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Abstract. We consider the sigma models where the base metric is pro
portional to the metric of the configuration space. We show that the 
corresponding sigma model equation admits a Lax pair. We also show 
that this type of sigma models in two dimensions are intimately related 
to the minimal surfaces in a flat pseudo-Riemannian 3-space. We define 
two dimensional surfaces conformally related to the minimal surfaces 
in flat three dimensional geometries which enable us to give a con
struction of the metrics of some even dimensional Ricci flat (pseudo-) 
Riemannian geometries.

1. Introduction

Let M  be a 2-dimensional manifold with local coordinates x ß =  ( x , y )  and 
AM,y be the components of a tensor field in M . Let P  be an 2x2 matrix with a 
nonvanishing constant determinant. We assume that P  is a Hermitian (P^ =  P) 
matrix. Then the field equations of the sigma-model we consider is given as 
follows

The integrability of the above equation has been studied in [1] where the matrix 
function P  and the tensor Aaß were considered independent. The sigma model 
equation given above is integrable provided A satisfies the conditions

( 1. 1)

( 1.2)
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where u and 0 are determinant and antisymmetric part of the tensor Aaß re
spectively.
We have classified in [1] possible forms of the tensor Aaß under these conditions 
of integrability. The case where A and P  are related has been considered in 
[2], As an example, let P  = g where g is a 2 x 2 symmetric matrix. Letting 
also Aaß = gaß, the inverse components of the metric gaß, then (1.1) becomes

^ ( s "v ' l l ) = 0 ' (U )

The above sigma model equation is integrable and the Lax equation is simply 
given by [2]

_a/3 d
dxß

=
1

k2 +  a
{kgaß aeaß) g ~ . 

)y dxß
(1.4)

Integrability conditions are satisfied because det g = a (a constant) and g is 
symmetric. Here k is an arbitrary constant (the spectral parameter), eaß is the 
Levi-Civita tensor with e12 =  1.
In the theory of surfaces in R3 there is a class, the minimal surfaces, which have 
special importance both in physics and mathematics [3,4]. Let S  = {{x, y. z ) G 
R3; £ =  h(x, y) \ define a surface S  G R3 which is the graph of a differentiable 
function 0(x,y). This surface is called minimal if 0 satisfies the condition

(1 +  ~  2(px(j)y4>Xy +  (1 +  0y)0xx =  0 . (1-5)

The Gaussian curvature K  of the surface S  is given by

<t>xx<f>yy ~  ( f> ly  

(1 +  02 + 0 2)2 '
( 1.6)

Here in this work we generalize the above treatment to more general geometries. 
Instead of R3 we take a pseudo-Euclidean manifold M3 and two surfaces with 
any signature.
Let (S,g) denote a two dimensional geometry where S' is a surface in a three 
dimensional flat manifold M 3 and g is a (pseudo-)Riemannian metric on S 
with a non vanishing determinant, det g. Furthermore we assume that the 
metric components gaß satisfies the following conditions

dn(gßl/ g~1d»g) = o,

R + \ T r [ g ^ d ,g - 1d„ g \= 0 ,

(1.7)

( 1.8)
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where R  is the Ricci scalar of S. We shall see in the following sections that 
some surfaces which are conformally related to minimal surfaces satisfy the 
above conditions.
The importance of such surfaces arises when we are interested in even dimen
sional Ricci flat geometries. By the utility the metric g of these surfaces we 
shall give a construction (without solving any further differential equations) 
of the metric of a 2N  dimensional Ricci flat (pseudo-)Riemannian geometries. 
Ricci flat geometries are important not only in differential geometry and general 
relativity but also in gravitational instantons and in brane solutions of string 
theory [6],

2. Locally Conformal Minimal Surfaces

Let 0 be a differentiable function of x 1 =  x  and x 2 =  y and S0 be the 
surface in a three dimensional manifold M3 with a pseudo-Euclidean metric 
gs defined through ds2 =  gQflu dxß dxu +  e( dx3)2, where p, v =  1, 2, e =  ±1 
and g0 is a constant everywhere in M3, invertible, symmetric 2 x 2  matrix. 
In this work we assume Einstein summation convention, i. e., the repeated 
indices are summed up. Let SQ be given as the graph of the function 0, i. e., 
S0 = {(ad, x2, x 3) G M3 ; x 3 =  0(a4, x 2)}. Then the metric on S0 is given by

90ßu T ^0/i0^ • (2-1)

Since det h — (det g0)p where

P =  1 +  ego"^A u  , (2.2)

then h is everywhere (except at those points where p =  0) invertible. Its inverse 
is given by

h r  = 9r  -  - r r  (2.3>
P

where gqu are the components of the inverse matrix gP1 of g0. Here the indices 
are lowered and raised by the metric g0 and its inverse gP1 respectively. For 
instance, (plv =  fio'1 The Ricci tensor corresponding to the metric in (2.1) 
is given by

»V =  ~ (V20)0^;, -  ^ 0 “0^a +  J^PßPu  (2-4)

where

V V  =  -  P r  pa . (2.5)
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The Ricci scalar or the Gaussian curvature K  and the mean curvature H  are 
obtained as

K  = 

H  =
1

V p

(2.6)

(2.7)

The following equation is valid only for the case of two dimensional geometries.

/?7 ^a/30/̂ 7 ^-o(,90aß90ß"f 90aß90~/ß ) (2.8)

where

Ao =  -  (<!>:?] (2.9)

Contracting this equation with gaß leads to

(pß^ai> (ßa'Pßv ^090ßiß •

We also have
-  E hT'a.ß 0 haß i Xo = - - p 2K

For the minimal surfaces we have H  = 0 and the following important properties 
of the metric haß on ,S'0 [7]

da[y/phaß dß</>] =  0,

d a { \ f p h a ß ) =  0 .

(2. 10)

(2. 11)

We now define surfaces which are locally conformal to minimal surfaces. Let 
S  be such a surface, i. e., locally conformal to S0. Then the metric on S  is 
given by

9aß ~ h aß . (2.12)
y P

It is clear that det g = det g0 /  0. In the sequel we shall assume that the surface 
S0 is minimal and hence the metric defined on it satisfies all the equivalent 
conditions in (2.10) and (2.11). The corresponding Ricci tensor of g is given 
as

Raß =  r a ß  -  (Vgipo)gaß (2.13)

where ip0 = — \  log(p) and Vff2 is the Laplace-Beltrami operator with respect 
to the metric g. Then we have
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Proposition 1. The following equation is an identity related to the conformal 
surface S.

R  = - \ g aß Tt[dag - 'dßg \. (2.14)

Here g is the 2 x 2  matrix of gaß and g~x is its inverse. The operation Tr is 
the standard trace operation for matrices.

In the following parts of the work we need some harmonic functions with 
respect to the metric g. For this purpose we introduce some vectors on S. Let
va =  (1,0), v'a =  (0,1) and ua =  (1,0), u'a =  (0,1). We now define some 
functions over S.

6  =  gaßvavß , 6  =  gaßv'av 'ß , (2.15)
Wi = ^fpgaßUauß , w2 =  y/pgaßu,au,ß . (2.16)

It is now easy to prove

Proposition 2.

where

V32C -  a0R  = —a0yfpK  , (2.17)

V 2?/)i — (ai +  a2)R  — 0 , (2.18)

V 2,02 — 2 (bi +  b2)R  = — (&i +  b2)^/pK (2.19)

C =  y  log(p), (2.20)

=  a1 log(^) +  a2 log(£2) , (2.21)

ip2 =  bi log(wi) +  b2 log(w2) . (2.22)

Here a0, a1, a2,b1, and b2 are arbitrary constants.

The function p defined by p — (bi +  b2)( — a0f 2 satisfies similar equation as

V 2 p =  —ao(bi +  b2) R . (2.23)

Hence we have two different solutions of the equation

V3V  =  ~ ^ g a0 Trfdag-^dßg}  , (2.24)
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for some function o. If a = î/j1 then c =  a i+ a 2, if a =  g then c 
It is straightforward to show that

1 det g0y/p ’ 2 det g0^ /p '
(2.25)

Hence f i  will not be considered as an independent function. It is interesting 
and important to note that under the minimality condition the matrix g satisfies 
the following condition as well.

Proposition3. Minimality of So, H  = 0, also implies a sigma model [7], [8] 
like equation for g, i. e.,

c U îT V 1 <%<?]= 0. (2.26)

Proof: The metric gaß and its inverse gaß are written in a nice form

1
d a ß  —  ~ J = ( g 0a ß  +  ;

g aß =  Vp(9oß -

(2.27)

(2.28)

where g0aß are the components of the matrix g0. The minimality condition 
H  — 0 reduces to gaßf aß — 0 or

This condition also implies

a  =  0 a p *  
a o2 P

V  =  0 •

(2.29)

(2.30)

Hence the sigma model equation (2.26) to be proved takes the form

h ^ d ß g ^ d ^  „] =  0, (2.31)

where haß =  ^/pgaß- It is straightforward to show that

(9 1dßg)aß ^  ga idßgßl
_ 1 ra e Pß la i  , i la , e /,a i (2.32)
— — g “  ̂  “  2 ~ p ^  + m ^ 5

Using the identity (2.8) and the minimality condition (2.29) we obtain the 
following

P/j.fß 'y  P ß f ß 7  ‘̂ ‘̂ ^ o ( ^ f ß 9 o ß ^  ^ ß P O ' t ß )  •>

P ß (t>ß ß  =  4>a a P ß  ~  2 e A 0 ^  ,

(2.33)

(2.34)
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( ; \ dßP ) +
(2.35)

Utilizing these identities we get

(2.36)

(2.37)

(2.38)

Pahaßdß( r ^ )  = - ^ x 0<p^ß . (2.39)

Now applying dv to (2.32) then multiplying by h)11' and using the above identi
ties (by virtue of the minimality condition (2.29) ) it is easy to show (2.31). □

Hence for every minimal surface S0 and its metric h we have a conformally 
related surface S  with metric g =  -̂ = (det h =  pdetg0) satisfying the condi
tions

Here g has determinant equals to det g0 which is a nonzero constant. This 
does not violate the covariance of our formulation because we could formulate 
everything in terms of the metric h of the minimal surfaces S0 but the above 
identities become lengthy and complicated. We loose no generality by using 
surfaces S  and the metric g on them.

3. Ricci Flat Pseudo-Riemannian Geometries

We start first with four dimensions. Let the metric of the four dimensional 
manifold M4 be given by

where ^  is a function of x a and e1 =  ±1. The local coordinates of M4 are 
denoted as x a = (xa, ya), a =  1 , . . . ,  4.

Proposition 4. The Ricci flat equations R ab =  0 for the metric (3.1 ) are given 
in two sets. One set is satisfied identically due to the Proposition 3 above and 
the second one is given by

R  + ^ gaß Tr [dag 1dßg\ =  0 , 

dalg^g^dßg]  = 0 .

(2.40)

(2.41)

ds2 =  e2i,gaß d xa dxß +  dya dyß (3.1)

V >  =  0. (3.2)
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There are two independent functions satisfying the above Laplace equation, <f> 
and fi. Using (2.23) we find that f  =  e0</> +  e\ß where e0 and e2 are arbitrary 
constants and b> =  —b1. Combining all these constants we find that

— O2eo<̂1(,-2mi w-2m2e  ̂ =  e 1 (3.3)

where m  1 and m 2 are constants satisfying m 1+ m 2 =  0. Then the line element 
(3.1) becomes

2 e2e0<£ dxa dxß haß dya dyß
ds2 =

V p V p
(3.4)

where f  satisfies the minimality condition (H  =  0) (2.7) which is explicitly 
given by

[k2 +  c{(f)y)2\4>xx — 2[/c0 +  ^ x f y ^ x y  +  [&1 +  e(4,x)2]4lyy ~  0 (3.5)

where we take (g0)n  =  (â'o)oi =  k0, (90)22 =  k2 and assume that det(g0) = 
k \k2 -  fcg /  0. Hence the functions Wi and w2 are given explicitly as

w1 = fci +  e(<^)2, w2 = k2 + e((f)y)2 . (3.6)

The metric in (3.4) with e0 =  0, m i =  m 2 =  0 reduces to an instanton metric
[10].
We shall now generalize Proposition 4 for an arbitrary even dimensional 
pseudo-Riemannian geometry. Let M 2+2n be a 2 +  2n dimensional manifold 
with a metric

ds2 =  e2$gap d xa dxß +  GAB dyA dy B (3.7)

where the local coordinates of M 2+2n are given by x a+A — (x a,y A), A — 
1 ,2 , . . . ,  2n, and Gab are functions of x a alone. The Einstein equations are 
given in the following proposition

Propositions. The Ricci flat equations for the metric in (3.7) are given by

da[gaPG ~ % G ]=  0, (3.8)
R

(3.9)
z

where G  is 2 n x2 n  matrix of G AB and G ~ 1 is its inverse.

v s2$ =  l ÿ “0 !V[(Ô«G-I)aflG] +  I

Let us choose G as a block diagonal matrix and each block is the 2x2 matrix 
g. This means that the metric in (3.7) reduces to a special form

ds2 =  e2®gaß dxQ d xß +  exgaß dy “ dyß H------- 1- engaß dy “  dyß (3.10)
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where the local coordinates of M 2+2n are given by x a+A = (xa,y® ,. . .  ,yf ) ,  
gj =  ±1, i =  1, 2 , . . . ,  n. Then we have the following theorem

Theorem 1. For every two dimensional minimal surface S0 immersed in a 
three dimensional manifold M s there corresponds a 2N  =  2 +  2n-dimensional 
Ricci flat (pseudo-)Riemannian geometry with the metric given in ( 3.10) with

e2* -  e2i,w~2niw f2n2pni+n2 (3.11)

where is given in (3.3), w1 and w2 are given in (3.6), rii and n 2 satisfy

n — 1
n\ +  n 2 =  —-— (3.12)

Proof: Using Proposition 5 for the metric (3.10) the Ricci flat equations reduce 
to the following equation

71 —  1
V924> =  — — 'R[(9aS“ 1)009] (3.13)

By using (2.24) and letting a06i =  rii, a0b2 = n 2 and <3? =  p, + f  we find (3.11) 
with the condition (3.12). Here f  is a harmonic function (3.2) with respect to 
the metric gaß. A solution of this function is given in the previous section in 
(3.3). Metric functions f>, w1, w2 and gaß are expressed explicitly in terms the 
function f  and its derivatives o:r and <py. This means that for each solution o 
of (3.5) there exists a 27V-dimensional metric (3.10). □

The dimension of the manifold is 4(1 +  +  n 2). Here n =  1 or +  n 2 —
0 corresponds to the four dimensional case. The signature of the geometry 
depends on the signature of S. If S  has zero signature then M 2N has also 
zero signature, but if the signature of S' is 2 then the signature of M 2N is
2(1 +  £i +  • • • +  en).
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