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Abstract. The generalized Henon-Heiles system with an additional non­
polynomial term is considered. The standard method for the search of the 
elliptic solutions is a transformation of an initial nonlinear polynomial differ­
ential equation into a nonlinear algebraic system. It has been demonstrated 
that the use of the Laurent-series solutions allows to simplify the resulting 
algebraic system. This procedure has been automatized and generalized on 
some type of multivalued solutions. To find solutions of the initial equation 
in the form of the Laurent or Puiseux series we use algorithm of the Painleve 
test.

1. The Painleve Property

Let us formulate the Painleve property for ordinary differential equations (ODE’s). 
Solutions of a system of ODE’s are regarded as analytic functions, maybe with iso­
lated singular points [91. A singular point of a solution is said critical (as opposed 
to noncritical) if the solution is multivalued (single-valued) in its neighborhood 
and movable if its location depends on initial conditions. The general solution of 
an ODE of order N  is the set of all solutions mentioned in the existence theorem 
of Cauchy, i.e. determined by the initial values. It depends on N  arbitrary inde­
pendent constants. A special solution is any solution obtained from the general 
solution by giving values to the arbitrary constants. A singular solution is any 
solution which is not special, i.e. which does not belong to the general solution. A 
system of ODE’s has the Painleve property if its general solution has no movable 
critical singular point [9, 14],
There exist two distinctions between the structure of solutions of linear differential 
equations and nonlinear ones. Linear ODE’s have no singular solution and their 
general solutions have no movable singularity.
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Investigations of many dynamical systems show that a system is completely in­
tegrate  for such values of parameters, at which it has the Painleve property. At 
the same time the integrability of an arbitrary system with the Painleve property 
has yet to be proved. There is not an algorithm for construction of the additional 
integral by the Painleve analysis. There exist many examples of integrate systems 
without the Painleve property.
The Painleve test is any algorithm, which checks some necessary conditions for a 
differential equation to have the Painleve property. The original algorithm, devel­
oped by Painleve and used by him to find all the second order ODE’s with Painleve 
property [14], is known as the a-method. The method of Kovalevskaya [12] is 
not as general as the ct-method, but much more simple. In 1980, developing the 
Kovalevskaya method further, Ablowitz, Ramani and Segur [1] constructed a new 
algorithm of the Painleve test for ODE’s. The remarkable property of these tests is 
that it can be checked in a finite number of steps. They can only detect the occur­
rence of logarithmic and algebraic branch points. To date there is no general finite 
algorithmic method to detect the occurrence of essential singularities. Different 
variants of the Painleve test are compared in [4],

2. The Henon-Heiles System

The generalized Henon-Heiles system with additional nonpolynomial term is de­
scribed by the Hamiltonian

H  = h x t +  vt +  Ai^ 2 +  X2V2) +  x2y -  ~~r'y3 +  M2x2 (1)

and the corresponding system of the motion equations

xtt

ytt

. r. M-a i x  — 2xy  H— 77 
x 6

-X2y -  x 2 +  C y2
(2)

where xtt =  d2;r/ dt2 and yff =  d2y /  d t2, Ai, A2, y  and C  are arbitrary numer­
ical parameters. If A2 7̂  0, then one can put A2 =  s i g n a l  without the loss of 
generality.
Due to the Painleve analysis the following integrable cases have been found

i) C
ii) C

iii) C

—1. Ai =  A2,
—6. Ai and A2 are arbitrary,
-1 6 . Ai =  A2/ I 6.

In all above-mentioned cases system (2) is integrable at any value of y. In other 
cases not only four, but even threeparameter exact solutions have yet to be found.
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The function y, a solution of the system (2), satisfies the following fourth-order 
equation

ytm — (2 C — 8 )yuy — (4Ai +  A2 )ytt +  2 (C +  1 )yf
20(7

+  —  V3 +  (4CAi -  6A2)y2 -  4AiA2;y -  4H  (3)

where H  is the energy of the system. Note, that the energy H  is not an arbitrary 
parameter, but a function of initial data yp, yot, you and yout- The form of this 
function depends on y

H = y°f' 2 ,j/°  -  —  Vo +  +  yô j (Cyo -  Myo -  you)

{^2yot +  2Cyoyot — yout.)2 +  y  
2{Cyl -  X2yo -  you)

This formula is correct only if xq =  Cyq — \ 2 'yo — you 7̂  0. If xq =  0, what 
is possible only for y  =  0, then we can not express xqt through ;y0, yot, you and 
youu so H  is not a function of the initial data. If ym t  = 2Cyoyot -  Myou then 
equation (3) with an arbitrary H  corresponds to system (2) with y  =  0, in opposite 
case equation (3) does not correspond to system (2).

3. Results of the Painleve Test

The Ablowitz-Ramani-Segur algorithm of the Painleve test [1] is very useful for 
obtaining the solutions as formal Laurent series. Let the behavior of a solution 
in the neighborhood of the singularity point tp be algebraic, i.e., x  and y tend 
to infinity as some powers: x  =  aa (t — to)a and y =  by(t — tp)13, where ct, 
/A cia and by are some constants. If a  and (3 are negative integer numbers, then 
substituting the Laurent series expansions for x  and y, one can transform nonlinear 
differential equations into a system of linear algebraic equations in coefficients 
of Laurent series. If a single-valued solution depends on more than one arbitrary 
parameters then some coefficients of its Laurent series have to be arbitrary and 
the corresponding systems have to have zero determinants. The numbers of such 
systems (named resonances or Kovalevskaya exponents) can be determined due 
to the Painleve test.
It is easy to show that solutions of equation (3) tend to infinity as b ^ / t 2- There 
exist two possible dominant behaviors and resonance structures of these solutions 
(see Table 3).
The values of r denote resonances: r =  — 1 corresponds to arbitrary parameter 
tp, other values of r determine powers of t at which new arbitrary parameters can
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Table 1

appear as solutions of the linear systems with zero determinant. Note, that the 
dominant behavior and the resonance structure depend only on C.
It is necessary for the integrability of system (2) that all values of r be integer and 
that all systems with zero determinants have solutions for any values of all free 
parameters entering in these systems. This is possible only in the integrable cases
i)—iii).
For the search for special solutions it is interesting to consider such values of C\ 
for which r are integer numbers either only in Case 1 or only in Case 2. If there 
exist a negative integer resonance, different from r =  — 1, then such Laurent series 
expansion corresponds rather to special than general solution [161. We demand 
that all values of r, but one, are nonnegative integer numbers and all these values 
are different. From these conditions we obtain the following values of C: C  =  — 1 
and C  =  —4/3 (Case 7), or C  =  —16/5, C  =  — 6 and C  =  —16 (Case 2), and 
also C  =  —2, in which these two Cases coincide.
Let us consider the possibility of existence of the single-valued three-parameter 
solutions in all these cases. To obtain the result for an arbitrary value of /i, we 
consider equation (3) with an arbitrary H.
At C  =  — 2 we have a contradiction: r =  0, but 5_2 is not an arbitrary parameter: 
6_2 =  —3. This is the consequence of the fact that, contrary to our assumption, 
the behavior of the general solution in the neighborhood of a singular point is not 
algebraic, because its dominant term includes logarithm [161. At C  =  —6 and any 
values of other parameters the exact four-parameter solutions are known. In cases 
C  =  — 1 and C  =  —16 the substitution of an unknown function as the Laurent 
series leads to the conditions Ai =  A2 or Ai =  A2/16, accordingly. Hence, in non- 
integrable cases three-parameter local solutions have to include logarithmic terms. 
Single-valued three-parameter solutions can exist only in two above-mentioned 
nonintegrable cases: C  =  —16/5 and C  =  —4/3.
Using the method of construction of the Laurent series solutions for nonlinear dif­
ferential equations described in [191, we obtain three-parameter solutions of equa­
tion (3) both at C = —16/5 and at C = —4/3. Values of other parameters are 
arbitrary.
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At C  =  —4/3 the above-mentioned solutions are

29 9 2Ai — 3A2
— hr -1 H---------------
24 4 +  ^ A l

-A2 ) b_it. + - (4)

There exist four possible values of the parameter &_i

=  ± '
105A2 -  140Ai ±  \/7(1216Af -  1824Ai A2 +  783A^)

385

The two signs “± ” are independent, while the parameters 62 and &g, coefficients 
at t 2 and t8 correspondingly, are arbitrary. The energy H  enters in coefficients 
beginning from 64. We obtain solutions only as formal series, but this series have 
some domains of convergence, because the convergence of the Laurent- and psi- 
series solutions of the generalized Henon-Heiles system has been proved [131. To 
search the elliptic solutions we use only some finite number of the Laurent series 
coefficients, so we have no need of the proof of the Laurent series convergence.

4. Global Solutions

4.1. Methods of Construction

We have found solutions as formal Laurent series. Of course, existence of such 
solutions is a necessary, but not sufficient condition to exist global single-valued 
solutions. Solutions, which are single-valued in the neighborhood of one singular 
point, can be multivalued in the neighborhood of another singular point. So, we can 
only assume that global three-parameter solutions are single-valued. If we assume 
this and moreover that these solutions are elliptic functions (or some degenera­
tions of them), then we can seek them as solutions of some polynomial first order 
equations. There are a few methods to construct such solutions [5, 10, 15, 22], 
Using these methods one represents a solution of a nonlinear ordinary differential 
equation (ODE) as a polynomial or a rational function of elliptic functions or of 
degenerate elliptic functions, for example, tanh(t). These methods use results of 
the Painleve test, but do not use the obtained Laurent-series solutions. In 2003 
Conte and Musette [61 have proposed the method, which uses such solutions.
The classical theorem, which was established by Briot and Bouquet [2], proves that 
if the general solution of the polynomial autonomous first order ODE is single­
valued, then this solution is either an elliptic function, or a rational function of 
e7X, 7 being some constant, or a rational function of x. Note that the third case 
is a degeneracy of the second one, which in its turn is a degeneracy of the first 
one. It has been proved by Painleve [14] that the necessary form of the polynomial



302 Sergey Yu. Vernov

autonomous first order ODE with the single-valued general solution is
m 2m — 2k

X  X  hjk t fy t  = h0m =  1 (5)
k = 0 j = 0

in which m  is a positive integer number and hjk are constants.
Rather than to substitute equation (5) in some nonintegrable system, one can sub­
stitute the Laurent series of unknown special solutions in equation (5) and obtain 
a system, which is linear in Ajk  and nonlinear in the parameters, including in the 
Laurent coefficients [61. There are a few computer algebra algorithms which allow 
to obtain this system from the given Laurent series. Moreover, it is possible to 
exclude all Ajk  from this system and to obtain a nonlinear system in parameters 
of nonintegrable system and free parameters from the Laurent series. The main 
advantage of this method is that the number of unknowns in the resulting nonlin­
ear algebraic system does not depend on number of coefficients of the first order 
equation. For example, equation (6) with m  =  8 includes 60 unknowns A jk , and it 
is not possible use the traditional way to find similar solutions. The first computer 
algebra realization of this algorithm has been written in AMP [81 by Conte. It is 
based on the ct-method of the Painleve test. Our realization (in Maple) is based on 
transformations of the Laurent series [201.

4.2. Global Solutions for the Generalized Henon-Heiies System

To show how the Laurent series solutions can assist to find elliptic ones let us 
consider equation (3).
To find a special solution of the given equation one can assume that y satisfies 
some more simple equation. For example, there exist solutions in terms of the 
Weierstrass elliptic functions, which satisfy the following first-order differential 
equation

Vt = A y 3 +  B y 2 +  Cy  +  D. (6)

where A, B, C  and T) are some constants.
Timoshkova [171 generalized equation (6)

Vt = A t y 3 + A zy3' 2 +  A 2y +  +  + D (7)

(Aj  are constants) and found new one-parameter solutions of the Henon-Heiies 
system in two above-mentioned nonintegrable cases (C  =  —4/3 or C  =  —16/5). 
These solutions (i.e. solutions with As 0 or A \ ^  0) are derived only at D =  0, 
therefore, substitution y(t) =  off)2 gives

Qt — +  A sq3 +  A 2Q2 +  A\Q +  Aq). ( 8)
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( 1 0 )

In [181 we use the substitution

y{t) = Q i t f  +  Po (9)

where Pq is a constant, and transform equation (3) into

QmtQ = — 4QmQt — 3@ft +  2 (C — 4 )guQ3 +  (2Pq(C — 4) — 4Ai — A2 )QttQ 

+  2(3C — 2 )QtQ2 +  (2CPq — 4Ai — 8Fq ~~ ^2)^? +

+  (2CAi +  IOCFq — 3 X2 )0  ̂ 4" 2(2AiCPo 4" 3CPq — A1A2 

— 3FoA2)^2 4——CPq +  2AiCFg — 3Pq\ 2 ~~ 2A1A2F0 — 2H.
O

If g(t) satisfies (8), then equation (10) is equivalent to the following system

{3A4 +  4) { - 3 A 4 + 2 C ) =  0 

A 3{ -2 1 A 4 +  9C -  16) =  0

96A4C F0 -  240^4^2 -  192A4Ai -  384AjP0 -  48A iA2
-  105^3 +  128A 2C  -  192^2 +  128CAi +  640CF0 -  192A2 =  0 

4OA3CF0 -  90^4^1 -  65^3^2 -  8OA3A1 -  I6OA3F0
-  2OA3A2 +  5 6C ^i -  64^ i =  0 

16A2CP0 -  36A4A 0 -  21^3^1 -  8A \  -  32A2Ai

-  64A2P0 -  8A2^2 +  24CA0 +  64AiCF0 +  160CF02

-  16^4o ~~ 32A1A2 ~~ 96FqA2 =  0 

10>M o +  (5^2 +  8CF0 -  I6A1 -  32F0 -  4 \ 2)A 1 =  0 
384F =  - 4 8 A 2A 0 +  96CA0Fo +  384CAiF02 +  640CF03 -  9Af

-  192A0Ai -  384^40 Fq -  48A0A2 -  384Ai A2F0 -  576A2F02.

This system is nonlinear in the coefficients of equation (8). The Conte-Musette 
method allows to obtain the linear system in these coefficients. However we can not 
use this method for arbitrary C, because the Laurent series solutions are different 
for different C. So, first of all we have to fix value of C. If A \3 ^  0, then from two 
first equations of system (9) we obtain

( 1 1 )

* = - !
and A 4 = —  

3
or

*  =  - T
and , 32A 4 = ----- .

15

Let us choose C  =  — -  and construct the Laurent series solutions for equation (7). 
The values of resonances are —1,1, 4 and 10, and we obtain the following Laurent
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series, corresponding to y (functions p and —p correspond to one and the same y)

P
h /S

t. +  c0 + i\/3
~24

(3A2 — 2Ai +  4Pq +  62cg)t +  . . .

where

co
121275 A2 ±  \J1155(5481A^

2310

The coefficients C3 and eg are arbitrary.
The algorithm of the construction of elliptic solutions from the Laurent-series so­
lutions is the following:

1) Choose a positive integer m  and define the first order ODE (5), which 
contains unknown constants hjk.

2) Choose one of possible values of co and compute coefficients of the Lau­
rent series p. The number of coefficients has to be greater than the number 
of unknowns.

3) Substituting the obtained coefficients, transform equation (5) into a linear 
and overdetermined system in hjk with coefficients depending on arbitrary 
parameters.

4) Exclude A j k and obtain the nonlinear system in parameters.
5) Solve the obtained system.

On the first step we choose equation (16), which coincides with equation (9). It 
means that m  =  2, all hj\  are equal to zero and all hjQ =  —Aj/4 .  After the second 
and the third steps we obtain a linear system on Ay). This system has the triangular 
form and linear in H , C3 and eg as well. From the first equation we obtain,

A 4 = - 4 /3 .

After we choose eg, for example,

co
y il5 5 ^ /l4 0 A i -  105A2 -  ^7(783 \ 22 -  1824Ai A2 +  1216Af)

2310

and obtain from the second equation

8 \/l l5 5  I /
A 3 = ) "  v/l40Ai -  105A2 -  y' 7(1216Af -  1824Ai A2 +  783A
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and so on:

31
A 2 =  — ^7(1216A? -  1824Ai A2 +  783A2) -  —  Ai -  —  A2 -  4P0

A  i = /l40A i -  105A2 -  \/7(1216A f -  1824Ai A2 +  783A^
ioz,au y v

x ^13^/l216A f -  1824Ai A2 +  783A^ +  V7(136A i -  135A2 -  88P0) j

Then we detetTnine the arbitrary parameter C3,

A q =  ------------ —  1

x

2 9 0 4 (-y /7(1216A? -  1824Ai A2 +  783A^) +  140Ai -  105A2)

(17768A? -  16653Ai A2 +  4005A^ +  26664AiP0 -  7656A2P0 +  16456P02)

x v/7(1216Af -  1824Ai A2 +  783A^) +  1070144A?

2592360AfA2 +  1648953AiA| -  305937A| -  492096A?P0 

-  989736Ai A2P0 +  816552A?P0 -  2303840AiP02 +  1727880A2P02

and H.
The remaining equations are satisfied for all values of Ai, A2 and Pq, so we do 
not need to solve the nonlinear system. Of course, we can substitute in (5) only a 
finite number of the Laurent series coefficients, so, we have to check in addition, 
that equation (8) with obtained values of Aj  gives a solution of (2). The sim­
plest way to do this is to substitute the obtained values of Aj  in system (11). We 
find a solution of the nonlinear algebraic system solving only linear equations. In 
principle, any finite system of nonlinear algebraic equations can be solved, using 
Buchberger algorithm [3, 7] for the Grobner basis construction. This algorithm 
has been realized in the standard procedures s o lv e  () of the computer algebra 
systems Maple, Mathematica and REDUCE. It diagonalizes the system of nonlin­
ear equations, by constructing the Grobner basis, i.e. an equivalent system, which 
consists of an equation in only one variable (except arbitrary parameters, which 
can not be fixed by the system of equations), an equation in two variables and so 
on. Therefore, we can obtain solutions of the system, solving only equations in one 
variable and substitute the obtaining result in the following equations, and so on. 
The Grobner basis contains only equations, which are polynomial in all variables, 
so the obtained equations, which are nonpolynomial in Ai and A2, do not belong 
to the Grobner basis of system (11). The operating memory and other parameters 
of real computers are not enough to solve difficult systems using the Grobner basis 
method. The considered method allows to obtain solutions only for fixed values of
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C, but is more simple. The Conte-Musette method has also the following prefer­
ence that one does not need transform system (2) in one differential equation either 
in y or in x. Moreover at C = —16/5 not x, but x 2 may be an elliptic function. To 
construct the Laurent series for x 2 is easier than to find the fourth order equation 
in x 2. The obtained solution has the form

where p ( t —to) is the Weierstrass elliptic function, a, 5, c and d are some constants. 
The parameters Pq, which defines the energy of the system, and to are arbitrary. 
Solutions of this type exist in both above-mentioned nonintegrable cases C  =  
— 16/5 and C  =  —4/3. Full list of solutions see in [181.
The function y satisfies the following equation

(Vt -  A 4( y - P 0)3 -  A 2( y -  Po)2-  A 0{i)- P0) ?  =  ~ Pa) + A 2)2.

Surely, we can use the Conte-Musette method without the change of variables (9), 
but this change allows us to simplify calculations.
The function x(t) satisfies the first equation of system (2) with

+ ( 2X1X2 — 2Ai C 4̂q — 4CF + 3A2̂ 4q) Pq + ^2Ai A2̂ 4q + "I" 4A2̂ T̂  Pq

The trajectory of the motion can be derived from the second equation of system (2). 
Substituting ytt, we obtain

5. Multivalued Solutions

Let us generalize the given method on the search of solutions, which can be ex­
panded in the following Puiseux series

( 12)

2  =  ( c  -  ^ A 4Y y 2 + (3A4P o - A 2- l ) y - ^ { 5 A 1y + 3A1- b A 3Po) ( y -P o)1P

- (^0  + 3AiP02 -  2A2Po)-

OO
y  =  E  s ^ k ' q - (13)

k = - L

We seek solutions as a polynomial

y =  PlPL +  Pl - i PL 1 +  Pl -2PL 2 +  Pl -3PL 3 +  • • • +  Pq-
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From (13)it follows that
0G

p = £  Ti h t i h

where T j/ q are some constants.
We seek p(t), which satisfies the following equation

m  { q + l ) { m —k)

y  y  h j k f p p t k =  o. h 0m =  i (14)
k = 0 j = 0

where q is a natural number.
To simplify calculations we can put PL = 1 and Pl ~ i =  0 without the loss of 
generality, because

satisfies (14) as well. This generalization has been automatized in Maple [21 ].

6. Conclusions

Two nonintegrable cases (C =  —16/5 or C  =  —4/3, Ai, A2 and p, are arbitrary) 
of the generalized Henon-Heiles system with the nonpolynomial term have been 
considered. Two-parameter elliptic solutions for this system are known in both 
above-mentioned cases. Two different methods for the search of such solutions 
have been compare in this paper. It has been demonstrated how the knowledge of 
the Laurent series solutions of the initial differential equation assists to linearize 
the obtained nonlinear system of algebraic equations. The Painleve test does not 
show any obstacle to the existence of three-parameter single-valued solutions, so, 
the probability to find exact, for example elliptic, three-parameter solutions, that 
generalize the obtained solutions, is high. The knowledge of the Laurent series can 
assist to find such solutions. The Painleve test is useful to find not only single­
valued solution, but also some type of multivalued solutions in the analytic form. 
The corresponding computer algebra algorithm has been constructed in Maple and 
REDUCE.
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