conclude, that (28) can be written in the form
„  , ,  , /  sin a  sh  a
E xp(.F ) =  (cos a  J a  +  ch a  J^ ) +  ( -------J a  H-------- J c

\  a  o
T . (30)

sin a  sh a
Remark 6. Taking into account that l im ------  =  1 and l im -----  =  1, the for­

ce—>o a ------------------a —>0 o
mula (30) is still valid even in the cases when either a  =  0 or a  =  0.

Using

T 2 =

it is possible to invert the above relation and to write down the expressions

- a 2 0 0 O'
0 - a 2 0 0
0 0 a 2 0
0 0 0 a 2.

J  n — ;( a % - T 2), Jrr = :(a %  + T 2). (31)
a 2 +  cr2 ' ’ a 2 +  cr2

Remark 7. These relations are also valid in the degenerate cases when either 
a  = 0, a 0 or a  0, a = 0.

Substituting (31) into (30), we obtain

„  cr2 cos a  +  a 2 ch cr a
E xp(^) = -------- ---------------14 +

,sm a
+  a

, sh cr
a a

a 2 +  cr2 a 2 +  cr2 

sh cr sin a

-T

(32)

ch cr — cos a  ~o „
+ -----„------„ T 2 +  ° a - T %.

a 2 +  cr2 a 2 +  cr2

Since C is an inner automorphism of the Lie algebra so (3 ,1) and T  =  (,(T), there 
exists such g £ SO(3,1) for which T  =  gTg~x and consequently

g_1E xp(^)g  =  g~xExp{gTg~x)g = E x p ^ -1^ ^ -1^) =  Exp(J').

Now (32) implies
0 sin a  0 sh cr

-------- b a J ------
a  a j :„  cr2 cos a  +  a 2 ch cr a

Exp {T)  = -------- ---------------14 +
a 2 +  cr2 a 2 +  cr2 

sh cr sin a
(33)

ch cr — cos a  r> ^
+ -----„------„ T 2 +  ° a

a 2 +  cr2 a 2 +  cr2
where a  and a  are determined from (26), and T  is an arbitrary element in so (3 ,1). 
In their turn Remark 6 and Remark 7 imply
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Remark 8. Formula (33) remains true in the cases 

T  ^  0 and T  is o f type I) with a  =  0 
T  ^  0 and T  is o f type I) with o =  0.

Further, we define a map
D : so (3 ,1) —»so(3 ,1)

D(Xi)  — —X:i+i, D(X%+i) — X i, i — 1,2,3
(34)

acting on the matrices Xi, i = 1 , . .. ,6 that form the basis of so (3 ,1) fixed in (11). 
The result of the action of D  on an arbitrary matrix T  e  so (3 ,1) is

( \ 0 Bz - b 2 E { \ r 0 - E 3 e 2 B {
11- B z 0 Bx e 2 Ev, 0 -E x b 2

b 2 Bi 0 Ez \ - e 2 Ex 0 Bz
u Ex E2 Ez 0 . J L Bx b 2 Bz 0 .

This equality and direct calculations lead to the following identities
D { T ) T  = T D { T )  =  (E.B)I4, T  e  so (3 ,1) 

X 2 =  D ( E ) 2 +  (E2 -  B2)I4.
(35)

Following [16] we refer to the matrix D(fF) as the dual matrix of the matrix T.  
The above identities ensure also another useful relationship

x 3 =  T 2T  = ( D ( T f  +  (E2 -  B2)I4)X

=  D { T f T  +  (E2 -  B2)X (36)

=  (E.B)D(X) +  (E2 -  B2)X.

By means of the isomorphism 0 : sl(2, C) —» so (3 ,1), defined in (13), the map D  
is conjugated to the following linear transformation

r 1 o D o 0  :sl(2 ,C ) -»sl(2,<C)
(37)

0 1 o D o 0 ( e t) =  - e 3+l, 0 1 o D o0(e3+t) = et , i = 1,2,3

where e* are given in (9). Taken together (9) and (37) mean that we actually have

0_1 o D o 0{ei) =  iej, i =  l , . . . , 6 .  (38)

Since C is an inner automorphism of so (3 ,1), then 0~x o C, o 0 is an inner automor­
phism of sl(2, C) as well, and in particular it is a complex-linear map. Because of 
that, 0_1 o ( o 0  commutes with 0_1 o D  o 0. Hence, D  commutes with C as well. 
Therefore

C (X D (X ))  =  g i X D i X ^ g - 1 = ( g T g - ^ i g D ^ g - 1)

C(X)C(D(X)) =  C(X) D(C(X)).
(39)
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On the other hand, using (35) and (23), it is easy to find that

T  D{T)  =  aerl4. (40)

Besides (,{T D{T))  =  C((E.B)I4) =  (E.B) I4 and for this reason

(E.B) I4 =  acrl4

and therefore

E.B =  aa.  (41)

The equations (25), (36) and (41) finally imply the relation

= auD{T)  +  (a2 -  a 2)E.  (42)

Replacing (42) in (33), we get

„  cr2 cos a  +  a 2 ehcr a  sh  a  +  a  sin a  _
Exp(E)  = -------- ---------------14 + ------- s s -----T

a 2 +  cr2 a 2 +  cr2
(43)

a  sh a — a  sin a  „ ,  . ch a — cos a  o
+ ------- --------------D(F)  + ----- s------— T 2

a 2 +  cr2 a 2 +  cr2

where a  and 3  are defined in terms of the matrix elements E\,  E 2 , £ 3, B\ ,  B 2 , Bz  
of T  in (26). A similar formula for the Minkowskian metric with signature (1,3) 
can be found in [16]. Plebariski has derived similar formulas equivalent to (33) 
and (43) in terms of projectors associated to T  [12, 13]. These formulas within 
another context can be recognized in [11] too.
Second case: Let E.B =  0 and B2 — E2 =  0. This case is referred in the literature 
as the null-field (cf. [8], [12], [14]). Now we have

C(J-) =  T

'0 0 0 0'

0 0 v 0 
0 - v  0 v  ’ 
.0 0 v  0.

v  e  R +. (44)

As we mentioned above, in this case the matrix T  is nilpotent. More precisely: 
a direct calculation shows, that =  0. Since =  C(-̂ r3)» then ^  =  0.
Because of that and according to the definition (18)

E x p (J-) =  I4 +  T ^ - T 2 . (45)
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4. Motion of a Charged Particle in a Constant Electromagnetic Field

In this section we will determine the trajectories of a particle with mass m  which 
carries an electric charge e in a constant electromagnetic field T  specified by a ma­
trix of type (4). For that purpose we must solve the system of Lorentz equations (1) 
with respective initial data.

As Proposition 4 claims, this electromagnetic field can be represented in appropri­
ate inertial system by a matrix T ,  which is either of type I) or type II). We will 
determine several types of trajectories starting from the “initial" position

4.1. The Case E.B #  0

According to the Proposition 4 and Proposition 5 in this case the electromagnetic 
field can be represented via a matrix of the type

x  = x(0) y =  t/(0) z  =  z(0)

with a four-velocity U which space part is a three dimensional vector chosen to be 
orthogonal to both vectors E and B, i.e.,

(46)

E =  (0,0,<7)
B =  (0, 0, a )

Adopting (28) we obtain immediately

(48)

and taking into account (8) and (46)

(49)
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Figure 1. E =  (0 ,0 ,41  x 1 0 -4), B =  (0, 0 ,6  x 102), r  G [0, 1(T4]

Space irajeclories can be found after direct integration (cf. (3)) and this gives

x (t ) =  x  +  -̂ —(1 — cos(aar)) aa

y( j )  = y +  —  sin faar) (50)aa K J

z (t ) =  z +  ^  ^  (ch(atJT) — 1).
'  aa  - -

Such a trajectory, which is obviously a helix along the £-axis, is depicted in Fig. 1 
for an electron slatting with velocity U from the initial position x  that are chosen 
lo be respectively

x  =  ( i ,  -y, z) = (0, 0, 0) and U =  (Ux, Uy, Uz) = (0, 4 x 105, 0). (51)

Actually, this is the general case in view of the considerations of Synge [15] (see 
also [2] and [5]) making a recourse lo Frenel-Serrel formalism and proving the 
surprising result lhal the world-line of a charged particle moving in a constant 
electromagnetic field is a generalized helix in the Minkowski spacetime.
Lei us mention also lhal in the Figures of this paper the vectors E and B are rep­
resented respectively in volt per meter and volt x second /(3  x 108) per squared
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meter, the proper time is measured in seconds, the distances (with some excep­
tions) in meters and velocities in meters per second.

4.2. The Case E.B =  0 and B2 -  E2 < 0

According to Proposition 4 and Proposition 5 the electromagnetic field can be rep­
resented again by a matrix of the type I) and taking into account (25) one easily 
concludes that this is possible only when

and the curve which it traces is easily to be recognized as the catenary in the Y  — Z  
plane. More details about geometrical and mechanical properties of this curve 
can be found in the books by Oprea [9] and [10]. Using formulas (56) we have 
illustrated graphically the path of the electron in Fig. 2 with the initial data specified 
in (51) and the scale on the axes there is chosen so that one unit corresponds to 103 
meters.

a  =  0 . (52)

Therefore we can write

E =  in n 
B =

Relying on (28) in this case we get

(54)

which combined with (8) and (46) produce

(55)

Integration of (55) gives the trajectory
x  (r) =  x  

y ( j )  =  y + fj-r (56)
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1000 2000 3000

- 1 x 1 0 s
- 2 x 10
- 3 x 1 0 3
- 4 x 1 0 3
- 5 x 1 0 8
- 6 x 1 0 8
- 7 x 1 0 8

Figure 2, E =  (0,0, 2 *r 10-3 ), B =  (0 ,0 ,0 ), r e  [0,8]

4.3. The Case E.B =  0 and B2 -  E2 > 0

This lime Proposition 4 and Proposition 5 taken together with (25) say lhal the 
electromagnetic field can be represented via a matrix of the type I) in which

and therefore

C(J-) = T  =

0 a 0 O'
—a 0 0 0
0 0 0 0
0 0 0 0.

£7 =  0

E =  (0,0,0) 
B =  (0, 0, a )

(57)

a e R \ { 0 } .  (58)

Following the same route as in the previous subsection we obtain 

Exp(aJrr )  =

cos(aar) sin (aar) 0 0' 
— sin (a a r)  cos(aar) 0 0 

0 0 1 0  
0 0 0 1.

and

U(t ) =

Integration of (60) gives the trajectory

[Ux{t ) ] sin (aar)'

Uy(r) ft cos (aar)

Uz (t  ) 0

UHt ). V 1 +  ^ t )-

aa
(*

x ( t ) =  x  +  — (1 —  cos ( a a r ) )  
' a a ' -

y(r)  =  y H------sin (aar)
' aa '

z (t ) = z.

(59)

(60)

(61)
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which is obviously a circle in the X  1' plane and this case is of great importance 
for the theory of cyclotrons and mass spectrometers.

4.4. The Case E.B =  0 and B2 -  E2 =  0

As a direct consequence of Proposition 4 and Proposition 5 in this case the elec­
tromagnetic field can be represented via a matrix of the type II), i.e.,

[0  0  0  0’

0 0 1/ 0
0 - 2 / 0  2/ ’ 

[0 0 2/ 0.

E =  (0,0,2/)
b  =  (2/,0,0) ! / £ l . (62)

Relying on (45) we get

E x p (a J rr )  =
1 2----a 2/
2

—avr

0 0

1 2 2 2a v r —a V T 
2

1 a v r

a v r 1 -|— a22/2r :
2

which combined with (8) and (46) produce

U( t ) =

~Ux(t )’

Uy(r)

Uz(t ) ~

UKt ),

fl +  —£I22/2(y /1 +  y? ~  [J,)t 2

a 2 /(y /l  +  fi2 -  f i ) r

\ / l +  fl2 + -a22/2(y/r+7? -  fl'jT2

(63)

(64)

Integrating (64) we find that the trajectory is the generalized semi-cubic parabola 
in the Y  — Z  plane (see [4])

x  (r) =  x

y( f)  a -  in - a2 v6 ^ ) r 3 (65)

z (t ) = z  + - a v ( \ j  1 + fj2 -  h )t 2.

Three different patches of such a trajectory generated with the initial data speci­
fied in (51) are presented in Fig. 2 in order to stress its character within different 
intervals of the proper time. In the third picture the axes are scaled so that one unit 
there corresponds to 103 meters.
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r e [0,1(T5] r e [1(T5, 4.7 x 1(T5]

Figure 3, E =  (0,0,3), B =  (3,0,0)
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