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Abstract. The application of symmetry analysis in hydrodynamics is illus
trated by two examples. First is a description of all irrotational barochronous 
motions of ideal gas. The second is an exact solution of magnetohydrody
namics equations for infinitely conducting media, which describes the flow 
of so called “special vortex” type.

1. Introduction

The group-theoretical method is proved to be one of the most powerful tool for the 
construction of exact solutions for various nonlinear differential equations [4, 51. 
The method is based on the continuous symmetries of the investigated equations. 
The complete set of the continuous transformations, which preserve the equations, 
generates its Lie group of symmetries. Each subgroup of the symmetry group gives 
the source of an exact solution or a symmetry reduction for the equations. The 
systematic use of group analysis method to study concrete models of mathematical 
physics consists of the following three steps. These are: calculation of symmetry 
group, construction of its optimal system of subgroups and obtaining of classes 
of both invariant and partially invariant solutions. Realization of all these steps 
is algorithmic and approved for the wide set of mathematical models by many 
authors.
In the present work we observe two particular examples of exact solutions for 
Euler equations of ideal compressible fluid and for ideal magnetohydrodynamics 
equations (MHD). First we describe all irrotational ideal gas motions, which are 
simultaneously barochronous, i.e., rot u  =  0 and p =  p(t) (pressure depends 
only on time). This class of solutions is a partially invariant from group-theoretical 
point of view. The Chupakhin’s results on investigation of barochronous gas mo
tions allow to reduce the stated problem to the following: how to describe all
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real-valued functions of three arguments, which have a Hesse matrix with con
stant algebraic invariants. The latter problem is completely solved with the help 
of equivalence transformations of investigated system. It is shown that under ir- 
rotational barochronous gas motions the dependence of velocity vector on spatial 
coordinates is linear and of special kind. The explicit formulas for general solution 
are given.
The second example is a solution of ideal MHD, which is partially invariant with 
respect to the group of rotations 0(3). The classical rotationally invariant solu
tion of the system of differential equations is the solution where all sought func
tions depend on radial coordinate only. From group-theoretical point of view, ro
tationally invariant solution is a singular 0(3)-invariant solution. The nonsingular 
0(3)-invariant solution do not exist since the set of its invariants does not cover 
all sought functions (only two of three components of fluid’s velocity vector field 
can be derived from the invariants). However, one can sought for 0 (3 )-partially 
invariant solution. First, this type of solutions was successfully investigated for 
Euler equations by Ovsiannikov [7], He have obtained an overdetermined reduced 
system of equations, found all its compatibility conditions and describes the main 
properties of fluid flows, governed by the solution. In compliance with the title of 
Ovsiannikov’s article the solutions of this type are referred as “singular vortex” or 
“Ovsiannikov’s vortex”.

2. Irrotational Barochronous Fluid Flows

The Euler equations for ideal compressible fluid are the following

D u  + p~1V p = 0 ,  Dp  +  p d iv u  =  0. D S  =  0
D = dt +  udx +  vdy +  wdz .  ̂ ^

Here u  is the velocity vector, p is the pressure, p is the density, and S  is the entropy. 
System (1) is closed by the state equation p =  F(p, S ). We sought for solutions of 
system (1), which are barochronous

p = p(t.). P = p { t )  (2)

and irrotational

u  =  V<p for some potential <p{t,x,y,z). (3)

According to the state equation p =  F{p, S) entropy S  is a constant S  =  const. 
The group nature of barochronous solutions is the following. Equations (1) admit 
the Galilean group, which in particular includes transformations of the translations 
and galilean translations along the spatial axis. Invariants of these transformations 
are p, p and the time t. According to the algorithms of symmetry analysis of 
differential equations, the functional relations (2) between the invariants single out
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a partially invariant solution with respect to the group. The complete theoretical 
investigations of barochronous motions of ideal gas can be found in Chupakhin’s 
works [1, 2]. Our purpose is to add a demand (3) of potentiality of the flow.

2.1. Barochronous Gas Motions

We adduce here some of Chupakhin’s results, which will be used further. Ac
cording to (1) and (2) the barochronous motions of ideal gas are described by the 
following system of equations

The right hand side of the last equation (4) is a function of t  only. Thus the sys
tem (4) is an overdetermined system for velocity vector u. Description of its com
patibility conditions is given in terms of algebraic invariants j \ ,  jo, js  of Jacobi 
matrix J  =  riu/rix. Further j\  =  tr J . . . .  ,j% =  det J .

Theorem 1. The initial velocity field of  barochronous motion has a Jacobi matrix 
Jq =  riiin/9xq with constant algebraic invariants. On the contrary, any stationary 
vector field with constant algebraic invariants of its Jacobi matrix senses as initial 
velocity field for some barochronous gas motion.

It is possible to observe a Cauchy problem for the system (1), (2) with initial data
at t  =  0

Theorem 2. Solution of the Cauchy problem (5) for the system (1), (2) is given by 
the implicit formulas

Here jiQ are the initial values of the invariants ji. From the above it follows that 
any barochronous solution of gas dynamics equations is completely characterized 
by its initial velocity field.
Barochronous motions of ideal gas have many interesting properties. The trajecto
ries of particles in such motions are straight lines. However, the whole motion is 
non-trivial. The typical feature of barochronous motions is the collapse of density 
at a finite moment of time. At that time all gas particles simultaneously come to 
some manifold of lower dimension in comparison with the dimension of motion. 
The behaviour of sonic and contact characteristics of gas dynamics equations in 
the neighbourhood of collapse is already known [2],

(4)

u(O.x) =  u 0(x), p(o.x) =  p0. 5(0. x) =  S0. (5)

u  =  u o(D- P =  Po/Q- S  =  S0. £ =  x  -  tu

Q =  1 +  h o t  + 22012 +i.3o^3-
( 6)
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2.2. Irrotational Gas Motions

The irrotational (potential) motions of gas are much more classical object of inves
tigation. Irrotational gas motions are distinguished by a special kind of the velocity 
field (3). The state equation in the isen tropic case S  =  const reads p =  f{p).  In
tegration of the momentum equations in (1) gives the Cauchy-Lagrange integral

<Pt +  +  i{p) = 0. (7)

Here i(p) =  f  p 1 dp is the specific enthalpy. The continuity equation provides

it +  Vcp • Vi +  a2A <p =  0. (8)

Here a2 =  f ' (p)  is a square of sound speed. Equations (7) and (8) serve for de
scription of irrotational gas motions. One can obtain a single second order equation 
for ip by substitution of the specific enthalpy i from (7) into (8).

2.3. Irrotational Barochronous Gas Motions

In present paper we combine two properties described above. We look for solu
tions which are simultaneously irrotational and barochronous. There are two ways 
of solving the stated problem. First is to start from equations (7) and (8) and to 
demand the solution to be barochronous. Equations (2) implies that all thermody
namical functions depend only on time: i =  i(t), a =  ci(t). Hence we obtain an 
overdetermined system of two equations (7) and (8) for one function cp(t, x, y. z). 
This system must be completed to involution.
The second way is to start from barochronous solution taking into consideration 
property (3). As noted above the description of barochronous gas motions is re
duced to the investigation of the equations for the initial velocity field (hereafter 
we omit zeroes at uq and replace £ by x)

UX +  Vy A WZ = j  1

u x u y +
Vy V.z +

w z w x

Vx Vy Wy w z u z u x n

u x ■Uy u z

Vx Vy Vz
Wx Wy Wz

(9)

7.3-

The constants j i ,  ;h> ;h can lake arbitrary real values. Since the equation (3) is valid 
during the whole time of motion it is also valid for the initial time t  =  0. Thus, to 
describe the potential barochronous gas motions it is necessary to study system (9) 
with the substitution of the velocity field (3). In other words, the investigation of 
the potential barochronous gas motions is reduced to the description of all functions 
cp(x, y, z), which have a Hesse matrix with constant algebraic invariants. Below
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we use this second approach. The complete investigation of this problem can be 
found in [31. Below we demonstrate only the basic steps of investigation.

2.4. Equivalence Transformations

To simplify the analysis of system (9) it is convenient to transform the vector 
j =  (;h‘h ‘h )  t0 some canonical form. This is performed with the aid of equiv
alence transformations, which preserve the structure of the system (9) acting only 
on the constants ji. The group of equivalence transformations for the system (9) is 
known [61. It is generated by the operators

It is known [61 that due to transformations 1) any system (9) is equivalent to one 
of the four canonical systems with vector j of the form

The principal moment is that in all the four cases j 3 =  0. It means that there exists 
a perfect relationship between functions u, v and w for system (9) in a canonical 
form. Thus, the initial velocity field of barochronous motion is equivalent to some 
double u =  u(v, w) or “sesquialteral” u =  u(v), w =  w(x. y. 2:) wave.

2.5. Double Wave

Let the derivatives of the function p> be related by the expression

After the finding of absolute integral of equation (12) its general solution is repre
sented in a parametric form

T\ — x kduk +  3 djx +  2jidj2 +  j 2dj?1

T2 = ukduk -  x kdxk +  2j1djl +  4)29J2 +  6j 3d h

T3 =  ukdxk +  (2)2 ~  j i ) d h  +  (3)3 -  j i j 2 )djo ~  j i j s d j?t.

( 1 0 )

1° (0.0.0): 2° (1.0.0): 3° (0.1.0): 4 ° (0 .-1 .0 ) .  (11)

ip x  =  U { i f y . i p Z) , ( 12)

ip = u(p1.p2)x +  ppy +  p2z +  '(/•°(pi.p2)- (13)

Here 4,0(Pi'P2) is the arbitrary function, p\ and p2 are parameters, which are re
lated to initial variables by the equalities

(14)
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Next, it is convenient to move from independent variables (x, y, z) to independent 
variables ( x ,p i ,p 2 ) according to formulas (14). The Jacobian of such transforma
tion

A
d jx . y . z )  

d (x ,p i ,p 2) 
( d 2u d2iP

7X +
dp 1

i I 1C/pi /  \  (jpi
d2u d2,ip° ' 

X +  „ o
(  d 2u d 2ip° V
l i"\ X l ;-'S I
\ o p id p 2  o p i d p 2 /

(15)

differs from zero due to the arbitrariness in the choice of the function y/] (pi . p2)• 
The substitution into the first two equations (9) gives

1 + du  
dp 2 .

. n du du
1 A i +  2—— —— A2

1 +

dpi dp2 
d u \ 2 
d p i )  +

1 + du

’ d u \ ‘ 
dp2)

dpi. 

92 A.

I A3 =  j iA
(16)

The notation above means

Ai x-
d2u d2,ip0

+
dpf dpf

Ac
d 2u

x +
<92'f/)c

dpidp2 dpidp2
. d2u d2,ipQ

A3 =  X--- 7T
dpi dp^

(17)

From the last equation in (16) it follows that j 2 7̂  0, i.e., the cases 1° and 2° from 
classification (11) are not realized here.
Let us consider the remaining cases 3° and 4°. Here j  1 =  0, jo =  ±1. After 
the splitting of equations (16) on independent variable x  we obtain five equations. 
Among them the following ones are interesting. Linear with respect to x  term in 
the first equation in (16) gives the equation of minimal surfaces

du \ \ 0 u du du 0 u du  \  2\  d2u
1 I ( o  l l o C *  ^ r-\ -̂\ i~\ I ( 1 I ( i~\ I ) o !\ d p 2 J J dpf d p id p 2 dpip2 V \ d p i J  J dp,

0. (18)

The coefficient of x 2 in the second equation in (16) gives the Monge-Ampere 
equation

d^ud^u  _  (  d2u \ 2 
dp\ dp\ \ d p 1P2 )  ‘

(19)

Thus, surfaces z =  u{x.y)  with function u satisfying equations (18), (19) are 
enveloping and minimal. The set of such surfaces turns out to be exhausted by the 
planes.
Returning to the initial notation we obtain linear relation between the derivatives 
of function

ifx — CUfiy +  b(fiz +  c, a.b.c  =  const. (20)



Symmetry Approach and Exact Solutions in Hydrodynamics 197

The equation (20) is integrated in the form ip = cx + ip° (ax +  y, bx +  z). Accurate
to the transformations of rotation and Galilean translation we can assume that a =  
b =  c =  0. Thus, the function turns out to be of the following type: =  ip(y. z).
The similar analysis of two-dimensional case gives that all nonequivalent functions 
(p(x. y), which satisfy the equations (9), are

All “sesquialteral” waves are also reduced to the two-dimensional case.

2.6. Final Result

Summing up all the calculations we can formulate the following statements.

Theorem 3. The initial velocity field of irrotational barochronous gas motions is 
equivalent to one of the following:

a) constant;
b) u =  x, v =  w =  0
c) u =  x, v =  —y, w =  0.

Knowledge of initial velocity field of barochronous motion of gas allows one to 
reconstruct a solution at arbitrary moment of time according to formulas (6). The 
value of density is regenerated then by the integration of the equation of continuity. 
Gas pressure is determined from the equation of state. Application of such proce
dure to the obtained initial field allows us to formulate the following statement.

Theorem 4. The irrotational barochronous gas motions accurate to unessential 
constants are described by the following formulas

(21)

ax by cz
i  +  bt:

a. 6. c. po =  co n st.
(22)

^ (1 +  at)( 1 +  5f)(l +  ct)

3. Singular Vortex In Magnetohydrodynamics

In this part we observe the ideal magnetohydrodynamics equations
D p +  p d i v u  =  0

D u  +  p l S/p + p 1H x r o t H  =  0 
D p +  A(p, p) div u  =  0 

D H  +  H d i v u -  ( H - V ) u  =  0 
d ivH  =  0. D =  dt +  u  • V.

(23)
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Here u  =  (u. v. w) is the velocity vector, p and p are the pressure and the density, 
and H  =  (H 1, H 2, H 3) is the magnetic field (electric conductivity is infinite). All 
these functions depend on the time t  and the coordinates (x, y, z). The function 
A(p, p) depends the state equation of the fluid.
The equations (23) admit as invariance group the group 0(3) of simultaneous ro
tations in the spaces l f3(x), l f3(u) and 1l3(H). The usual construction of the 
solution, invariant with respect to 0(3), is a solution, where all sought functions 
depend only on radial coordinate r and time t  and both velocity vector and mag
netic field have radial direction. The symmetry analysis of differential equations 
allows another type of solution, namely, partially invariant one.
It is convenient to observe a spherical coordinate system

x  =  r sin 9 cos <p, y = rsm 9 s \m p .  z = rcos9.  (24)

Invariants of 0(3) in the space of independent variables and functions are the fol
lowing

t, r . U, M, H, N . Q - E .  p. p. (25)

Here U =  ur and H  =  H r are radial components of vector u  and H. Tangential
to spheres r =  const components of these vectors are represented as

ug =  M  cos Q, Up =  M sin Q. Hg =  N  cos E. Hp =  N  sin E.

From (25) is follows that not all sought functions can be determined as the func
tions of of invariants of 0(3). This fact does not allows to construct an invariant
solution with respect to the group 0(3). However, there exist a partially invariant
solution with the following representation

U = U{t,r), M = M { t , r ) ,  H  =  H{t,r) ,  N  =  N {t ,r )
Q = r. 9. (p). E =  cr(f.r) +  u;(t,r,9,ip) (26)
p = p(t ,r) ,  p = p{t,r).

The presence of one non-invariant function to(t. r,9,<p) makes the solution to be 
partially invariant with defect 5 =  1. The non-invariant function uj is called a 
“superfluous” function. The classical solution with radial flow and radial magnetic 
force can be obtained from (26) by taking M  =  N  =  0. Further we omit this case 
as the known one.
Substitution of representation (26) into MHD (23) provides a system n  of nine 
equations for invariant the functions U, H , N , M , p, p and the superfluous func
tion u j . This system should be observed as an overdetermined system of first-order 
PDEs for the function uj(t. r, 9, cp) under assumption that all invariant functions are 
known. The compatibility conditions of this system produce the equations for the
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invariant functions. This procedure is illustrated by the following diagram

In order to omit trivial situations, we observe only the case, when function to is 
determined with functional arbitrariness. Function to is determined with only con
stant arbitrariness if it is possible to express all first-order derivatives of uj from the 
system II. To impose a ban on this situation we calculate a matrix of coefficient of 
lu’s derivatives and demand it to be of rank three or less. The demand is satisfied 
only in the following three cases:

• M  =  0 -  radial velocity field
• N  =  0 -  radial magnetic field
• cr =  0 -  coincidence of derivation angles of the tangential component of the 

velocity and magnetic vector fields.

All these three cases signify that velocity vector u  and magnetic field vector H  in 
each point must be coplanar to the radius-vector of the point. Further we observe 
the most general case cr =  0, i.e. E =  O =  Lu(t,r,0,ip). It is convenient to 
introduce

M 1 = r _1M, H x = r 2H . N \ = rN ,  H x = cos^1 r . (27) 

The invariant subsystem I S  is reduced to the following

m u d

C S  -  compatible system for uj

I S  -  equations for invariant functions

r  r 4p c o s rr

COST

(28)

p r*p

This overdetermined system of seven equations for six functions is in involution 
(compatible and locally solvable) since the compatibility condition of last two 
equations of (28) (equations for r )  coincide with the second equation in (28).
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Equations for the superfluous function uj are

Niujt +  (Aq U — HiMi)ujr =  0
H \  cos LOLOr +  N\ujg  — tan  t N \  sin uj = 0 (29)
sin 9 sin ujujg — cos ujuj^  — tan  r  sin 9 — cos 9 cos uj =  0.

The latter system is also in involution on the solutions of equations (28). The 
arbitrariness in the general solution of (29) is one function of one argument. The 
general solution of (29) can be implicitly represented as

F(ih 0  = 0 (30)

where F  is an arbitrary function of the invariants r/ and (\ which are

i] =  sin 9 cos uj cos r  — cos 9 sin r
sin uj cos t

C = F + a rc ta n ---- ----------------- , . a .---- •cos 9 cos uj cos t  +  sin 9 sin r
The following question arises: Is it possible to choose a function F  (determined by 
the equation (30)) which is continuous as a function of uj(t, r. 9. ip) on each sphere 
r =  const? The answer of this question is not known to the author yet.
One can prove that a trajectories of particles and magnetic force lines on this flow 
are flat curves. However the position and orientation of the plane depends of initial 
particle’s position. Function r(t,  r) determines a polar angle of particle in the plane 
of it’s motion. In the stationary case (d/dt =  0) velocity and magnetic field vectors 
are colli neat; therefore the streamlines coincide with magnetic lines. The deeper 
investigation of the flow requires more specific information on the solution.

3.1. Symmetry of Invariant Subsystem

The determining of the solution of the form (26) is reduced to the investigation of 
the system (28). The latter serves as an individual object of symmetiy analysis. 
Calculation of admitted group of system (28) (for simplicity A(p, p) =  jp ,  where 
7 is polytropic exponent) gives, that admissible Lie group of point transformations 
is 3-dimensional and its Lie algebra L3 is generated by the operators

X i  = dt
X<i =  tdf — Udir — M xdMl +  2 pdp (31)
X 3 =  rdr +  Udu -  Nidffi -  4pdp -  6pdp.

Besides, two involutions are admitted

£1 : t  —> —t, U —> — U. M i —> —M i
£2 : r —> — r. U —U, Ay — A \.
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The optimal system of subalgebras of the Lie algebra L3 was constructed. The 
optimal system of subalgebras is a maximal set of nonconjugated (with respect to 
the action of inner automorphism) subalgebras of L3. In the case of the algebra 
L3, the optimal system is the following:

dim =  1 : {Xi} ,  {Xi +  X 3}, {X 2 +  a X 3}
dim =  2: {.Y,..V3}, {X 2. X 3}, {X ,.  X 2 +  aX3]
dim = 3 :  { X i . X 2 .X 3 }.

Each subalgebra generates some symmetry reduction of the system (28).

3.2. Stationary Solution

We observe an invariant with respect to the group of time translation solution 
of (28) generated by the Lie algebra {Xi}. Invariants of the group are r and 
all functions U, M i, N \ , r ,  p, p. The functional relations between the invari
ants ensure that all functions depend only on r. Equations (28) are reduced to the 
following system of ODE

UM[ +  -U M i -  i—  =  0 (32)
r r 4p c o s r

UN\  +  X i U ' ------ ^  -  M i Xi tan  r  =  0 (33)
COST

Upf +  7p(Uf H— . U — M i t a n r )  =  0 (34)
r

UUr +  V  +  -  r M \  =  0 (35)
p r zp

Up +  p(Uf H— U — M i tan  r )  =  0 (36)
r

t ' =  N\  c o s t . Ut ' =  M\.  (37)

This system can be reduced to the set of first integrals and one first-order ODE.

3.3. Logarithmic and Self-Similar Solution

Another two one-dimensional subalgebras from the optimal system gives another 
two reductions of (28) to ODEs. Calculating the invariants of each subalgebras and 
proposing the functional relations between invariants we obtain the representation 
of the invariant solution.
The subalgebra {Xi +  X3} gives the following representation of the solution

U =  r(v(  A) +  1). M i =  m(A). N i  =  r _1ra(A). t  =  t (A) 

p = r~4P(  A), p =  M 6.R(A). S  =  s(A)r67-4. A = t — logr.
(38)
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Substitution of (38) gives a system of ODEs, which involves only the functions v, 
m, ra, P , R  and independent variable A. Curves A =  const are called the level 
lines of the solution. In this solution the level lines are a logarithmic spirals in the 
(t, r) plane. Therefore the corresponding solution is called “logarithmic” one.
The last one-dimensional subalgebra from the optimal system is a { X 2 +  a X 3} 
with arbitrary real a. The corresponding transformation is a dilatation, therefore 
the invariant solution is a self-similar one. Calculation of invariants allows one to 
write the representation of the solution

U = ta- 1(v(X) + a \ ) .  M 1 = m(X)t.-1. N 1 = n(X)t.-a . r  =  r (  A)• - (-39)
p = P ( X ) t - 4a. p = R ( X ) t 2- 6a. S  = s(X)t6a^ - 4a. X = r t - a .

Reduced system of ODEs can be obtained by substitution of (39) into (28). Both 
systems have a number of first integrals for special values of parameters.
The two-dimensional subalgebras from the optimal system generate so-called “sim
ple” solutions. The number of functionally independent invariants of the corre
sponding two-dimensional Lie groups in the space 1l6(?7, M i , N i , t ,p. p) is 6. 
Besides, there are no invariants, which depends only of t  and r. Therefore the 
representation of solution is constructed by equating all invariants to the constants. 
Substitution to the initial system gives a finite relation between this constants. Cal
culation of these relations for all subalgebras shows that all such solutions are 
reduced to the trivial one. The whole algebra L 3 generates a partially invariant 
solution of (28), which was not observed yet.
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