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Abstract. Since the early days of quantum mechanics many techniques 
have been developed in order to deal with manifolds with non-trivial 
topology. Among them two techniques have received a great attention 
in the literature and are shortly reviewed here as they are most geomet
rical in nature. These are the Kostant-Souriau geometric quantization 
scheme and the so called constrained quantum mechanics. A notable 
difference between them are the geometrical structures used in these 
theories. The first is based on the symplectic structure of the phase 
space and the second one relies on the Riemannian metric of the con
figurational manifold. Both approaches are illustrated in full details. 
Presented examples include the // -dimensional variants of the harmonic 
oscillator and the Kepler problem which are treated within geometric 
quantization scheme by making use of the Marsden-Weinstein reduc
tion theorem and even a combination of both methods is applied in the 
study of quantum-mechanical aspects of the geodesic flows on axisym- 
metric ellipsoids.

1. Introduction

The material presented in this report is based on a revised and expanded format 
of lectures delivered at the third edition of Varna International Conference on 
Geometry, Integrability and Quantization held in June 14-23, 2001.
No claims whatsoever are made with regard to completeness and at many places 
the reader is referred to the original works given in the list of references. The 
principal objective is to present the available techniques for treating quantum- 
mechanical systems defined on topologically non-trivial manifolds. As they ap
pear even at early stages of quantum theory we start with a brief recapitulation 
of the old Bohr Sommerfeld theory. Then we proceed with Kostant Souriau
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geometric quantization scheme and end up with quantum-mechanical systems 
constrained on surfaces in M3. As applications we consider the multidimen
sional analogs of the harmonic oscillator and Kepler problem and quantum- 
mechanical aspects of the free motion (geodesic flow) of particles constrained 
on the prolate respectively oblate ellipsoids.

2. Bohr-Som m erfeld Theory

It is a common consent that quantum mechanics is the most revolutionary 
development in modern theoretical physics. However, the great changes unified 
into a consistent and coherent theory in the period 1925-1928 came about only 
gradually during the first quarter of the century.
The old quantum theory was born in 1900 when Max Planck announced his 
theoretical derivation of the spectral distribution law for black-body radiation, 
which he had previously formulated on the basis of empirical considerations. 
Actually he had showed that the experimental results can be accounted for 
by postulating that light can not be radiated continuously, but only in whole 
multiples of hv, where v is the frequency and h is a new universal constant 
which nowadays is known as Planck’s constant.
In 1905 Einstein suggested that the radiant energy in the process of emission 
of light is sent not in all but just in one direction like a particle.
The third stage in the progress of old quantum theory was initiated by Bohr. 
Guided by the results of Rutherford scattering experiments, the Balmer for
mula and the difficulties of the classical electrodynamics to explain them, he 
put forward in 1913 the hypothesis that the electrons do not radiate energy 
continuously but that they can revolve along certain discrete orbits without ra
diating and that just when they are jumping from one such orbit to another they 
will emit a quantum of light with a frequency v given by the formula

hv — E 2 — Ei (2.1)

where E 1 and E 2 are the energies of the first and second orbit respectively. In 
addition Bohr gave a method for determining the quantized states of motion (the 
so called stationary states) of the hydrogen atom. This method of quantization 
involves a restriction of the angular momentum of circular orbits to integral 
multiples of the quantum h /2 tt and though leading to correct energy levels 
was soon superseded by a more powerful method of quantization proposed 
independently in 1915 by Ishihara [22], Sommerfeld [56] and Wilson [62]. 
Namely, they have noticed that the quantization of the angular momentum (in
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the plane) is a result of the condition

j) pv dp — nvh for some G N . (2.2)

Here is the generalized momentum corresponding to the azimuthal coordi
nate Lp and the integration is over the period of p. That is why it was postulated 
that the stationary states of a system with n degrees of freedom q1,q2, . . .  ,qn 
are selected by the conditions

j) pk dqk =  n kh for some n k 6 N , k =  1 ,2 , . . . ,  n . (2.3)

Sommerfeld had applied this method for finding the spectrum of the hydrogen 
atom in both relativistic and non-relativistic cases, Schwarzschild [50] had 
explained the splitting of the spectral lines due to the external electric field and 
had found the spectrum of the free rotational motion of axially symmetric rigid 
body, while Debye [9] have used these concepts in order to find an interpretation 
of the so-called normal Zeeman effect.
However this theory was not free of internal controversies. At the begin
ning any problem under consideration have to be treated with the methods 
of classical mechanics and then one have to select the quantum states from 
the continuum set of classical motions. Besides it is not quite clear in which 
coordinates the quantum conditions (2.3) should be imposed. Separability of 
the Hamilton-Jacobi equation is some indication but could not be taken as a 
principle because there are situations when the separation can be performed in 
more than one coordinate system. Even more unpleasant feature of the Bohr 
Sommerfeld theory is the failure to provide a method of calculating transition 
probabilities and the intensities of the spectral lines. This dissatisfaction with 
the old quantum mechanics leads to the appearance of the Schrodinger wave 
mechanics in 1926 when it became clear that the Bohr-Sommerfeld theory 
produces just the leading tenn in the semiclassical approximation.
However in many cases it is capable to provide exact results as well [53]. Such 
developments in the subsequent years include finding the spectra of the hamil- 
tonian of the relative motion of two relativistic particles interacting through a 
Coulombian potential [34], the motion in the ring-shaped potential which ap
pears in some axially symmetric systems in quantum chemistry [58] and that 
one of the free motion of the asymmetric rigid body [36].

3. Geometric Quantization

In almost all physically significant problems the phase spaces of the classi
cal Hamiltonian systems are just cotangent bundles with their canonical sym- 
plectic structure [1,29,57]. The other source of symplectic manifolds is the
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algebraic geometry which gives a lot of deep information about (compact) al
gebraic manifolds the symplectic structure there is given by the Kahlerian 
fonn. The connection between these has been exploited during the last two 
centuries through the procedure which is now called reduction. Starting with 
the work of Jacobi (and implicitly by Kepler, Newton and Euler before him) 
this method has produced the most beautiful solutions of physical problems in 
terms of algebro-geometric entities as ^-functions etc. One of the purposes 
of the present section is to discuss the process of reduction from noncompact 
to compact (algebraic) phase spaces as a method for quantization, which we 
think is the basic fact of the geometric quantization scheme. Compact com
plex (specially algebraic) manifolds involve a lot of discrete characteristics 
starting from continuous background. A further purpose of this section is to 
show how naturally these spaces appear in classical mechanics, and how the 
quantum mechanical picture arises when geometric quantization is applied to 
them. The scheme can be applied to various submanifolds in complex pro
jective spaces. These are actually the orbit manifolds associated with concrete 
mechanical systems: free and coupled harmonic oscillators, the Kepler prob
lem, the geodesic flows on spheres and projective spaces (cf. [38,39,41]). 
In all cases the quantum spectrum along with corresponding “wave” functions 
can be described explicitly. On the way the modification of the quantization 
scheme is argued and explained. In standard quantum-mechanical terminology 
transition to the orbit manifolds corresponds to passage from Schrodinger to 
Heisenberg picture in quantum mechanics. From mathematical point of view 
quantization of momentum mapping associated with free torus action on the 
symplectic manifolds nevermind how simple this picture might be contains as 
a special case the whole representation theory of semi-simple group and the 
theory of universal spaces for vector bundles.

3.1. Dirac Programme

The modern quantum mechanics starts in the second quarter of the last century 
with the clear idea that the quantization is a map from the space of the classical 
observables (i. e. the smooth functions on the phase space (M, =  (IR2n, dp^A
dq1)) to the self-adjoint or symmetric operators in the Hilbert space 7T. A —> 
5((f)): Ti —> H  which satisfies:

1. 5((j) + tf;) = 5(<j)) +  S(tfj);
2. 6(\<f>) = A5((f) ) , A e M;
3. 5({fa i/)}) = i[A(A),A(A0];
4. 5(1) =  IdH is the identity operator in H;
5. S(ql),5(pi) are irreducible operators in 'H.
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The various partial realizations of the above so-called Dirac programme [10] 
are known as algebraic, asymptotic, deformation, geometric, group-theoretical, 
etc quantizations but van Hove [20] proves rigorously that this can not be done 
at all! However, he proves also that 1-4 has solution and that there exists 
an unique realization in the large for the algebra of polynomials up to second 
degree in the canonical coordinates q\Pi. Later on Segal [51] had transferred 
the above theorems to phase spaces (T*Q , dO) which are cotangent bundles 
of some configurational manifold and finally Kostant [27] and Souriau [57] 
present a scheme suitable for an arbitrary symplectic manifold 
One may also wonder how such nontrivial manifolds (two-cycles and more 
general surfaces) appear in real systems? The most natural situation for this 
to happen is the reduction procedure known since the times of Newton and 
Jacobi and which modern formulation is due to Marsden and Weinstein [31]. 
The setting of the reduction theorem is the following: if a Lie group G acts in 
a Hamiltonian fashion on the symplectic manifold (M, lo), i. e.

T>3 : M  —»■ M  , <L*u; =  u;

and preserves the energy function H  of the Hamiltonian system (M, to, H)

$*H  = H o $ g = H ,

then there exist a natural mapping called momentum

J: M  —> $* — the dual of the Lie algebra q of G 

such that if /i is a fixed regular element in g* then

r ' M / G ,  =  m „

is an even-dimensional manifold and moreover there exists a two-form uy, 
such that (M ^uyJ is a symplectic manifold. When applied to such reduced 
manifolds geometric quantization scheme produces the quantization of charge, 
spin and energy levels of some physical systems [38,40],
Below we will present a short reviews of the Kostant-Souriau quantization 
scheme and its extension, the so called Czyz Hess scheme which will be ap
plied in the next sections to the multi-dimensional variants of harmonic oscil
lator and Kepler problem.

3.2. Kostant-Souriau Geometric Quantization

The non-trivial moment in the Kostant-Souriau approach is that the wave 
functions are not moreover functions but a sections of a line bundle L over
M,  i. e. 7r: L —» M, s: M  —>■ L and tt o  s  — ldM.
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Such L exists if the symplectic manifold (M, to) is pre-quantizable [27,57],
i. e. if [u;/27r] is in the image of the map

H 'L J M W  ^  Hd2eRh»(M ,K )

where [ ] denotes the de Rham cohomo logical class.
When M  is a compact manifold the above condition is equivalent to

( w G Z ,  for every two-cycle a E H 2(M : Z) (3.1)

and the quantum operator associated with /  acts in H = T(L), the space of 
sections of the corresponding line bundle, as follows:

8(f)s  =  —i VXfs + f s .

Here VX/ is the covariant derivative along the Hamiltonian vector field gener
ated by the symplectic fonn via = — d/ .  Identifying the sections of L
with functions on M  (which can be done in general only locally!) the action 
of 5(f)  in T(L) can be written in the fonn

s ( f ) v  =  H W  -  8 ( x { ) +  ! ) V

where 6 is some local potential one-fonn of the symplectic structure ui =  d6. 
The irreducibility of the representations which is the second stage (quantization) 
of the programme is achieved by introducing additionally a new structure called 
polarization. A real polarization over M  is a such map that juxtapose to each 
point m  E M  a real subspace F,n c  Tm(M) which is maximally isotropic 
integrable distribution.

Example 3.1. Let Q be a smooth manifold and let T*Q be its cotangent bundle. 
If{Pi, <l,} are the local canonical coordinates in T*Q, then an easy check shows 
that the vector fields

X !
()

dpi
,x2=

Op2
()

dpn
define a real polarization over T* Q which is known as vertical polarization.

Example 3.2. The two-dimensional sphere does not allows real polarization 
because o f the non-existence o f a global non-singular real vector field on S 2.

This situation suggests also the generalization of the above notion. Namely, a 
complex polarization over M  is a map F  which assigns to each point m  E M  
a subspace Fm of T f ( M )  which is maximally isotropic integrable distribution, 
and besides the distribution Dm — Fm fl Frn is of some fixed dimension n at 
each point m  E M.  The polarization F  is called Kahlerian if Frn n Fm — 0.
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For any kind of polarization F  the potential 6 of the symplectic form to (i. e. 
uj — dO) is called an adapted to it if 0(X)  =  0 for every X  A F. The quantum 
pre-Hilbert space is built up by the polarized sections of L which definition is 
as follows.
Let M,w, L, V and F  be as defined above. The polarized sections of L form 
the line bundle

L f = {s e  Sect(L); Vx s -  0 , for all X  A X(M, F)}  .

In order to have a true Hilbert space we need some measure (or density) which 
is an element of a second line bundle. This can be introduced if we consider 
the elements of the cotangent bundle T*(M)  that vanish on F  and form a sub
bundle F° C Tq (M)  which is called annihilator of F. By the very definition 
of the symplectic form we have that the map

v e F  —> i{v)u) <G F°

is an isomorphism of F  and F ° . This means that we can form the line bundle 
K f — AnF° over M  that will be further referred as a canonical bundle of F.
If {vi^ v2l. . . ,  vn} is a basis of F, then

K oj — A i(v2)cv A • • • A i(vn)uj

is a basis in K F and for every g e GL(n,  (7), (K 9)oj — det g K^.
Let (M,cu) be a symplectic manifold and F  is a complex polarization on it. 
We will say that M  is a metaplectic manifold if there exists a line bundle 
x 1/ 2 over M  such that

X 1/2 <g> x 1/2 =  k f .

One can show that (M, to) is metaplectic if and only if the first Chem class of 
K F is zero modulo two and this property does not depend on the choice of F. 
In this case the group H l {M^ Z2) parameterizes the set of “square roots”, i. e. 
the set of all X 1/2 which satisfy the above condition. The sections of N F 2 
which are constant along F  are called half-fonns normal to F. The line bundle 
Q — L F 0  N F 2 over M  is called a quantum line bundle because its sections 
are considered as elements of the Hilbert space H F. The classical observables 
which can be quantized directly are those that preserve the polarization F,  
i. e. { /  € R °°(M ); [Xf ,F] c  F},  where X / is defined by the equation 
i {Xf )u =  - d / .  If if) = s 0  v, where ^  e T(Q), s e T(LF), v e T(X^/2) 
are sections of the corresponding line bundles, the associated with /  quantum 
operator acts in FLF as specified below:

/(VO =  (-iV xy +  f)s & V -  is (8) C{Xf)v . (3 .2)
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Identifying the sections of L F with functions on M  (which is possible because 
LF is a line bundle) the action of /  in TLF can be written in the form

/>  =  ( -  i X f -  0(Xf ) + f )<p®v- i<p® C(Xf )u (3.3)

where 6 is the potential one form of lv.
Actually this explicit formula has found very few applications as most of the 
considerations end up with checking the consistency of the scheme relying on 
(3.2).

3.3. Czyz-Hess Scheme

After cotangent bundles and co-adjoint orbits the Kahlerian manifolds form 
another important class of symplectic manifolds. According Darboux theorem 
all symplectic manifolds (of fixed dimension) are locally the same but in prac
tice they appear with some additional geometric structure. Its presence in the 
setting of geometric quantization helps in many cases to answer definitely the 
question if the given symplectic manifold (M, lv) allows such quantization. A 
trivial example is provided by even-dimensional complex projective spaces. 
The well-known fact for these manifolds is that

H 2(F2n, Z2) ^ Z 2 .

On the other hand we know that the symplectic manifold can be
quantized if M  is a metaplectic manifold, i. e. H 2(M,  Z2) — 0. So, even
dimensional complex projective spaces can not be treated in Kostant Souriau 
scheme. On the other hand they appear as the orbit manifolds of the odd
dimensional harmonic oscillators which form an important class of dynamical 
systems. Fortunately this problem can be taken away by a slight modification 
of geometric quantization scheme as developed by Czyz [8] and Hess [19] and 
outlined bellow.

Definition 3.1. Let (M , to) be a such Kahlerian manifold that the cohomol

ogy class [q\ =  —  [cu] — belongs to the image o f e: i72(M, Z) —>

H 2{M, M) and q is positive, i. e. q{a) > 0 for any positively oriented two-cycle 
a G H2(M,  R). The complex line bundle Q whose first Chern class c f Q )  is 
q is called quantum bundle.

If the pre-quantum L F and the half-form N ^ 2 line bundles which appear in 
Kostant-Souriau theory (cf. [27,57,54,16]) exist then there exists also the 
bundle Q = L F <g> N ]/2 s o  that c f Q )  =  c1(Q) and therefore Q and Q are 
equivalent. Among symplectic manifolds the Kahlerian ones are those which
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possess canonical anti-holomorphic polarization that makes identification of 
quantum states with holomorphic sections quite natural. Now, fixing a positive 
harmonic representative 77 (E ci (Q) and connection V which curvature is — 2?ri // 
we are in position to define also and V-invariant hermitian structure hn (. ) on 
Q. We recall that, the curvature of the hermitian metric hn on the bundle Q 
satisfies

—  dd log hn
Z7T

The space of holomorphic sections ) of Q can be converted into
Hilbertian space 'H if we introduce the scalar product

(s,7) — j  hrj{s,t)VLrn tov =  2Tn], s, t £ T(M, Q ) , n =  ^ d im ilf (3.4)
M

and where fL := -------- ------- cov A ujv A • • • A uy is the natural volume form on
n\

M . If our manifold M  is simply-connected the hermitian structure is defined 
up to a positive factor and H  is defined up to an isomorphism which depends 
on the choice of the connection V. The representations are build up following 
the prequantization recipe in which (L,uj) is exchanged for (Q, ton) i. e. to the 
classical observable (i. e. a function /  on the phase space), there corresponds 
a quantum operator

5(f)  € End H°(M, Q) , 5(f)s  = ( - iV Yf +  f ) s

where s e  H°(M,Q),  and now the vector field X f  is defined via cov, i. e. 
i(Xf)u)v — — d/ .  The only problem here is that iun is not always non- 
degenerated. More detailed exposition can be found in Czyz [8] and Hess 
[19]. Having in mind the applications that follow it seems appropriate to in
troduce some general notion that will help the mathematically minded reader 
to create his own picture.
Assuming a presence of complex structure we will say that the manifold M  
allows geometric quantization if there exists a differential two-form uo such 
that (M, u>) meets the condition for existing of quantum bundle. The Kahlerian 
form % € H 2( M , Z) on M  in that case is called a Hodge structure. When M  is 
a compact the existence of Hodge structure is equivalent to the possibility for 
embedding M  holomorphically in some complex projective space and in the 
latter case M  is an algebraic manifold, i. e. it can be described as the common 
locus of a finite system of homogeneous complex polynomials (see Griffiths 
and Harris [15]).
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Theorem 3.1. The compact complex manifold M  allows geometric quantiza
tion i f  and only i f  on it there exist a Hodge structure. The Chern class q o f 
any quantum bundle over M  satisfies the condition q 6 i71,1(M, Z) and the 
form 7] is o f type (1,1).

The complex manifold on which acts a group of complex (holomorphic) trans
formation is called C-homogeneous. If every point m  e  M  is an isolated 
fixed point of involutive holomorphic transformation am : M  —> M , then M  
is called complex symmetric space or simply C-space. Any compact C-space 
M  can be presented as Cartesian product M 1 x M 2 x • • • x M k in which every 
factor coincides with some of the manifolds in the Cartan list:

1. U(p +  g)/U(p) xU(g) , p , q > l ;
2. SO(2p)/U(p), p > 1;
3. §p(p)/U (p), P > 1 ;
4. §0(p  +  2 ) /§ 0 (p )x § 0 (2 ), p > l ,  p / 2 ;
5. E6/§pin(10) xU (l);
6. E7/E 6 x U(1).

It is interesting to note that any of the Cartan classical domains listed above 
satisfies the condition d im ff2(Mi,Z) =  1 (cf. Borel [5]) and this facilitates 
their geometric quantization. From the viewpoint of the general representation 
theory this means that only the fully symmetric representations (single row 
Young tableaux) of the corresponding group can be recovered. It should be 
mentioned also that these manifolds appear quite naturally in physics the 
first three classes are connected with various formulations of time-dependent 
Hartee-Fock theory, the fourth consists of the manifolds behind the Kepler 
problem (in dimensions different from three) and the remaining ones arise in 
modern quantum field theory models.
The generalization of this situation (inspired by the need of more quantum num
bers) is immediate. Let us take M  which is a compact complex C-homogeneous 
manifold of non-zero Eulerian characteristic x(M ) and consequently simply- 
connected. Under above conditions the complex transformations of M  generate 
a real compact semi-simple Lie group G which acts transitively. In this case M  
is homeomorphic to the factor-space G / K  where i f  is a Lie subgroup of the 
same rank as that of G. The set of the generators of TT2 (M. Z) is in one-to-one 
correspondence with the simple roots of G and its irreducible representations 
have geometric description provided by the Borel-Weil-Bott construction (see 
Serre [52] and Bott [6]). So, the mathematical part is relatively clear and the 
non-trivial moment is the extraction of such manifolds.
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3.4. Multidimensional Harmonic Oscillator 

Definition 3.2. The Hamiltonian system (M, Q, H), where

M  = T*Rn = {(x,y)  g r x r }
n

n  — ^  dyk A dxk = dy A dx
k= 1

and

H  = \  J2 (y l + x l) = \ ( \ y \2 +  M 2)
k= 1

is known as n-dimensional harmonic oscillator.

(3.5)

In order to be coherent with the title we will suppose that n > 2. The Hamil
tonian vector field X H of this dynamical system is

x h  — y^xvk
_d_
d xh x k

d
dykk= i

and the corresponding Hamiltonian equations of motion are

dxk
dt Vk ,

<hjk
dt

x k . (3.6)

Introducing zk =  (xk —iyk) / \/2  we can identify M2n with Cn. In these complex 
coordinates the Hamiltonian H,  the symplectic fonn Q and the Hamiltonian 
equations of motion can be rewritten respectively as

n  n

H  =  Z k Z k  =  \Zk \2 ’
k= 1 k= 1

n

Q, =  i ^  dzk A dzk =  i dz  A dz
k= 1

(3.7)

and
—— = iz . 
dt

The solution which satisfies the Cauchy data Z(t=0) =  z0 — (z01, z02, • • •, z0n) 
is:

z(t) =  euZo .
Any positive real number E  is a regular value of H. The submanifold

M e = H ~1(E) = { z e C n ; |^|2 =  E}

is a (2n — 1)-dimensional sphere S 2n C If z0 is a point on this sphere, the 
trajectory of the system through z0 is the circle A z0 {X E C; |A| =  1}. The orbit
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manifold of energy E  is the factor-space of M E with respect to the following 
equivalence relation: the points 2 and z' on S 2n 1 are equivalent, if there exists 
a complex number A of unit module (|A| =  1), such that z' — Xz.
Let us consider also an equivalency relation among points in Cn\{0}. We 
will say that z and z' in this space are equivalent if there exists a non-zero 
complex number A such that z' =  Xz. The equivalence classes of the second 
relation are punctured complex planes, i. e. the vector subspaces of Cn of 
complex dimension one with the origin removed. The equivalence classes of 
the first relation are simply the sections of the sphere M E with these planes. 
This allows the manifold of orbits O(E)  of energy E  to be identified with 
the factor-space of Cn\{0} under the second equivalence relation, i. e. with 
the complex projective space Pn_1. In the same time we see that the Hopf 
fibration is a part of the classical mechanics. Now we turn to its coordinate 
description. For any integer k, 1 < k < n, let Uk be an open subset of p n 1 
that consists of the equivalence classes having as representatives the points 
(z! ,z2, . . .  , zn) <G Cn\{0}, for which zk ^  0. This open subset is covered by 
a local chart defined by the (n — 1) complex coordinate functions l, t =  Zj/zk, 
1 < j  < n, j  7̂  k. The corresponding 2n — 2 real coordinates are just the 
real and imaginary parts of tj. As the union of the open subsets {Uk\'k 1 
is Pn_1, we have a manifold with an atlas for which the transition functions 
are holomorphic. Our next task will be to find the symplectic form XIE over 
O(E),  for which 7te is the canonical projection from the reduction theorem 
(see Marsden and Weinstein [31]). We will do the computations in the chart 
(Un: ipn) using the section sE of the Hopf bundle irE : M E —» Pn_1

&E (tl 1 2̂ ; • • • ; tn— 1) (pl 5 Z2 , • • • , Zn— 15 Zn ) ,

where

zk =  znt k: 1 < k < n - l , z n
n — 1

V e (i  +  ^ 2  \tj\2)
3 = 1

1/2 V e (i  + \t\2)~1/2 ■

We will get the explicit expression of XlE by pulling back XL by sE from S 2n 1
in Cn,

XLe =  s^f2|5,27i-i .

Doing this way we obtain:

XlE =  if? i1 +  l̂ l2) E L i  dtk A dt k { T T - l h d t ^ x i Y ^ l u d u )
(l +  \t\ 2 / 2

Up to a multiplicative constant this is exactly (a representative of) the gener
ator of Ff2(Pn-1,Z) known as Fubini Study form lzf s . This can be checked
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immediately by writing down the standard representation of coFS which in ho
mogeneous coordinates reads:

i M2 Efc.i A dzk -  ( E L i zi d%) A (E*=1 zb
Z\

(3.8)

and then passing to inhomogeneous coordinates. Following this recipe we find 
that:

m  > 1

0,e = 2itE ujFs . (3-9)

The quantum bundles in which we are interested in can be selected using the 
well-known fact (see Griffiths and Harris [15])

c, (T(Pm) ) = Cl(Pm) = (m + l)ceFS,

and their definition (see Section 3.3). So, we have:
1 Ti

x =  Nujps N  =  0,1, 2 . . .
Z7T A

and consequently
n.

N  =  0 ,1 ,2 . . .E n — N  +  — , (3.10)

is the quantum spectrum of the system. Next step in quantum mechanics is 
to describe the “wave” functions of the system. Following the scheme they 
are sections of the quantum line bundles QN (associated with any energy level 
E N} N  > 1). Let us take and fix one such value N  which should be anticipated 
in the following considerations. As we already know from Section 3.3 the very 
first step in the description of the quantum line bundle QN is the choice of the 
harmonic representative of Ci (Qn ). In our case an appropriate choice turns out 
to be:

. N  YJj=l A dtj
r\n =  i

N  dt A df
2n  (i  +  \t\2y

=  1
2tt (1 +  \t\ 2\2

where the index n  encodes the local chart. The symplectic form ton =  2tt// pos

sesses an adapted to the anti-holomorphic polarization , ——, . . . ,  ——  l
( Oti <972 utn-l J

potential 0r/ (ujri — ddV/

0n = - i  N-
td t

1 +  \t\2
and the transition functions for the bundle QN are defined by the fundamental 
relation

Cjk
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which is valid on U:I fl Uk f  0. The above results can be summarized as 

Lemma 3.1. The quantum line bundle QN associated with the energy level
Tl

E n = N  + N  > 0 o f the n-dimensional harmonic oscillator is the holomor- 

phic line bundle o f degree N{degQN — J c1(QN) A (-Op̂ 2), with transition
p?7 — 1

functions cjk =  (zkj z f )N.

The Hermitian metric h which is compatible with the connection 6 is determined 
by the equation:

6 =  —ih~1d h . (3.11)

Solving (3.11) we find that

hn = (l +  Itl2) - ^ .

The local sections of QN being a holomorphic functions without poles are 
polynomials of some degree which is dictated by the transition functions and 
obviously do not exceed N . From here we find the number of linearly in
dependent sections of the line bundle QN —>• P"“ 1 or what is the same, the 
degeneracy m (E N) of the states whose energy is E N

& m H '> (Y '- \0 (Q N)) = m ( E y ) = f  +  1) . (3.12)

The scalar product (see formula (3.4)) of the global sections Si and s2 whose 
local representative on Un are the polynomials p L (t ) and p2 i f  ) is given (up to 
a scalar factor) by

(s i 5 -§2) — N n  — 1

p r,.- l

Pi(t)P2(t) dfi A . . .  dtn_i A dfi A . . .  dfn_i
( 1  +  \ t \ 2 ) N + 2 ( n - l )

A natural question arises which functions have representation in H n as oper
ators? The answer is the content of the lemma that follows.

Lemma 3.2. The subalgebra o f the Lie algebra o f the smooth functions over 
Pn_1 which can be quantized is generated by the functions having the general 
form:

E n  —
3, k ^ l a j k Z j Z k

J VL'6! • ^2  • • ^n\) n | \2 i
E j = 1 \ Zj  |

where the matrix [«jfc]yfc=i is hermitian and consequently its real dimensions 
is n 2.



78 I. Mladenov

Proof: In any local chart (for example in Un) the function /  can be written
/

as 7----- nrrv • The transition to this form is dictated just by the advantages it
(1 +  h |2)

has in calculations in view of the explicit expression for the symplectic form 
lvv = f)0rj. Now the condition that the flow generated by /  preserves the chosen 
polarization is equivalent with the statement that /  is determined completely 
by the hermitian matrix [ajk\™k=1. □

3.5. Multidimensional Kepler Problem

Definition 3.3. The Hamiltonian system (M, lj, H ) where M  — M2™ with the 
global coordinates q1, . . . ,  qn, p i , . . .  ,pn, (q,p) 6 IRn\{0} x]Rn and

u ; = d p A d q ,  H  = p2/2 -  l/\q\ , \q\2 = q\ +  q22 + ■ ■ ■ +  q2n (3.13)

is known as the n-dimensional Kepler problem.

It turns out that this problem is closely related with another dynamical system 
which we will introduce immediately. For that, let as before £ =  (£0, £i , . . . ,  £n) 
be the Euclidean coordinates in Mn+1 and r] = (t]0, 771, . . . ,  rjn) — the coordi
nates in the dual space (Mn+1)*. So defined (£. //) are the global coordinates 
on T*W"+1 in which the canonical symplectic form is a — dp A d£. Let us 
take as a hamiltonian function on this phase space the function T>= £ |21 rj | 2 /  2 
and write down the hamiltonian equations of motion. They are:

d£ 5T> 2 dp dd> 2
d 7 = 97 =  l ? U ’ d7 =  “ a e = “ | , , u -

(3.14)

From these equations follows:

m - = 2<5. and
d\p\

ds ds
which means that the cotangent bundle of the unit sphere S n with a removed 
zero section

p  = T +s n = {(i,V) € r +1x l ”+1; If| =  1, 17) =  0 , \v\ 7  0}

is preserved by the flow of T>. On T +S n the trajectories of <3> as defined by 
the equations (3.14) take the form

d£
ds = 1 ,

dp
ds
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and can be rewritten finally as

- 0 + M 2C =  O, (3.15)

which are just the equations of the great circles on the sphere S n. The above 
considerations can be shortly described by introducing the following notion:

Definition 3.4. The Hamiltonian system (P, a, <E>), where a and T> should be 
considered as restrictions o f the objects introduced above on P, is called a 
geodesic flow on S n.

Now, after these preliminary remarks we are ready to describe in details the 
aforementioned equivalence between the Kepler problem and the geodesic flow 
on the sphere.
For that purpose, let us consider in some details the stereographic projection of 
the sphere S n on the plane (0,ay ,x 2, ■ ■ ■ x n). The sphere S n in Mn+1 will be 
represented as usually by:

S,”  =  { (& .5 1. . . . . ? n ) e K " +1; ld =  i } -  (3-16)

The stereographic projections from the north N,  respectively the south S  pole 
of the sphere S n provide an atlas consisting of two charts (UN. (pN), (Us, Ts) 
where

Vv =  {(& ,«!,. • ■ , U  e S " ; to S  1} =  S " \ { N }  ,
Us =  ■ ■ , U  € S " ; & /  -1 }  =  5"\{S} ,

and the stereographic projections from the north, respectively the south pole of 
the sphere

are

<Pn (€) =  x k

Tn '■ Um 3 £ —» x  G 

&
1 -  Co

<Ps(£) =  x k

Ts- Us 3 £ -> x e 

£*
1 +  Co

k — 1, 2, . . . ,

The transition function (pSN between these charts is

X =  T s n (x ) = (fs o T~n1{x ) =  (̂  Xl X2
Xr

x \2 ’ \x\2 \X\

n .
(3.17)

(3.18)

Further on we shall work in the chart (UN, (pN), i. e. assuming f  1 as the 
considerations in the other chart (Us , T s ) are identical.
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We will need also of the mapping \ n ■ IRn —> S n\ { N }  which is the inverse 
map of (fN:

Co =
x\2 — 1 
x \2 +  1 ’ Cfc

2 x k
x \ 2 +  1 ’

k  =  1 , 2 , . . . ,  n . (3.19)

The mapping tpN : S" \ { N }  —► M" and its inverse Xn as given by the formulae 
(3.17) and (3.19) define a diffeomorphism between S n\ { N }  and Mn, which 
can be “lifted” canonically to a diffeomorphism of their cotangent bundles 
T'*(Sn\ { N }) and T*IRn. If r/d^ and y d x  are the corresponding canonical 
one-forms the induced diffeomorphism transforms the first one into the other, 
i. e.

( X n T  M £ )  =  y d x  

which gives directly the formula

Vk = (1 -  Co)Vk +  VoCk

and after some algebraic manipulations

/ \ \x \2 +  1 / \ , . „T]o = {x,y),  rjk — ---------y k - { x , y ) X k ,  fc =  l , 2 , . . . , n .

In order to transfer the hamiltonian equations of motion from T +(,S"'\{Ar}) on 
T +W [ it remains to compute the hamiltonian <I> as function of the coordinates 
(x,y).  Using previously derived relations we find that

F(x ,y)  = $(C,ry) =  i | C| 2H 2 =  2+  ^  \y\2 ,

and in parallel that the geodesics of “velocity” one (|?7|2 =  1) correspond to 
solutions with “energy” F  =  1/2. On this hypersurface F  and u(F),  where 
it'(1/2) — 1 define identical trajectories. In particular, one can choose

G =  «(F) =  y / 2 F - l =

which means that the evolution of the system is going on the hypersurface 
G = 0. Now, we change the time parameter s with t — f  \y\ d.s (|?y ^  0), and 
the dynamical equations transforms accordindgly into the following system:

x = \y\~lx'  =  \y\^1Gy 

y =  \y \ -W = - \ y \~1Gx

which is not of the canonical type. The Hamiltonian structure of these equations

x = Hy , y = - H x
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can be restored after an integration by which from

\y\~1Gx = H x ,

one obtains
\y\~1G + C(y) = H .

If we differentiate the last equality with respect to y and take into the account 
the constraint G =  0, we find that C(y) =  const. Choosing this constant to be 
— 1/2, we have

H = \ y \ ~ 1G - -  =
\x\ 1

\y\
and correspondingly G =  0 means H  — —1/2.
The canonical transformation x = —p, y =  q sends finally H  into the Hamil-

\ p \ 2 1
tonian TJ =  —---- — of the Kepler problem and the symplectic fonn dy A d.r

2 \Q I
into dp A dq so that we can state:

Theorem 3.2. (Moser [43]) The bundle o f cotangent vectors o f unit length to 
the punctured at the north pole sphere is mapped onto the hypersurface E  — 
—1/2 o f the Kepler problem in one-to-one way. The flow  o f the Kepler problem 
after a change o f the time parameter is embedded into the geodesic flow  on 
the sphere.

Remark 3.1. The hypersurface Pe in the phase space P,

Pe -  {(£,77) e P  \ $(£,??) -  e, e > 0} 

is mapped dijfeomorphically onto the hypersurface M E C M,

M e =  {{q,p) £ M;  H(q,p) = E, E  < 0} 

i f  E  and e are related as follows:

E  = —— . (3.20)
4e

Remark 3.2. Until now the north pole N  =  (1,0, . . . ,  0) o f the sphere S n has 
been excluded from our considerations. By adding this point we compactify the 
energy hypersurfaces and regularize the Kepler flow  as the geodesics through 
N  corresponds to the collisions with the central body in the Kepler problem.

The so established equivalence explains the presence of the “hidden” SO(n +  l) 
symmetry group of the Kepler problem as well of its “dynamical” extensions
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SO(n +  1,1) and SO(n +  1,2). In order to clarify this point, let us consider 
the hypersurface

P1/2 =  T+S" =  {(f.r,) £ K”+1 xK*+1; |£| =  \V\ =  1, (Cv) =  0} ,

on which the group SO(n +  1) act transitively. The stationary subgroup of any 
point in this submanifold is isomorphic to the group SG(n — 1). The factor- 
space SG(n +  l)/S G (n  — 1) =  Pt/2 is known as Stiefel manifold of oriented 
orthogonal two-frames V(2,n  +  1) in IRra+1. The orbits of the geodesic flow 
on P1/2 coincide with the orbits of the SG(2)-action:

(£, 77) —» (£ cos t +  7] sin t , — £ sin t +  rj cos t) for cost sint' 
sin t cost G SG(2) .

The orbit manifold (the factor-space of V(2,n  +  1) with respect the above 
action) is the compact hermitian symmetric space of oriented two-planes in
Rn+1

SO(n +  l)/(SG (n  — 1) xSG(2)) =  Gr(2, n +  1).
The Grassmannian Gr(2, n +  1) is isometric to the non-degenerated (n — 1)- 
dimensional complex quadric Qn_ 1

n + l

Qn_! = {[Zl : z2 : ■ ■ ■ : zn+1} GP";  ^  zj = °1 3̂-21)
3 = 1

equipped with the canonical Kahler structure induced by the Fubini-Study 
metric on Pn.
Let 7Ti/2 denotes the natural projection 7Ti/2: P1/2 Qn 1 • The projection 
7re: Pe —>■ Qn- i  coincides up to a scalar multiplier with 7Ti /2 as Pc comes out 
of P \ / 2  and the transformation q y/2eij.
If fl is an invariant representative of the first Chern class of the hyperplane line 
bundle over Qn_ 1 we can choose the scaling multiplier in such a way that,

7I"l/2̂ 2 ~  ^1/2 ■

In the context of the reduction theorem under above normalization for cre we 
have:

<Je = 7T*(fle) =  TT*(V2eQ) = 7T*(27T\/2€LJFs ) ■
Summing up the above we state:

Lemma 3.3. The quantization o f the n-dimensional Kepler problem reduces to 
geometric quantization o f the (n — 1) -dimensional quadric Qn- \ equipped with 
the Kahler form s/2eQ.
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As we will see soon, the existence of quantum line bundles on the quadric is 
a condition on e, which defines the energy spectrum while dimensionalities of 
the respective spaces of sections are the multiplicities.

3.6. Wave Functions

Definition 3.5. The Fubini-Study metric on the n-dimensional complex projec
tive space is the Kahlerian metric g corresponding to the Fubini-Study form

• n+1
u FS = — dd\o  s M 2 ’ M 2 =  £ % -

Z7T r ~ :j=i

As we already know u>FS belongs to the first Chern class of the hyperplane line 
bundle over Pn and generates H 2(Pn. Z) (see also Griffiths and Harris [15]). 
The induced Kahlerian structure over Qn_ 1 which is embedded standardly into 
Pn (cf. (3.21)) will be denoted also by ccFS. This form coincides with the 
invariant Kahlerian form over the symmetric space §©(n +  l)/(SO (n  — 1) x 
§0(2)) (cf. Kobayashi and Nomizu [24]). By functoriality [coFS] is also the 
first Chern class of the hyperplane bundle on Qn_ 1. From now on we will 
write Q in place of Qn- \  and if not stated definitely something different we 
will assume that n > 3. For the smooth hypersurface Q in the n-dimensional 
projective space PTi we have:

Theorem 3.3. (Lefschetz, see Griffiths and Harris [15]) The map

H q{Pn,Z) H q(Q,Z)

induced by the embedding i: Q —> Pn is an isomorphism for q < n — 2, and 
when q = n — 1 is an injection.

According the above cited theorem

H 2(Q, Z) =  H 2{Pn,Z) =  z  

and therefore H 2(Q, Z) is generated by [a;FS]. Besides,

H 1{Q,0)  = H 2{Q,0)  = 0,

where O denotes the structure sheaf over Q. If O* denotes the sheaf of nowhere 
vanishing holomorphic function we have the short exact sequence:

The interesting part of the corresponding long exact cohomology sequence is

H \ Q , 0 )  -> H \ Q , 0 * )  H 2(Q, Z) ^  H 2{ Q , 0 ) .
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As both extreme elements are zero we have:

H \ Q , G * )  = H 2(Q, Z) =  Z

i. e., there exists an isomorphism between the group H 1 (Q, O*) of equivalent 
classes of holomorphic line bundles over Q and Z. Even more, every holo- 
morphic line bundle over Q is a tensor power of the hyperplane line bundle L. 
If Lk denotes its A’-th power we have:

Lemma3.4. (Mladenov and Tsanov [38]) The Picard group Pic(Qn-i)  con
sisting o f all holomorphic line bundles on the quadric Qn -| is isomorphic to 
H 2(Qn_u Z ) “ Z.

The Chern class of the line bundle L k is c{ (Lk) =  kioFS. Quantum line bundles 
are those for which k E Z+. As we are going to describe them in more details 
let us introduce some notation. G will denote the group S O (n+ l, R), H  and K  
will denote respectively the groups SO(n — 1, R) and SO(2, R) xSO(n — 1, R) 
realized as follows:

K  =

H  =

'h o 
0 k2

1 0 
0 1

h
; h E SO(n — 1,

; ki E §0(2, E), k2 E SO(n -  1,:

The group SO(2, R) — k0 — cos t sin t 
— sin t cos t acts on Stiefel manifold V(2. n

1) =  G / H  with right translations

(gH)ue = g u0
In — 1

H .

The space G / H  is a principal fibre bundle with fibre §0(2, R) over G / K  =  
Gr(2, n +  1) =  Qn-\.  For any integer m  we define a character fm  of the 
group SO(2, R) by the formula:

Xm(ue) =  eime , ue E §0( 2 , R ) .

The line bundle over G /H  associated with the character fm  will be denoted by 
Lm. The space of smooth sections T(Lm) of L m is a G-module with respect 
to the left translations and is isomorphic to the G'-module

{ /  E G°°(G/H); f { x u e) =  X m M f ( x ) ,  x  E G/H}

Until now we have not used the existing G-invariant complex structure over 
G /K ,  which by Borel theorem is holomorphically isomorphic with that of
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Gc / K CP+ (cf. Helgason [18]). Here Gc and K c are complexifications of G 
and K,  and P+ is a subgroup of Gc whose elements are of the form [26]:

1 -  (Z1 H I” Zn+l)/2 'l{Zl  ̂  ̂Oi+l)/2 _Z3 ■ ■ • ~ zn+1
i(zj +  ■ ■ ■ +  z*+1)/2  1 + iz\ + • • • + ^ +1)/2 iz3 . . .  izn+1

z3 - i z 3 1 . . .  0

Zn+1 l^n+1 0 ■ ■ • 1

where z 1: z 2l . . . ,  zn+1 G C.
For any non-negative integer m  we can define a holomorphic character \,m of 
K CP+ via the formula

Xm(kz)  =  eim0 for every k € K c  and 2 G P+ ,

where

u^ —
cos C sin C 
sinC cosC G §0(2, C) and k' G SO{n -  1, C ) .

The associated with Xm Gc -homogeneous holomorphic line bundle L ra on 
Gc / K CP+ is C 30-isomorphic with the line bundle L m. The space of all 
holomorphic sections T(Lm) can be identified with the space

f {g i )  = Xrr !b) f (g ) ,
g G SO(n +  1, C), 7 G K c P+

on which G act by left translations. The Borel-Weil theorem guarantee that 
the representation 7rm of G on T(Lm) is irreducible. For each multi-index 

in+1) of non-negative integers with “length” m = Y2= 1 0 ,  we define 
a function on SO(n +  1,C) by the formula:

=  (xi -  iy iY1 ■ ■ • (xn+1 -  iyn+1y r,+1,

xi y 1
where g =  : : * is any element of SO(n +  1, C).

_Xn+1 Un+1
An easy check shows that satisfies

............ . .. . =  .. ......................... ..

for any g G SO(n +  1, C) and 7 G K c ,P+ and therefore G T(Lm).
Moreover, ; YlVLi 4  =  span a bases in T(Lm), as the last space
can be identified with a subspace in C[^i , . . . ,  zn+i\/{z \ +  • • • +  z%+1), where



86 I. Mladenov

C[^i , . . . ,  zn+1] denotes the ring of complex polynomials and {z\ +  • • ■ +  z%+1) 
is the ideal in C[zi, . . . ,  zn+1] generated by z% + - ■ - + z^+1. The identification is 
realized following the rule: to Pi1}...}in+1 one juxtaposes the monomial Hz^ =
~il in + l^n+l •

3.7. Spectra and Multiplicities

Definition 3.6. Let M  be a n-dimensional complex manifold and T*M  is its 
cotangent bundle. A canonical bundle o f M  will be called the n-th exterior 
power A n(T*M) o f the bundle T*M  which will be denoted further by K M.

If N  is a smooth analytical hypersurface in M , we will denote by [N] the line 
bundle associated with the divisor N. There exists a close relation (known as 
adjunction formula) between the canonical bundles of M  and N , namely

K n = {Km ®[N\)\n . (3.22)

In particular if V  is a smooth hypersurface in P" (n > 4) of degree d f  n +  1 
this formula reads:

K v = {Krn 0  [V])\v =  [{d — n — l jP " -1] . 

Concretely for Q c P "  which is the case we are interested we have

if0 = [(-n + l ) F - 1].

The canonical bundle K q was introduced having in mind the equality:

C l ( Q n - l )  =  - C ^ K q) ,

from which we obtain

Cl(Qn-l) = { n -  l)wFS ■

Let Ljv- i (N — 1, 2 , . . . )  is an arbitrary quantum bundle over Qn -|. Following 
the definition of the quantum bundle given in Section 3.3 we can write for L N_1

Ci (-L/v-i) — {N — ljcjjrs — \/2eujFS —
n — 1

-OJps

i. e.

s/2e = N  -  1 +
n — 1

and this is enough to obtain the spectrum of the geodesic flow on S n:

N  = 1,2,3, . . .  (3.23)
1 / Ar n  — 3 N 2

€ n - 2  i N + ^ r
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In order to find the corresponding multiplicities, which coincide with dimen
sionalities of the spaces H°(Q, L k) use will be made of the short exact sequence 
of sheaves

0 —» 0-pn(Lk 0  L_2) —> Opn.(Lk) —> Oq(Lk) —» 0, 

in which a  is a multiplication of the sections of Lk_2 with the polynomial
n+l
y  Zj defining the quadric Q in P" and r  means the restriction on Q.
3= 1

The corresponding long exact cohomological sequence starts up with

0 -  H ° ( P f L k_2) -  H ° ( ¥ f L k) -  H°(Q ,L k) -  H \ ¥ f L k_2) .

The extreme element at the right is zero by the Kodaira vanishing theorem (see 
Griffiths and Harris [15]). So, we can conclude that

dim H°(Q, L k)
n +  k 

k
n + k — 2 

k -  2
(3.24)

Summing up all that above, we can state:

Theorem 3.4. (Mladenov and Tsanov [38]) The energy spectrum o f the geo
desic flow  on the n-dimensional sphere is

with multiplicities

N  +
n — 3 

2

2

m ( e N )
2N + n — 3 I N  + n — 2
N  + n - 2  [ N -  1

(3.25)

(3.26)

where N  — 1, 2, 3, . . .

By this theorem and Remark 3.20 we can formulate also the corresponding 
results for the energy spectrum spectrum of the n-dimensional Kepler problem 
(details can be found in [38]).

Remark 3.3. For n =  1,2 and 3 the formulae for the spectra and multi
plicities o f the hydrogen atom (Kepler problem) reproduce classical quantum- 
mechanical results but they can not be considered as proven because at many 
places in our treatment these cases have been excluded in advance (cf also 
the Cartan’s list in Section 3.3).

Because they are specific and of real importance for physics, we will study 
them case by case. We will start with the most interesting case n — 3.
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3.8. Hydrogen Atom

In our notation the relevant orbit manifold in this case is the quadric Q2 in 
P3 which is an interesting object even by itself. Algebraically, Q2 is doubly 
ruled complex surface and any of its points is the unique intersection of two 
complex lines lying on Q2. Let us consider e. g. the point 5 =  [i : 1 : 0 : 0] on 
the quadric

Q2 : +  z2 +  zjj +  z4 — 0 . (3.27)

The hyperplane H 2: z\ — iz2 =  0 contains 2 and is tangential to Q2 at that 
point. Every point in Q2 fl TJ> satisfies z\ +  z\ =  0 and consequently lies on 
one of the planes:

H'2 : z3 +  iz4 =  0 , H 2 : z3 — iz4 =  0 ,

1. e.

Q2 n h 2 = {h 2 n h '2) u {h 2 n # " ) .  (3.28)

The right part represents an union of a pair of complex lines l and V lying on 
Q2 which intersects at the point 2, i. e.

Q2 n H 2 = V U l" , T fl l" =  [i : 1 : 0 : 0] . 

If a point (tu t2) G C x C  is given, then the point

[1 +  t i t2 : i(l — t i t2) : t\ — t2 : i(ti +  t2)\

lies on Q2, and this means that we have a holomorphic map / :  C x C —> Q2 
which is invertible on Q% =  Q2\H 2 by the fonnula:

^3 +  1̂ 4
zi -  iz2

z3 -  iz4
z  1 -  1Z2

(3.29)

The image of /  is Q2\{^ U /"}. If t 4, t 2 have to be considered as non- 
homogeneous coordinates on P 1 x P1 it is clear that the map /  defined above 
can be extended to continuous bijection between P1 x P 1 and Q2. Now, let L 1 
be the hyperplane bundle over Q2 and Q be the Kahlerian fonn of the invariant 
Kahlerian metric. We can normalizie 12 in order to have C| (L) =  [12], In 
the space H 2{Q2, rL) =  Z © Z, [12] is just the sum of both generators. Under 
reduction, the symplectic form a in the phase space P  “falls” onto 12 up to 
a real factor and obviously it belongs to integer cohomological class if and 
only if this factor is integer. Therefore, all quantum bundles over Q2 are again 
positive degrees of L4 and taking into account that c, (Q2) =  2 [12] the proof of 
the Theorem 3.4 is completed also in the case n — 3.
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3.9. Space Rotator

In this case, let us consider the quadric Qi in P2

Qi =  z2 +  z 2 +  =  0 .

Let
QI  =  i z  ^ Qi  > zs 7  ̂ 0}

and introduce z1 z2
C =  - + i - .

£3 £3
From the equation of the quadric (when z3 f  0) we have:

Zl .^2 \  / Zl _  . Pi
z3 z3J \ z 3 z3 1,

which means that (  f  0 if  z E QI and by the same reason as well:
Zi . z 2 _  1
•23 z3 C ’

In this way we obtain

which tell us that we have a holomorphic map / :  C* Q \ that can be obvi
ously extended to a continuous bijection between P1 and Q\. Straightforward 
application of the modified qeometric quantization scheme to P1 leads to the 
following result:

The quantum energy levels o f the geodesic flow  on S 2 are:

_  1 ( N  
eN ~  2 ( t

with multiplicities m{eN) — N , where N  — 1, 2,3, . . .

The reason for the discrepancy with the statement of Theorem 3.4 can be pointed 
out immediately. Quasiclassical and quantum-mechanical results are in com
plete agreement for the systems which we have studied. On the other hand in 
Simms [53] one can find a proof that geometric and quasiclassical quantiza
tion coincide in the case of Hamiltonian sytems with simply-connected energy 
hypersurfaces. Just this condition is not fullfield in the case under consider
ation. The Stiefel manifold 0(2 ,3) of the orthonormal two-frames in M3 is 
isomorphic to the group §0(3) for which we know that

7r, (§0(3)) =  Hi (§0 (3 ),Z) =  Z2 f  0
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and therefore, not simply-connected. The correct energy levels and multiplic
ities can be obtained if we take into account only those quantum line bundles 
over Qi which are restrictions of such on P2. In our notation these are exactly 
the bundles L2k, for k =  0,1, 2, . . .  When n > 2 such problem does not appear 
as all line bundles over Qn_ 1 are restrictions of line bundles on Pn. Processing 
in the way proposed above we can write

V2e[lvFs \ ~  [tpFs] =  (2̂ V — 2)[a;Fs'], N  =  1, 2, 3, . . .  

where use has been made of the fact that c, (P1) =  2[coFS]. Now we can state:

Theorem 3.5. (Mladenov and Tsanov [39]) The quantum energy levels o f the 
geodesic flow  on the two-dimensional sphere are given by the formula:

e N 5 (3.30)

and their multiplicities are:

m(eN) = 2N  — 1, iV =  1,2,3, . . . (3.31)

Using the relation E  = ----- we can formulate immediately the corresponding
4e

results for the Kepler problem in the flat two-dimensional space which coincide 
with quantum-mechanical findings.

3.10. Plane Rotator

Despite its simplicity this model could be quite profitable as it has much in 
common with the general problem of quantizing completely integrable systems. 
The first remark that should be made is based on the quite simple observation 
concerning the scheme that we have followed. It does not work! Why? Because 
the orbit manifold consists either of a point or two ponits and our computations 
involving the characteristic classes can not go through in this case. Fortunately 
there exists another cohomological theory which is meaningful in the cases 
when the manifold is just a pont. It is called an equivariant cohomology and we 
will make a short digression in this theory just to state the relevant definitions 
and results by using the notation of Atiyah and Bott [3]. Naively speaking the 
equivariant cohomology of the G-manifold M  should be the cohomology of 
the quotient space M /G . Unfortunately this gives a useful notion only when G 
acts freely on M.  The way to get a good theory in the general case is to find 
the right notion of quotient, as given e. g. by the Borel construction described 
below. Let E G ,B G  =  E G /G  be respectively the universal principal bundle
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and the classifying space for the group G. We denote by M G the associated 
M-bundle

M g = M  x g  EG.

Then the equivariant cohomology ring with coefficients in the ring F  is defined 
by

H g(M, F) = H*(MG:F ) . (3.32)

When K  c  G is a Lie subgroup and M  is the homogeneous space G /K ,  we 
have

H g (M,F)  2* H*(EG/K,  F) = H*(BK,  F)

In particular

HG(pt,F) = H*(BG, F) (3.33)

which explains why the equivariant cohomology of a point is so rich.
It is well-known that if K  is a torus of dimension k the above cohomology ring 
is just the (cut) polynomial ring of k generators of degree two with coefficients 
in F,  i. e.

H*(BK,  F)  =  F{u l7. . . ,  uk).

If G is a compact Lie group with maximal torus K  and Weyl group W  then 
we have

H *(B G , F)  ^  H* (B K , F )w ^  F( Ul, . . . , u k)w (3.34)

i. e. the cohomology ring of the classifying space B K  of the group K  consists 
of the W -symmetric polynomials and is again generated by k elements of even 
degree (the “elementary symmetric functions”). In any case the equivariant 
cohomology ring H*(BG,  Z) =  HG labels the irreducible representations of 
the group G.
We shall always interpret HG(M,  1R) as the equivariant de Rham cohomology 
ring of M  as described in Atiyah and Bott [3]. Let (M, cr) be a symplectic 
manifold with a G'-invariant symplectic form a, and let

(3.35)

be the moment map for the Hamiltonian action of G on M. Then the map J  
determines an unique “equivariant extension”

a a* e H*g(M 7R)

(see Atiyah and Bott [3], Prop. 6.18).
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Let us return for the moment to the case when we have §0(2) action defined 
by the geodesic flow on the sphere of arbitrary dimension. The momentum 
map of this action on the symplectic manifold (P, a) is

T>: P  —> M

and it is obvious that it commutes with the natural symplectic action of §Q(n + 
1) on the same manifold (we take the standard action of SQ(n + 1 ) on S n and 
lift it to the cotangent bundle). We identify so(n +  1)* (via the Killing form) 
with the space of all antisymmetric matrices where one has a natural (co)adjoint 
action of § 0 (n  +  1). The moment map

J :  P  —>■ so (n +  1)

of the lifted § 0 (n  +  1) action on P  — T +S n is given by

Jij (€, rn) =  Vi€j ~Vj€i ,  L j  = 1, • • •, n +  1.

Obviously

= o

for all i. j ,  because the Hamiltonian <T is invariant with respect to the action of
§0 (n +  1).
Thus the equivariant extension a* of o is invariant under the §0(2) action 
defined by (P, a, T>) (the geodesic flow). This allows us to “reduce” a* e 
#SO(n+l)(P ’M) t0 ^  element

<  € H|0(„+1)(Q„_,,R) =  H * (B (S 0 (n -  l)xSO (2)),K ) .

The admissibility condition for the parameter e now reads

U«# -  \c*(Qn̂ )  e  Hs*0(n+1|((5„_1,Z) =  H *(b (SO(*j -  l)x S O (2 )) ,z )

and this gives the spectrum (3.25) and multiplicities (3.26). It should be pointed 
out that the multiplicitity formula is valid for all values of n and N,  except 
n =  N  =  1 (see bellow).
Now let n = 1. Then

a* — a — Ju  (3.36)

where u is the generator of P |0(2)(pf, IR) =  H *(B S0( 2) , m),  and J  is the 
momentum map

J (€ , v )  =  €i V2 - 6 » 7 i •
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One computes easily that

J 2 =  2T>.

Now if we reduce the element in (3.36) at $  =  e, the quantization condition 
becomes

±V2eu = a t  € iT* (# § 0 (2 ), z )  ,

whence

± \/2eu =  lu

for some integer /. The admissibility condition for the energy thus reduces to

2e =  l2

and as usual we introduce tne standard index N  =  \l\ +  1.
This gives the energy values for the case n =  1. The dimensions of the 
irreducible representations of §0(2) are of course known to be equal to one, and 
as there are two representations (values of J) corresponding to the eigenvalue

ejv =  i ( / V - l ) 2 , JV =  1,2,3, . . .

we have

m N — 2 for all TV > 1,

and

m 1 =  1.

Of course the double degeneracy of the spectrum corresponds topologically to 
the fact that for $  > 0 the orbit space Q0 consists of two points.

Remark 3.4. We have introduced the equivariant cohomologies in order to 
complete our study o f the geodesic flow  on the spheres in all dimensions [42], 
However, the idea to use this theory in the context o f Marsden-Weinstein 
reduction is much more general and should work in other important cases.
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4. Constrained Quantum Mechanics

The alternative to the Kostant Souriau quantization of curved manifolds has 
been introduced in a few years by Jensen and Koppe [23] under the name 
“constrained” quantum mechanical systems. As a matter of fact, at that time 
they have considered these systems as pure mathematical ones, “since such 
systems do no exist” [23]. Fifteen years later the experimental search for 
new materials arrived at the exotic Cm and C7() molecules, and subsequently 
the quantization of these molecules was faced with an entirely new puzzle of 
curiosity, which was nothing but the above mentioned “unphysical” problem. 
Nevertheless, quantum-mechanical study of these molecules remained so far 
mainly in the framework of quantum chemistry and its simplest approximations 
(cf. e. g. Fowler [12], Haddon [17] and references therein). This situation 
is a little strange in view of the fact that the rigorous quantum mechanical 
description of the behaviour of a particle constrained on a curved manifold 
is relatively old and well-known problem (see Jensen and Koppe [23,25]) 
and for later developments da Costa [7], Fujii et al [13], Ikegami et al [21], 
Matsutani [32,33], Ogawa [45], Ohnuki and Kitagado [46], Tanimura [60] and 
Tolar [61], Quantum channels, strips, tubes wavegides and wires attract great 
attention as well, see Exner and Seba [11], Goldstone and Jaffe [14], and Takagi 
and Tanzawa [59]. A trully remarkable result in this field is that the bends and 
bulges in infinite tubes of constant normal cross section produce always at least 
one bound state (more details can be found in the book by Londergan et al [30]). 
Besides, scattering states can be treated effectively via the method of transfer 
matrices and one can consider heterostructures of coupled bends. Another 
strong result in this field can be provided by investigating the validity of the 
Saxon-Hutner conjecture for periodic structures of the above kind. Presice 
statement and some criteria for validity of this conjecture can be found in [35] 
and references therein.

4.1. Surface Geometry

As the constrained quantum mechanics approach is based on some notions of 
the classical differential geometry the respective definitions are reviewed as far 
as they are needed for the discussions to follow. Modem exposition of the 
subject can be found, e. g. in the books by Berger and Gostiaux [4], McLeary 
[28], and Oprea [47], There in full depth is explained that any such surface S

x =  x[u, v\ =  (x(u, v),y(u,  v), z(u, v)j
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is specified by its first and second fundamental forms

I — E  du2 +  2 F  dudv + G dv2 and 
11 = L du2 +  2 M  dudv d~ N  dv2 ,

and that their coefficients are given by

E  =  E[u, v} = x u.xu , F  = F[u, v] =  x u.x„ , G =  G[u, v] = x„.x„ ,
L = L\u , v\ = x MU. n , M  = M[u, v\ =  x u„.n , N  = N[u, v] = x ^ .n  ,

where n  is the unit vector normal to S

n =  n[u, v\ =
x Bxx„
x a x x J

(4.2)

By definition the normal curvature k„ in the direction ( dv : dn) is

II L dw2 +  2M  dudv + N  dn2 
I E  du2 +  2F  dw dn +  G dn2

and the directions at which it attains extremal values (maximum and minimum) 
are called principal directions. If the coordinate curves coincide with the 
principal directions then

F  = M  = 0 (4.4)

and the corresponding curvatures of these directions can be found by the for
mulae

L N
ki =  ^  , k 2 =  -  . (4.5)

Besides, it should be noted also that in this situation k, and k2 are the principal 
curvatures along the meridians and parallels of latitude respectively. Classical 
differential geometry operates also with other important notions which are of 
immediate interest for us. These are the Gaussian curvature K  and the mean 
curvature H

K  = kxk2 ,

and the surface area element d/1

H  = (4.6)

d A  =  V E G - F 2 d u d ? ; =  ^ / E G d u d v . (4 .7 )
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4.2. Quantum Mechanics on Surfaces in IR3

The systems in which we are interested after Jensen and Koppe [23] are of the 
following type: a particle of mass m  is constrained to move on some surface 
S. In this setting the naive approach to quantization of such systems refers to 
association of the kinetic energy with the Laplacian operator of the natural Rie- 
mannian metric induced on this surface. More consistent quantum-mechanical 
considerations show that a particle permanently attached to the surface of para
metric equations x[u, v] violates Heisenberg’s uncertainty principle so that we 
are obliged to consider the portion of the space in an immediate neighborhood 
of S  which can be parametrized as

r [u, v, t ] =  x[u, v\ +  rn[u, v\ (4.8)

where the absolute value of r  gives the distance between the surface and the 
point with coordinates (u, u ,r) . As our idea is to bent the particle on the 
surface we need of an infinite squeezing force which simulate the constraints 
in classical mechanics. For that purpose we consider the potential V\(t ) where 
A is the squeezing parameter that measures the strength of the potential

lim Vx (t ) = i 0, T (4.9)
[ oc . r  A o .

From (4.8) it follows that

d r  =  (xw +  r n u) du +  (xw +  r n w) du +  n  d r  (4-10)

Since the derivatives of x and n with respect of u and v are orthogonal to n 
the matrix of the metric tensor g in our three-dimensional neighborhood of S  
associated with the line element

df2 — dr. dr

is of 2 +  1 block-diagonal form. Now we can turn our attention to the 
Schrodinger equation. Writing the Laplacian A ~g in the curvilinear coordinates
( u , v , t )

Ag = ---- ^ d i { g t3yl\g\dj) for i , j  = u ,v ,T
\ d \

(4.11)

where \g\ is the determinant of the metric g, and g':i — (g 1)IJ, we obtain
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Due to the structure of the metric tensor g and setting <h(v/, v. t , i) — 
4/(w, v, t) the Schrodinger equation breaks into two parts: the surface
part

and the normal part

1  A  T  T  T T  - d ®—  A s * + % * _ . —

1 <9 2 v  9 y

(4.13)

(4.14)

Equation (4.14) is just the one-dimensional Schrodinger equation for a particle 
bounded by the transversal potential V\{t ), and can be ignored in all future 
calculations.
Equation (4.13) is however much more interesting due to the presence of the 
surface potential Us which takes into account the actual embedding of S. Using 
the mean H  and Gaussian curvature K  or the principal curvatures k x, k 2 of the 
surface S,  this additional term can be expressed as follows:

Ks =  - 4 - ( - f f 2 - i r )  =  - 4 - ( k ] - k 2)2 . (4.15)2m 8 m
It should be noted also that the only two-dimensional surface for which this 
potential vanishes is the sphere, since in this case the two principal curvatures 
are equal. For other surfaces however the above scheme results in a heavy 
mathematical problem. In the next two sections we will combine the techniques 
presented in the previous ones to some surfaces which are related to fullerenes 
since from the mathematical point of view they can be considered to represent 
a family of closed curved two-dimensional manifolds.

4.3. Quantization of the Prolate Ellipsoid

The shape of C60 as well of certain multiple-shell fullerenes is classified as 
rather spherical, whereas the configurational space of C70 has the form of 
prolate rotational ellipsoid. In Cartesian coordinates this surface is described 
implicitly by

2 2 2 x v z -----h -— I-----= 1
GT

(4.16)

where c =  a\J 1 +  /r2 > a > 0 for some fixed g e  1R+ and can be parameterized 
as follows:

as'mucosv a sin u sin v a(l +  g?) cos u
\ / l  +  /i2 cos2 u ’ yU +  /i2 cos2 u ’ \ / l  +  /i2 cos2 u

x[w, v\
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u 6 [0,7r], v <G [0, 2tt] .

The corresponding induced Riemannian metric is

a 2( l  +  /x2)2
ds2 = du +

2 • 2 a sin u
(1 +  fJ? cos2 u )3 

and the surface area element is
a2(l +  j j 2) sinu

dA =
(1 +  /i"

1 +  n 2 cos2 u

du A d u .

did

cos u

(4.17)

(4.18)

On any two-dimensional manifold the symplectic fonn to coincides up to a 
multiplicative factor with the respective surface element dA  In conjunction

dyf
with (3.1) this means that the integration o f ----over S  should produce integers.

2n
Accordingly, in our case we will have

Area A(S)
2ir 2ir

1 +  ( fi +
1
li

arctan // a2 = N  e  Z+ (4.19)

which means that the axes of the ellipsoid are quantized!
The Laplacian and the Eulerian difference H 2—K  which enters into expressions 
for Vs are easily found as well so that our quantization procedure leads to well 
posed analytical problem on the chosen coordinate patch. Unfortunately, it 
turns out that the resulting differential equation is of a formidable complexity 
for analytical treatment and this prevents us from the possibility to find in a 
closed form neither the wave functions nor the spectrum of the problem in 
question.
Fortunately we can go back to the sphere using an old observation by Neumann 
[44] that the geodesic flow on the ellipsoid is equivalent with the motion of a 
particle on the sphere under the influence of the quadratic potential specified 
by the axes of the ellipsoid.
In our case this equivalence amounts to work with the potential

V(x, y, z ) =  a2(x2 +  y2) +  c2z 2 , (4.20)

and in this way we end with a symmetric harmonic oscillator system constrained 
on S'2. Introducing standard coordinatization of the sphere

x — sin 6 cos 0 , y — sin 6 sin </>, 2 =  cos 6

the Laplacian and the potential take the forms

A S2 1 3 /  . 9 \  1 d2
\sm6dd) + sin20 W  ’

(4.21)

(4.22)



Quantization on Curved Manifolds 99

and

V(4>, 9) — a2 sin2 9 +  c2 cos2 9 , (4.23)

respectively.
After separation of the variables in the quantum-mechanical time-independent 
Schrodinger equation

by introducing

2 rn A s2 +  V q> =  E^f

V(9,(f>) = Y (9) e~ik(t>, k g Z

(4.24)

(4.25)

and cos 9 — 4 we end up with Sturm-Liouville type problem

_d_
dC (1

2  ̂ d Y (c r
C)

dC
+ A -  £2C2

k2
1 - C 2

y(C) =  o. (4.26)

Here

A =  2m{E — a2) , and e2 =  2m(c2 — a2) =  2m/j2a2 > 0 . (4.27)

One can easily recognize in (4.26) the defining equation for the prolate angular 
spheroidal functions Ski(e,4), l > k, corresponding to the eigenvalues

OO
\ i  =  /(/ +  1) +  ^  &2ct£2<j , (4.28)

(7  =  1

which can be evaluated with any desired precision using various type of the 
existing formulae for the coefficients b2a, e. g.

1 [ (2k — l)(2k +  1) 1
2 “  2  [ (21 — l)(2l +  1 )  J ’

_  ( l - k -  l)(l -  k)(l + k -  1 )(l +  k)
4 “  2(2/ - 3)(2/ - 1)3(2/ + 1)

(/ — k +  1)(Z — k +  2)(/ +  k +  1)(Z +  k +  2)
2(2Z +  l)(2Z +  3)3(2Z +  5) ’

and so on. For more details see Abramowitz and Stegun [2],
What is more interesting here is that the above formula for \ ki combined 
with (4.27) produces the energy spectrum of the geodesic flow on the prolate
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symmetric ellipsoid as given below

l{l +  1)
Eki — a + 2m 2m E (4.29)

<7=1

Let us remember however that the axes of our ellipsoid in accordance with 
(4.19) are discretized and the above formula should be written as

E nm — a2N +
1(1 +  1)

2m
1

2m b̂ £2a • (4.30)
<7=1

Having the spectrum we have to comment the wave functions as well. Actu
ally their properties and other spectral results follow directly from the general 
Sturm-Liouville theory. The wave functions S'/,:/(c. Q, with fixed k form a 
complete orthogonal system in C2(—1,1). Besides, any of these functions has 
l — k zeros in the interval (—1,1) and the energy levels E Nkl obviously increase 
when the indices l and N  increase.
Finally, the “principal” quantum number N  enters implicitly via the definition 
of the first argument £ given in (4.27).

4.4. Quantization of the Oblate Ellipsoid

For definiteness we will denote this surface by S. As most of the considerations 
in this case are parallel to that ones in the previous section we will indicate 
only the differences. First, the parametrization where this time

a > c — a \ / l  — v 2 for some fixed v E (0,1)

is given by

a sin u cos v a sin u sin v a(l — v 2)cosu
x[u, v] —

cosz u cosz u V e ~ Z/z cosz u

and the induced Riemannian metric is respectively

ds2 =
a■ 2\2

d ir
2 • 2 a sin u

— V2 cos2 u(1 — V2 cos2 u )3 ~ ' 1
Correspondingly the surface area element is

~ a2( 1 — v2) sin u n
dA  = —------ ------ ——  dw A du

(1 — V2 cos2 u)2
and the quantization condition is

dv2

Area ^4(5)
2tt 2n

1 v -----] arctanh v
v

a

(4.31)

(4.32)

=  TV 6 Z+ . (4.33)
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The Sturm-Liouville equation is

( 1 - C 2) ^ 1  + X + e2C2 - 7 ^ 7 5  y (C) = 0- (4.34)dC J 1 -  C2

with eigenvalues

OO
\ i  — l { l  + 1 ) + ^ 2 ( — l ) a b 2a£ 2a ■ (4.35)

<7 =  1

Finally, the energy levels of the free particle motion on this surface is

5. Concluding Remarks

The geodesic flows on the axisymmetric prolate and oblate ellipsoids are quan
tized using a combination of methods from geometric quantization and con
strained quantum mechanics. While geometric quantization scheme has found 
many concrete applications there were not such up to now of the constrained 
quantum mechanics. The reason is quite simple — the extra correction term 
resulting of surface embedding leads to a heavy analytical problem and this 
prevents the possibility of obtaining analytical results. One has to notice also 
that for two isometric surfaces (i. e. with the same induced metrics) these cor
rection terms will depend on their second fundamental forms as well. This is 
in great contrast with the situation in the classical mechanics where the surface 
motion depends only on the metric properties of the surface. At the same time 
this hints also to make a search for surfaces for which the Eulerian difference is 
a simple one as much as possible. Potential candidates are at first place within 
the class of the so called Weingarten surfaces, i. e. those with a functional de
pendence among their principal curvatures. The sphere and the axisymmetric 
ellipsoids are just in this class — for the sphere one has k x =  k 2 and in the 
case of the rotational ellipsoids kx ~  k^. Quite recently a new surface, the 
so-called mylar balloon [37] with a remarkably simple relationship k x =  2k2, 
has been found and its quantization will be discussed elsewhere. Other well 
studied classes in the classical differential geometry are that of surfaces with 
constant curvatures — both mean and Gaussian — present also a challenge and 
deserve profound study as well.

(4.36)
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