CONSTRUCTION OF SYMPLECTIC-HAANTJES MANIFOLD OF CERTAIN HAMILTONIAN SYSTEMS

KIYONORI HOSOKAWA, TSUKASA TAKEUCHI ${ }^{\dagger}$ and AKIRA YOSHIOKA
Department of Mathematics, Tokyo University of Science, 162-8601 Tokyo, Japan
${ }^{\dagger}$ Department of Mathematics, Faculty of Economics, Keio University, 223-8521 Yokohama, Japan

Abstract

Symplectic-Haantjes manifolds are constructed for several Hamiltonian systems following Tempesta-Tondo [5], which yields the complete integrability of systems.

MSC: 70H06, 37 J 35
Keywords: Haantjes tensor, Hamiltonian systems, symplectic Haantjes manifolds

1. Introduction

Tempesta-Tondo [5] introduces a concept of symplectic-Haantjes manifolds or $\omega \mathcal{H}$ manifolds and Lenard-Haantjes chain to treat completely integrable Hamiltonian system by means of the Haantjes tensor [2]. For a (1,2)-tensor field L, the Haantjes torsion \mathcal{H}_{L} is given by Definition 1 below. If \mathcal{H}_{L} vanishes, the tensor is called a Haantjes operator. In [5], Tempesta and Tondo showed that the existence of an $\omega \mathcal{H}$ manifold is a necessary and sufficient condition for a non-degenerate Hamiltonian system to be completely integrable. They showed an algorithm for solving the inverse problem, that is, for a given set of involutive functions, a Haantjes structure of the involutive functions is constructed by using Lenard-Haantjes chains.
In this note, using their method we construct $\omega \mathcal{H}$ manifolds for several Hamiltonian systems of two degrees of freedom such as so-called Fukaya system [1], a geodesic flow of two-dimensional Minkowski space and a system given by the

Hamiltonian [6]

$$
H=\frac{1}{2} \frac{p_{1}^{2}+p_{2}^{2}}{q_{1}^{2}+q_{2}^{2}}+\frac{1}{q_{1}^{2}+q_{2}^{2}}
$$

2. Haantjes Operator

In this section, we recall basic concepts of Haantjes chain, Haantjes manifolds and recursion operators (see for details, e.g., [5]).

Let M be a differentiable manifold and $L: T M \rightarrow T M$ be a $(1,1)$ tensor field, i.e., a field of linear operators on the tangent space at each point of M.

Definition 1. The Nijenhuis torsion of L is the skew-symmetric $(1,2)$ tensor field defined by

$$
\mathcal{N}_{L}(X, Y)=L^{2}[X, Y]+[L X, L Y]-L([X, L Y]+[L X, Y])
$$

and the Haantjes tensor associated with L is the $(1,2)$ tensor field defined by

$$
\mathcal{H}_{L}(X, Y)=L^{2} \mathcal{N}_{L}(X, Y)+\mathcal{N}_{L}(L X, L Y)-L\left(\mathcal{N}_{L}(X, L Y)+\mathcal{N}_{L}(L X, Y)\right)
$$

where X, Y are vector fields on M and $[$,$] denotes the commutator of two vector$ fields.

In local coordinates $x=\left(x_{1}, \cdots, x_{n}\right)$, the Nijenhuis torsion and the Haantjes tensor can be written in the form

$$
\left(\mathcal{N}_{L}\right)_{j k}^{i}=\sum_{\alpha=1}^{n}\left(\frac{\partial L_{k}^{j}}{\partial x^{\alpha}} L_{j}^{\alpha}-\frac{\partial L_{j}^{i}}{\partial x^{\alpha}} L_{k}^{\alpha}+\left(\frac{\partial L_{j}^{\alpha}}{\partial x^{k}}-\frac{\partial L_{k}^{\alpha}}{\partial x^{j}}\right) L_{\alpha}^{i}\right)
$$

and
$\left(\mathcal{H}_{L}\right)_{j k}^{i}=\sum_{\alpha, \beta=1}^{n}\left(L_{\alpha}^{i} L_{\beta}^{\alpha}\left(\mathcal{N}_{L}\right)_{j k}^{\beta}+\left(\mathcal{N}_{L}\right)_{\alpha \beta}^{i} L_{j}^{\alpha} L_{k}^{\beta}-L_{\alpha}^{i}\left(\left(\mathcal{N}_{L}\right)_{\beta k}^{\alpha} L_{j}^{\beta}+\left(\mathcal{N}_{L}\right)_{j \beta}^{\alpha} L_{k}^{\beta}\right)\right)$ respectively.

We remark that the skew-symmetry of the Nijenhuis torsion implies that of the Haantjes tensor.

Definition 2. $A(1,1)$-tensor is called Haantjes operator when its Haantjes tensor vanishes.

Proposition 3. Let L be a (1,1)-tensor. If there exists a local coordinate system on an open set $U \subseteq M$ such that

$$
L=\sum_{i=1}^{n} \ell_{i}(x) \frac{\partial}{\partial x_{i}} \otimes \mathrm{~d} x_{i}
$$

then the Haantjes tensor of L vanishes on U.

Let us consider Hamiltonian systems with two degrees of freedom. In [5], Tempesta and Tondo proposed a general procedure to compute a Haantjes operator adapted to the Lenard-Haantjes chain formed by two integrals of motion in involution. Let (M, ω) be a four dimensional symplectic manifold. They searched for a Haantjes operator K whose minimal polynomial should be of degree two, namely, the maximum degree allowed by their assumptions

$$
m_{K}(\lambda)=\lambda^{2}-c_{1}(x) \lambda_{1}-c_{2}(x) \lambda_{2}
$$

We construct the Haantjes operator K according to the conditions in [5]

$$
\begin{align*}
K^{T} \Omega & =\Omega K \tag{1}\\
K^{T} \mathrm{~d} H & =\mathrm{d} H_{2} \tag{2}\\
\left(K^{T}\right)^{2} \mathrm{~d} H & =\left(c_{1} K^{T}+c_{2} I\right) \mathrm{d} H \tag{3}\\
\mathcal{H}_{K}(X, Y) & =0 \quad X, Y \in T M \tag{4}
\end{align*}
$$

where $\Omega=\omega^{b}$ and I denotes the identity operator.

3. Construction of Symplectic-Haantjes Manifold for Certain Hamiltonian Systems

Example 4. Let us consider the Hamiltonian system [1]

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2}+\left(p_{1}^{2}+q_{1}^{2}\right) p_{2}^{2}+\frac{q_{1}^{2}}{2}-q_{2} \tag{5}
\end{equation*}
$$

with the independent integrals of motion

$$
\begin{equation*}
H_{2}=p_{1}^{2}+q_{1}^{2} \tag{6}
\end{equation*}
$$

We construct a Haantjes operator K for H in the following way.
H_{2} is functionally independent of H and satisfies

$$
\begin{aligned}
\left\{H, H_{2}\right\} & =\sum_{i=1}^{2}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial H_{2}}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}} \frac{\partial H_{2}}{\partial p_{i}}\right)=\left(p_{1}+2 p_{1} p_{2}^{2}\right) 2 q_{1}-\left(q_{1}+2 q_{1} p_{2}^{2}\right) 2 p_{1} \\
& =0
\end{aligned}
$$

From condition (1), we put a four-dimensional square matrix

$$
K=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where A is an arbitrary matrix, B, C are skew-symmetric matrices, and $D=A^{T}$.

Also, total derivative of (5) and (6) are as following

$$
\begin{align*}
\mathrm{d} H & =\left(p_{1}+2 p_{1} p_{2}^{2}\right) \mathrm{d} p_{1}+2\left(p_{1}^{2}+q_{1}^{2}\right) p_{2} \mathrm{~d} p_{2}+\left(2 q_{1} p_{2}^{2}+q_{1}\right) \mathrm{d} q_{1}-\mathrm{d} q_{2} \tag{7}\\
\mathrm{~d} H_{2} & =2 p_{1} \mathrm{~d} p_{1}+2 q_{1} \mathrm{~d} q_{1} . \tag{8}
\end{align*}
$$

By equations (7), (8) and condition (2), we get the following relation

$$
\left(\begin{array}{cccc}
a & b & 0 & \alpha \tag{9}\\
c & d & -\alpha & 0 \\
0 & \beta & a & c \\
-\beta & 0 & b & d
\end{array}\right)\left(\begin{array}{c}
p_{1}+2 p_{1} p_{2}^{2} \\
2\left(p_{1}^{2}+q_{1}^{2}\right) \\
2 q_{1} p_{2}^{2}+q_{1} \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 p_{1} \\
0 \\
2 q_{1} \\
0
\end{array}\right)
$$

From relation (9), we see that

$$
\begin{aligned}
& c=a q_{1}\left(2 p_{2}^{2}+1\right)+2 \beta p_{2}\left(p_{1}^{2}+q_{1}^{2}\right)-2 q_{1} \\
& d=\left(b q_{1}-\beta p_{1}\right)\left(2 p_{2}^{2}+1\right) \\
& \alpha=a p_{1}\left(2 p_{2}^{2}+1\right)+2 b p_{2}\left(p_{1}^{2}+q_{1}^{2}\right)-2 p_{1}
\end{aligned}
$$

where a, b and β are constants.
Further, we put

$$
\begin{aligned}
& c_{1}=a+d=a+\left(b q_{1}-\beta p_{1}\right)\left(2 p_{2}^{2}+1\right) \\
& c_{2}=-a d-\alpha \beta+b c=2\left(\beta p_{1}-b q_{1}\right)
\end{aligned}
$$

In this case, condition (3) is satisfied. Condition (3) yields the semisimplicity of K, and then (4) holds.

Example 5. Let us consider the Hamiltonian system of the geodesic flow of Minkowski space (cf. [4])

$$
\begin{equation*}
H=\frac{1}{2}\left(-p_{1}^{2}+p_{2}^{2}\right) \tag{10}
\end{equation*}
$$

with a independent integral of motion

$$
\begin{equation*}
H_{2}=\frac{1}{2} p_{1}^{2} \tag{11}
\end{equation*}
$$

On the other hand, H has also an independent integral of motion

$$
\begin{equation*}
H_{3}=p_{2} q_{1}+p_{1} q_{2} . \tag{12}
\end{equation*}
$$

Thus, H has Haantjes operators K and K^{\prime} in the following way.
We consider $G=G(q, p)$ which is functionally independent of H. We assume the Poisson bracket $\{H, G\}$ vanishes, that is

$$
\{H, G\}=\sum_{i=1}^{2}\left(\frac{\partial H}{\partial p_{i}} \frac{\partial G}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}\right)=-p_{1} \frac{\partial G}{\partial q_{1}}+p_{2} \frac{\partial G}{\partial q_{2}}=0
$$

Then we get the following condition

$$
\begin{equation*}
p_{1} \frac{\partial G}{\partial q_{1}}=p_{2} \frac{\partial G}{\partial q_{2}} \tag{13}
\end{equation*}
$$

The functions (11) and (12) are satisfying condition (13) of G.
Under condition (1), we put the matrix (9). In addition, we calculate the total derivatives of (10), (11) and (12)

$$
\begin{align*}
\mathrm{d} H & =-p_{d} p_{1}+p_{2} \mathrm{~d} p_{2} \tag{14}\\
\mathrm{~d} H_{2} & =p_{1} \mathrm{~d} p_{1} \tag{15}\\
\mathrm{~d} H_{3} & =q_{2} \mathrm{~d} p_{1}+q_{1} \mathrm{~d} p_{2}+p_{2} \mathrm{~d} q_{1}+p_{1} \mathrm{~d} q_{2} \tag{16}
\end{align*}
$$

By equations (14), (15) and condition (2), we get the following relation

$$
\left(\begin{array}{rrrr}
a & b & 0 & \alpha \\
c & d & -\alpha & 0 \\
0 & \beta & a & c \\
-\beta & 0 & b & d
\end{array}\right)\left(\begin{array}{c}
-p_{1} \\
p_{2} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
$$

Then we see that

$$
a=\frac{1}{p_{1}}\left(b p_{2}-1\right), \quad c=\frac{d p_{1}}{p_{2}}, \quad \beta=0
$$

where b, d and α are constants.
Further, we put

$$
\begin{aligned}
& c_{1}=a+d=\frac{1}{p_{1}}\left(b p_{2}-1\right)+d \\
& c_{2}=-a d+b c=\frac{d}{p_{1} p_{2}}\left\{b\left(p_{1}+p_{2}\right)\left(p_{1}-p_{2}\right)+p_{2}\right\}
\end{aligned}
$$

Then condition (3) is satisfied.
On the other hand, by equations (14), (16) and condition (2), we get the following relation

$$
\left(\begin{array}{cccc}
a^{\prime} & b^{\prime} & 0 & \alpha^{\prime} \tag{17}\\
c^{\prime} & d^{\prime} & -\alpha^{\prime} & 0 \\
0 & \beta^{\prime} & a^{\prime} & c^{\prime} \\
-\beta^{\prime} & 0 & b^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{c}
-p_{1} \\
p_{2} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
q_{2} \\
q_{1} \\
p_{2} \\
p_{1}
\end{array}\right)
$$

From the relation (17), we see that

$$
b^{\prime}=\frac{1}{p_{2}}\left(a^{\prime} p_{1}+q_{2}\right), \quad d^{\prime}=\frac{1}{p_{2}}\left(c^{\prime} p_{1}+q_{1}\right), \quad \beta^{\prime}=1
$$

where a^{\prime}, c^{\prime} and α^{\prime} are constants.

Further, we put

$$
\begin{aligned}
& c_{1}^{\prime}=a^{\prime}+d^{\prime}=a^{\prime}+\frac{1}{p_{2}}\left(c^{\prime} p_{1}+q_{1}\right) \\
& c_{2}^{\prime}=-a^{\prime} d^{\prime}-\alpha^{\prime} \beta^{\prime}+b^{\prime} c^{\prime}=\frac{1}{p_{2}}\left(-a^{\prime} q_{1}-\alpha^{\prime} p_{2}+c^{\prime} q_{2}\right)
\end{aligned}
$$

Then condition (3) is satisfied. We have that

$$
K=\left(\begin{array}{rrrr}
a & b & 0 & \alpha \\
c & d & -\alpha & 0 \\
0 & 0 & a & c \\
0 & 0 & b & d
\end{array}\right), \quad K^{\prime}=\left(\begin{array}{rrrr}
a^{\prime} & b^{\prime} & 0 & \alpha^{\prime} \\
c^{\prime} & d^{\prime} & -\alpha^{\prime} & 0 \\
0 & 1 & a^{\prime} & c^{\prime} \\
-1 & 0 & b^{\prime} & d^{\prime}
\end{array}\right)
$$

satisfy (4).
Example 6. Let us consider a Hamiltonian system [6]

$$
\begin{equation*}
H=\frac{1}{2} \frac{p_{1}^{2}+p_{2}^{2}}{q_{1}^{2}+q_{2}^{2}}+\frac{1}{q_{1}^{2}+q_{2}^{2}} \tag{18}
\end{equation*}
$$

with an independent integral of motion

$$
\begin{equation*}
H_{2}=\frac{1}{q_{1}^{2}+q_{2}^{2}}\left\{q_{1}^{2}\left(1+p_{2}^{2}\right)+q_{2}^{2}\left(1+p_{1}^{2}\right)\right\} \tag{19}
\end{equation*}
$$

Then H has the Haantjes operators K in the following form.
From condition (1), we put a four-dimensional square matrix

$$
K=\left(\begin{array}{ll}
A & B \tag{20}\\
C & D
\end{array}\right)
$$

where A is an arbitrary matrix, B, C are skew-symmetric matrices, and $D=A^{T}$. Also, total derivative of (18) and (19) are as follows

$$
\begin{align*}
\mathrm{d} H=\frac{p_{1}}{q_{1}^{2}+q_{2}^{2}} & \mathrm{~d} p_{1}+\frac{p_{2}}{q_{1}^{2}+q_{2}^{2}} \mathrm{~d} p_{2} \\
& \quad-\frac{q_{1}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} \mathrm{~d} q_{1}-\frac{q_{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} \mathrm{~d} q_{2} \tag{21}\\
\mathrm{~d} H_{2}= & -\frac{2 q_{2}^{2} p_{1}}{q_{1}^{2}+q_{2}^{2}} \mathrm{~d} p_{1}+\frac{2 q_{1}^{2} p_{2}}{q_{1}^{2}+q_{2}^{2}} \mathrm{~d} p_{2} \\
& +\frac{2 q_{1} q_{2}^{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} \mathrm{~d} q_{1}-\frac{2 q_{1}^{2} q_{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} \mathrm{~d} q_{2} \tag{22}
\end{align*}
$$

By equations (21), (22) and condition (2), we get the following relation

$$
\left(\begin{array}{cccc}
a & b & 0 & \alpha \tag{23}\\
c & d & -\alpha & 0 \\
0 & \beta & a & c \\
-\beta & 0 & b & d
\end{array}\right)\left(\begin{array}{c}
\frac{p_{1}}{q_{1}^{2}+q_{2}^{2}} \\
\frac{p_{2}}{q_{1}^{2}+q_{2}^{2}} \\
-\frac{q_{1}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} \\
-\frac{q_{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}}
\end{array}\right)=\left(\begin{array}{c}
-\frac{2 q_{2}^{2} p_{1}}{q_{1}^{2}+q_{2}^{2}} \\
\frac{2 q_{1}^{2} p_{2}}{q_{1}^{2}+q_{2}^{2}} \\
\frac{2 q_{1} q_{2}^{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} \\
-\frac{2 q_{1}^{2} q_{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}}
\end{array}\right)
$$

From the relation (9), we see that

$$
\begin{aligned}
& a=\frac{-2 p_{1} q_{2}^{4}+\left(-2 p_{1} q_{1}^{2}-b p_{2}\right) q_{2}^{2}+\alpha q_{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)-b p_{2} q_{1}^{2}}{p_{1}\left(q_{1}^{2}+q_{2}^{2}\right)} \\
& \beta=-\frac{\left(p_{1}^{2}+p_{2}^{2}+2\right)\left\{\left(-2 q_{1}^{2}+d\right) q_{2}+b q_{1}\right)}{p_{1}\left(q_{1}^{2}+q_{2}^{2}\right)} \\
& c=\frac{2 p_{2} q_{1}^{4}-p_{2}\left(-2 q_{2}^{2}+d\right) q_{1}^{2}-\alpha q_{1}\left(p_{1}^{2}+p_{2}^{2}+2\right)-d p_{2} q_{2}^{2}}{p_{1}\left(q_{1}^{2}+q_{2}^{2}\right)}
\end{aligned}
$$

where b, d and α are constants. Further, we put

$$
\begin{aligned}
c_{1} & =a+d \\
& =\frac{-2 p_{1} q_{2}^{4}+\left\{\left(-2 q_{1}^{2}+d\right) p_{1}-b p_{2}\right\} q_{2}^{2}+\alpha q_{2}\left(p_{1}^{2}+p_{2}^{2}+2\right)-q_{1}^{2}\left(b p_{2}-d p_{1}\right)}{p_{1}\left(q_{1}^{2}+q_{2}^{2}\right)} \\
c_{2} & =-a d-\alpha \beta+b c \\
& =\frac{2 b p_{2} q_{1}^{4}+2\left\{\left(b p_{2}+d p_{1}\right) q_{2}-\alpha\left(p_{1}^{2}+p_{2}^{2}+2\right)\right\} q_{2} q_{1}^{2}+2 d p_{1} q_{2}^{4}}{p_{1}\left(q_{1}^{2}+q_{2}^{2}\right)} .
\end{aligned}
$$

Then conditions (3) and (4) are satisfied.

Acknowledgements

The third author expresses his gratitude to Professor Ivaïlo Mladenov for his encouragement. Acknowledgements are also expressed to Professor Yvette KosmannSchwarzbach for the stimulating lecture [3] at Bialowieza conference and the interesting discussion, which guides the authors to the subject of this investigation. This work was supported by JSPS KAKENHI Grant Number JP15K04856.

References

[1] Fukaya K., Analytical Mechanics and Differential Forms (in Japanese), Iwanami, Tokyo 2004.
[2] Haantjes J, On X_{n-1}-Forming Sets of Eigenvectors, Proc. Kon. Ned. Akad. Amsterdam 58 (1955) 158-162.
[3] Kosmann-Schwarzbach I., Beyond Recursion Operators, Lecture at XXXVI Workshop on Geometric Methods in Physics, Poland, Bialowieza 2017, July 2-July 8.
[4] Takeuchi T., A Construction of a Recursion Operator for Some Solutions of Einstein Field Equations, Geom. Integrability \& Quantization 15 (2014) 249-258.
[5] Tempesta P. and Tondo G., Haantjes Manifolds of Classical Integrable Systems, Preprint arXiv: 1405.5118 (2016)
[6] Whittaker E., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, $4^{\text {th }}$ Edn, Dover Publications, New York 1944.

