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1. Introduction

In December 1865, the great Scottish physicist James Maxwell presented to the
Royal Society of London his original paper [11]. Initially Maxwell has formulated
his theory in terms of twenty equations. Later, in 1873, he published his next im-
portant paper [12], where he reduced his system to twelve scalar equations. The
further development showed that even eight scalar equations are sufficient! The
main mathematical advantage of his system of equations was that he offered one
electromagnetic model which “in principle” discovered all the important natural
effects that are related to electromagnetic field theory. The main physical disadvan-
tage of his model was that he thought that for the electromagnetic waves (predicted
by him) is necessary of existence a special medium called “ether”. Further experi-
ments did not reveal the existence of such “artificial medium”. He introduced this
concept used analogy with acoustical waves that such a medium is necessary (like
air, for example). Nevertheless his mathematical description of the electromagnetic
waves was correctly. This was proved experimentally about twenty years after by
the gifted German physicist Heinrich Hertz reported in [7].
The main difference between the acoustical waves and the electromagnetic waves
is that the first ones are “scalar longitudinal waves”, while the second ones are
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“vector transverse waves”. The main Maxwell’s inventions were to use the con-
cept first introduced by the great English physicist Michael Faraday about “the
existence of the electromagnetic field” even in the case of a single charge. The
second charge is necessary just to prove this event. Actually the right system in
Maxwell’s equations was formulated after “avoidance the necessity of far space
interaction”. This idea was first introduced by Faraday.
The Maxwell’s equations are based on four physical laws: 1) Faraday’s law; 2) Am-
pere’s law (modified by Maxwell in the range of the high frequency electromag-
netic fields); 3) Gauss’s law of the electric field; 4) Gauss’s law of the magnetic
field. Faraday’s law shows that the time-variation of the magnetic field produces
vortex electric field. Analogically corrected Ampere’s law shows that the time-
variation of the electric field produces magnetic field (that is always vortex)! Elec-
tric Gauss’s law shows that the static electric field can be produced always in the
presence of electric charge, while Magnetic Gauss’s law shows that in the nature
there is no magnetic charge and the static magnetic field can be only produced by
the moving electrical charge (or current)! The Maxwell’s equations show one very
important property of the electromagnetic fields: the static DC electric and mag-
netic fields are independent, while the dynamic AC electric and magnetic fields are
coupled!

2. Different Electromagnetic Models

2.1. The Concept of Vector Fields

The British electric engineer Oliver Heaviside, who was largely self-taught, was so
eager to get grips with Maxwell’s electromagnetic theory that he studied the treatise
carefully until he was well enough versed to achieve his own way ahead with the
theory. He published his main results in the field of Electromagnetic theory in the
papers [5, 6].
His innovation greatly improved the readability of Maxwell’s equations, he con-
densed the original 20 equations into four “new” equations: two of them (with
“divergence operator” were in scalar form); another two of them (with “rotation
operator” were in vector form). His main contribution was to write the Maxwell’s
equations in the following the most popular now form

divD = ρ, divB = 0
(1)

rotE = −∂tB, rotH = J + ∂tD

where ∂t is a time-derivative. His innovation greatly improved the readability of
Maxwell’s equations, he condensed the original 20 equations only into 4 “new”
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equations. His main contribution was to write the Maxwell’s equations in the most
popular form (1) given above.

Here the vector E [V / m] is the electric field intensity. The vector B [Wb / m2 = T]
is the magnetic flux density, the vector D [C / m2] is the electric displacement, the
vector H [A / m] is the magnetic field intensity, ρ [C / m3] is the electric charge
density and the vector J [A / m2] is the electric current density.

The first two equations of the system (1) are “divergence equations” – they relate
closely the electromagnetic vectors with their sources. A source of the static elec-
tric field is only the electric charge, while a source of the static magnetic field is
only the moving charge (i.e. the current). The second two equations are “rotation
equations” – they show the character of both electromagnetic vectors. The mag-
netic field has always vortex character, while the electric field has such a character
only in the case of time-varying magnetic field.

Another three supplementary vector equations are presented in the following form

D = εE, B = µH, J = σE

where ε [F / m] is the permittivity of the medium, µ [H / m] is its permeability,
σ [S / m] is the conductivity. The German physicist Boltzmann, better known for
his contributions to thermodynamics, proposed his own version of the Electromag-
netic laws. However, later he became a proponent of the Maxwell’s theory [1]. At
the end of 19-th century the Dutch physicist Hendrik Lorentz published own ver-
sion of the Maxwell’s equations. At this time the experiments found that the real
sources of the conductive currents are the moving electrons. He explained his “mi-
croscopic electromagnetic field theory” in [9]. Lorentz succeeded to prove that the
main equations of his electron theory lead to the original “macroscopic Maxwell’s
theory”. However, his main contributions were that he discovered an important
symmetry of the Maxwell’s basic equations: they are invariant with respect to the
change of one inertial system with another one. This very important property of
Maxwell’s theory was called “covariance”! We will use only a part of his theory
where he proved that the Maxwell’s equations are covariant with respect of scalar
potentials. We consider here the case of a charge moving with a constant veloc-
ity “v” along the “x-axis” of one Cartesian coordinate system of equations – the
Lorentz’s transforms are presented by the equations

x→ (x− vt)/
√

1− v2/c2, y → y, z → z. (2)

This important property called “covariance” was used later in Special Theory of
Relativity of Einstein. Here c = 3× 108 m / s is the velocity of light in free space.
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2.2. Tensor Notations

In the beginning of 20th century two Italian mathematicians Ricci and Levi-Civita
have published a paper [13] where they introduced a new powerful method of dif-
ferential calculus known today as tensor analysis. In year 1905 the great Ger-
man physicist (of Jew’s origin) Albert Einstein published his historical paper [3] in
which the basic ideas of his famous Special Theory of Relativity were explained.
Originally this theory was proposed on the language of vector analysis.
However, it was his colleague Hermann Minkowski, who brought the Einstein’s
theory onto tensor analysis in 4-D “space-time”. This new notations have two big
advantages: 1) shorter than vector notations; 2) so-called “covariance’ (or auto-
matic fulfillment of Lorentz’s transforms (2)). He introduced new 4-D tensors for
the electromagnetic field: {Jµ} is a four-tensor 1st rank of the electromagnetic
sources and {Fµν} is a 2nd rank tensor of the electromagnetic fields – the last
one combines both vectors {(E,B)} in one anti-symmetric tensor with 6 different
components as shown in the equations below

[x] = [x, y, z, (jct)]T , [∂] = [∂x, ∂y, ∂z, ∂(jct)]
T

[J ] = [Z0Jx, Z0Jy, Z0Jz, jρ/ε0]
T

[F ] =


0 cBz −cBy −jEx

−cBz 0 cBx −jEy
cBy −cBx 0 −jEz
jEx jEy jEz 0


where j = i =

√
−1 is the imaginary unit, Z0 =

√
µ0/ε0 ≈ 377 Ω is the free

space impedance and ε0 = 8.85 × 10−12 F / m is the free space permittivity. The
last equations could be described in the following more concise tensor form

∂νF
µν = Jµ, ∂ρFστ + ∂σFτρ + ∂τFρσ = 0 (3)

where the four-vector of the covariant first derivative is ∂ν = (∂x, ∂y, ∂z, ∂jct),
while xµ = (x, y, z, jct) are the four-coordinates in 4-D space-time. In first equa-
tion the Einstein’s rule (summation over the repeated index ν ) is applied. In mod-
ern quantum electrodynamics the language of tensors is very fruitful to write the
basic equations of the photon and electron.

2.3. Geometric Algebra Model

The first papers dedicated on this new mathematical approach were published by
the British mathematician William Clifford. The geometric algebra was developed
further by the American physicist D. Hestenes. He published a better version of
this new mathematical language in [8]. The geometric algebra is a vector space
approach in which the roles of second-rank skew-symmetric tensors are replaced
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by the bi-vectors, a single entity formed by the direct multiplication of two orthog-
onal vectors. This is in strict contrast to the quaternions, developed by Hamilton
[4], where a product effectively reverts to a vector. As there is no continually re-
fer to some assumed spatial frame, such as (x̂, ŷ, ẑ), geometric algebra provides a
versatile coordinate free approach.
This means that rather than effectively being labels for ordered components, sym-
bols such ∇ actually stand for the vectors themselves. Nevertheless, we may still
express these vectors as E = Exx̂ + Eyŷ + Ezẑ and ∇ = ∂xx̂ + ∂yŷ + ∂zẑ, or
in terms of whatever other basis may find convenient. This is a coordinate-free ap-
proach. The geometric algebra formalism of multi-vectors allows for a graded hier-
archy of entities called n-vectors (or multi-vectors), where 0-vector is a scalar, one-
vector is the familiar sort of vector (a polar vector), two-vector is a bi-vector (or an
axial vector), and three-vector is a three-vector (or a pseudoscalar). It is a key fea-
ture that different grades of n-vector may be added as well as multiplied, resulting
in what generally a multi-vector of mixed grade. In order to distinguish them from
the usual 3-D vectors, we will write general n-vectors and multi-vectors in bold,
e.g. u, v, and so on. By the basic rules of geometric multiplication, the product uv
resolves into scalar (u,v) plus the bi-vector u ∧ v. Note that the wedge symbol ∧,
used also in differential forms (see the next Chapter) conveys similar idea. For 3-D
vectors this product is related to the cross-product by: u ∧ v = Iu× v, where
I = x̂ŷẑ is a three-vector referred to as the unit pseudo-scalar. While I takes a
role analogous to the imaginary unit j, it has the additional property that when it
multiples a vector it creates a bi-vector. In this fashion, therefore

uv = u · v + u ∧ v = u · v + Iu× v.

This leads straight to the following equations

∇E = ∇ ·E + I∇×E =
1

ε0
ρ− 1

c
∂t(IcB)

∇(IcB) = Ic∇ ·B + I2c∇×B = −Z0J−
1

c
∂tE.

Since the addition of different grades is permitted, we find that we may put both of
these results together so as to render Maxwell’s equations in free space as a single
(3 + 1)-D equation

(∇+ ∂t)F = J

in which the entire electromagnetic field is expressed as the multi-vector

F = E + IcB.

Likewise, the total electromagnetic source density is expressed as the multi-vector
J = ρ/ε0−Z0J. We have to define a multi-vector of the auxiliary electromagnetic
field, G = D/ε0 + IZ0H, the role of which is the macroscopic treatment of
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physical media. In “space-time” we get similar but far more effectual expression
of these equations, namely

∇∧ F = 0, ∇ ·G = J free (4)

(it should be noted here that use of bold symbols is usually dropped with these
space-time quantities). Since time is now embodied as a vector in this 4-D space,
∇ is now equivalent to ∇ = ∂xx̂ + ∂yŷ + ∂zẑ − 1

c∂tt̂ in which (x̂, ŷ, ẑ, t̂) are
the unit basis vectors of some space-time frame. In the second equation (4) J free

(the free sources vector density) is now a pure vector, and F and G are pure bi-
vectors. Electric and magnetic fields are just the time-like and space-like parts
of the same bi-vector field, i.e., of F and G as appropriate, and because the last
equations work in any frame, it is essentially covariant . When all is stripped back
to a fundamental setting devoid of phenomenological representations for physical
media, the auxiliary fields vanish, and Maxwell’s equations are in single equation

∇F = J

in which J now comprises all sources of charge and current. This equation is very
simple and is also covariant. It defines an important class of equation that seems
from concepts more abstract and physical. In the more-familiar case of complex
functions in 2-D, ∇F = 0 corresponds to the pair of Cauchy-Riemann conditions
∂xFy + ∂yFx = 0 , meaning that F must be an analytic function with singularities
wherever J 6= 0 . In space-time, where there are two extra dimensions, solu-
tions of ∇F = 0 are called meromorphic functions, but otherwise the situation
is analogous to two dimensions. Finally, since all non-null vectors in a geometric
algebra have inverses, we may write down a particular solution of the last equation
in closed form, by simple inversion shown in equation (5) below

F = ∇−1J (5)

where ∇−1 turns out to be an integral operator with a time-dependent Green’s
function as its kernel.

2.4. Differential Forms Model

Still early in the 20-th century the French mathematician Elie Cartan was a lead-
ing light in the development of differential forms, first published in his book [2].
A close link exists between differential forms and the integral form of Maxwell’s
equations. However, before we expand on that premise we give a simplified and
very basic sketch of how they work. Starting from the basic portion of a dif-
ferential, e.g. df = ∂xfdx + ∂yfdy + ∂zfdz , the similar-looking one-form,
f = fxdx+ fydy + fzdz , is quite distinct. In fact, in the generalized way, it cor-
responds to an ordinary vector to the extent that the infinitesimal scalar quantities,
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like dx, dy, and dz may also be treated as independent symbols, like x̂, ŷ, ẑ , but
which entirely different connotations. Provided the meaning of↔ is limited to this
sort correspondence, we may write in the form

f = fxdx+ fydy + fzdz ←→ f = fxx̂ + fyŷ + fzẑ

but note that while unit vectors are dimensionless the differentials are not. Extend-
ing the idea, a two-form corresponds to an axial vector (or to a bi-vector)

U = Uxdydz + Uydzdx+ Uzdxdy ←→ U = Uxx̂ + Uyŷ + Uzẑ

where x̂ = ŷ × ẑ , ŷ = ẑ × x̂ and ẑ = x̂ × ŷ. Here x̂ ↔ dydz, ŷ ↔ dzdx,
ẑ ↔ dxdy. While fg, the direct product of two one-forms f and g, will clearly
include a two-form in the result, it is their exterior product, denoted by f ∧ g.
That produces exclusively a two-form. This is defined as being anti-symmetric,
du ∧ dv = −dv ∧ du. In particular, if du and dv are two of the differentials dx,
dy, and dz, then, where du∧ du = dv ∧ dv = 0. However, it is customary to drop
the ∧ sign in these products and to simply write dxdy,dydz, dzdx.
Along similar lines, the exterior product of a one-form with a two-form yields
three-form, but in the case the product is symmetric, as may be interpreted from
the following example

dx ∧ (dy ∧ dz) = dx ∧ dy ∧ dz = −dy ∧ dx ∧ dz

= dy ∧ dz ∧ dx = (dy ∧ dz) ∧ dx.

The general commutation is therefore that the exterior product is symmetric when
the sum of the degrees of the forms involved is odd, anti − symmetric when it is
even. A key one-form is the exterior vector derivative, which in 3-D space takes
the form

d = ∂xdx+ ∂ydy + ∂zdz. (6)

By way of example, the exterior derivative of U is d∧U commonly written as dU ,
so that

dU ≡ d ∧ U ≡ (∂xdx+ ∂ydy + ∂zdz) ∧ U.

For example

d ∧ x = (∂xdx+ ∂ydy + ∂zdz) ∧ x = dx

and

d ∧ (xy) = ydx+ xdy.
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It is therefore clear that the exterior derivative of a scalar function is a prescription
for its differential. However, applying it to a one-form, we find

dE = (∂xdx+ ∂ydy + ∂zdz) ∧ (Exdx+ Eydy + Ezdz)

= (∂xEy − ∂yEx)dxdy + (∂yEz − ∂zEy)dydz + (∂zEx − ∂xEz)dzdx
⇐⇒ dE ↔ ∇×E.

That is to say, in differential forms, dE takes the place of ∇×E. However, in the
case of a two-form by applying the computation rules we find

dD = (∂xdx+ ∂ydy + ∂zdz) ∧ (Dxdydz +Dydzdx+Dzdxdy)

= (∂xDx + ∂yDy + ∂zDz)dxdydz

⇐⇒ dD ↔ ∇ ·D.

In contrast to the case with a one-form such as E, dD takes place of ∇ ·D rather
than∇×D. Nothing that the differential 3-D volume element dxdydz appears in
the result, this is an example of a three-form, a class that corresponds to a scalar
volume density. In 3-D, we are then left with one other sort of form, the 0-form, a
form of scalar that is free from any association with a volume density.
Conventionally, the ubiquitous electromagnetic quantities and source densities are
represented by different degrees forms, as shown in the Table 1 below. In each
case, the associated differential elements are shown in the column to the right of
the given symbol. The physical quantity like q is a 0-form or a scalar. The physical
significance of these becomes clearer we note that Exdx is the decrease in the
potential φ, of a unit charge when, in vector forms, it is moved through an electric
field, E, by infinitesimal displacement dxx̂. We also that note that E = −dφ↔
E = −∇φ , which is a one-form, related to linear elements dx, dy and dz.The
one-form vector E is called also a polar vector. Similarly, the two-form quantities
may be associated with a flux, so that, for example, Dzdxdy is the total current
that flows through the orientated element of area dxdy , i.e., the area dxdy is in
the xy-plane such a positive flow is along x̂ ∧ ŷ = ẑ. The two-form vector D is
called also an axial vector. Finally, the three-form is dxdydz. Here the quantity ρ
is a charge density, which is a pseudo-scalar.
Following these preliminaries, it should be clear that the result of applying the
operator d depends on the degree of the form on which it acts, so that it means that
∇× and∇· are all replaced by the single operator d (meaning d∧) on its own. The
expression of Maxwell’s equations in terms of differential forms is therefore very
straightforward, for we can use this rule to write the following equations

dD = ρ(free), dB = 0, dE = −∂tB, dH = J (free) + ∂tD (7)

fairly self-evident, so q = ρdxdydz is the total charge contained within the volume
element. These are then a direct source for the integral equations, which are exactly
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Table 1. The electromagnetic quantities and source densities repre-
sented by differential degrees of forms.

Forms Electromagnetic
Quantities

Differential
Elements

0-forms q, φ (du)0 ≡ 1

1-forms E,H,A dx,dy,dz

2-forms D,B, J dydz,dzdx,dxdy

3-forms ρ dxdydz

mirrored by the system of equations, given below∫
∂V

dD =

∫
V
ρ(free),

∫
∂V

dB =

∫
V

0 = 0

(8)∫
∂A

dE = −∂t
∫
A
B,

∫
∂A

dH =

∫
A

(J (free) + ∂tD).

It has been necessary only to write integral signs on both sides of these equations
with the degree of the form telling us what sort of integral is involved: line, surface,
or volume. The integrals on the left-hand side are taken over the closed boundary
of the volume or area associated with the integrals on the right-hand side, that is
to say, ∂A is the closed path taken around the outside of the area A, and ∂V is the
surface enclosing the volume V . Because the integrands are differential forms, not
only are the requisite differentials for the integration are already in place, they also
provide the orientation of the paths and surfaces, e.g. dx is along x̂ and normal to
dxdy is ẑ.
Equations (8) may be put into 4-D space-time form by making the following ex-
pression taken as a generalization of (6)

d = (∂xdx+ ∂ydy + ∂zdz + ∂tdt).

As in Minkowski’s matrix, the single two-form F now represents the complete
electromagnetic field. Likewise, the auxiliary fields combine into separate two-
form,G, while the three current and charge densities combining into a single three-
form, J . The system of equations (7) may now be written as

dF = 0, dG = J (9)
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where

F = E ∧ dt+B, G = −H ∧ dt+D, J = −J (free) ∧ dt+ ρ(free).

By applying the same simple rules as before and writing d as (d+∂tdt)∧, where d
inside the brackets represents the original 3-D exterior derivative, (∂xdx+∂ydy+
∂zdz), this may be decoded in the following manner as in the equations (10) below

dF = (d + dt ∂t) ∧ E ∧ dt+ (d + dt ∂t) ∧B
= dE ∧ dt− ∂tE ∧ dt ∧ dt+ dB + ∂tB ∧ dt

= (dE + ∂tB) ∧ dt+ dB = 0 + 0
(10)

dG = −(d + dt ∂t) ∧H ∧ dt+ (d + dt ∂t)∧D
= −dH ∧ dt+ ∂tH ∧ dt ∧ dt+ dD + ∂tD ∧ dt

= (−dH + ∂tD) ∧ dt+ dD = −J (free) + ρ(free).

Given the operator ∗ (so-called star-operator) that in 3-D converts a one-form into
a two-form (its dual), and vice versa, the substitutions

B = µ ∗H, D = ε ∗ E, J = σ ∗ E

is possible to be made, but this still leaves us with three separate equations. The
same star operator also converts a 0-form into a three-form and vice versa.

3. Conclusion

In this article four different models of Classical Electrodynamics proposed by
James Maxwell are presented and compared. 1) The usual model used nowadays is
the “Vector model” of Heaviside - equations (1). Another three more contemporary
models, not so widely known, were introduced in the beginning of twenty century.
These more contemporary models are: 2) “Tensor model” of Ricci (used exten-
sively by Einstein in Special Theory of Relativity) - here equations (3); 3) “Geo-
metric algebra” of Clifford (which is an extension of the quaternions of Hamilton)
- equations (4); 4) “Differential forms” of Cartan (a simple generalization of differ-
ential and integral operators) - equations (9). Some specific applications of the last
two models in Classical Electrodynamics are considered recently in the engineer-
ing textbooks [10] and [14]. The serious advantages of the last three models are: 1)
brief notations; 2) coordinate-free definitions; 3) easy check of “covariance”. In the
modern theory of Electromagnetism (so-called Quantum Electrodynamics) the first
model (tensor model) became very popular for solution of electromagnetic prob-
lems. The main contributions in this area are made by the two Nobel Laureates:
the British physicist Paul Dirac and the American physicist Richard Feynman. One
important difference between the classical and quantum theories is the fact that the
quantum theory uses for the photons the D’Alambert equations for the four-vector
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potential Aµ instead of the Maxwell’s equations (3) for the four-tensor electro-
magnetic field Fµν and this quantity becomes there a kind of an “wave function”.
Quantum theory uses for the moving electrons the so called Dirac’s equation for
the wave-function “ψ” instead of the Newton’s equation. The electrons and the
photons are described now similarly by using a probabilistic interpretation. How-
ever, the explanation of this very interesting and new physical theory lies out of
our scopes here.
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