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Abstract. The embeddings of the so(3) Lie algebra and the Lie group SO(3)
in higher dimensions is an important construction from both mathematical
and physical viewpoint. Here we present results based on a program package
for building the generating matrices of the irreducible embeddings of the
so(3) Lie algebra within so(n) in arbitrary dimension n ≥ 3, n 6= 4k+2, k ∈
N relying on the algorithm developed recently by Campoamor-Strursberg [3].
For the remaining cases n = 4k + 2 embeddings of so(3) into so(n) are
also constructed. Besides, we investigate the characteristic polynomials of
these so(n) elements. We show that the Cayley map applied to C ∈ so(n)
is well defined and generates a subset of SO(n). Furthermore, we obtain
explicit formulas for the images of the Cayley map. The so obtained SO(n)
matrices are expressed as polynomials of C whose coefficients are rational
functions of the norm of the vector-parameter c. The composition laws are
extracted for the cases n = 4, 6 and for the first case it is shown that via the
Cayley map the isomorphism SU(2) ∼= im Cayim j4

∪ {−I4} holds. Also,
for n = 4 explicit formulas for the the angular velocity matrices are derived.
Comparisons between the results obtained via the exponential map and the
Cayley map are made as well. In contrast to the case of the Cayley map,
the results for the exponential map include either irrational or transcendental
functions of the module of the vector-parameter.
MSC : 17B81, 22E70, 81R05
Keywords: Cayley map, rotations, vector-parameter

150



Cayley Map and Higher Dimensional Representations of Rotations 151

Notation and Nomenclature

N the set of natural numbers
HN the set of half-integers, i.e., HN = {2k−1

2 ; k ∈ N}
jn real irreducible embedding so(3) ↪→ so(n)

n the dimension under consideration
J spin number n = 2J + 1, J ∈ N ∪ HN
[x] the integer part of the number x
m, r spin numbers in the different cases

i, it, j, s, k, l,m natural numbers used as indices
δlk Kronecker symbol
εi,j,k permutation symbol
aml numerical coefficients

Jn = {Jn|1, Jn|2, Jn|3} the generating set of so(3) ' im jn ⊂ so(n)

Cn = C = c.Jn an arbitrary element of im jn
A an arbitrary element of im jn or SU(2) element
H Lie algebra element of so(6)

I, In the unit matrix of respective dimension
O,On the zero matrix of respective dimension

(x, z) = x.z, u× v scalar and vector products in R3

G connected matrix Lie group
Π, π representations of G and its Lie algebra g

sl (n) the Lie algebra of n× ntraceless matrices
so(n) the Lie algebra of n× nanti-symmetric matrices

SO(n) special orthogonal group of order n
SU(2) special unitary group in two dimantions

a, c, ci, c̃ SO(3) vector-parmeters of SO(3) ⊂ SO(n) elements
a, c norms of the vectors a and c

Mi,j (i, j)-th component of the matrix M
pn(λ), µn(λ) the characteristic and minimal polynomials of c.Jn

U unitary matrix
Fn anti-symmetric matrix

Λ,Λi, Λ̃ complex diagonal matrices
ω×,ω×n ,Ω

×,Ω×n angular velocity matrices
ω,ωn,Ω,Ωn angular velocity vectors



152 Veliko Donchev, Clementina Mladenova and Ivaïlo Mladenov

CONTENTS

Notation and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

2. The Irreducible Representations of so(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.2. Irreducible Representations of SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

3. The Cayley Map for the Embedding so(3) ↪→ so(n) . . . . . . . . . . . . . . . . . . . 156

3.1. The Case of Odd Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.2. The Case of Even n = 4s for Integer s . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3.3. The Case of Even n = 4m+ 2 for Integer m . . . . . . . . . . . . . . . . . . . . . 168

4. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Appendix A. The Cayley and Exponential Parametrizations of SO(3) . . . . . . 172

Appendix B. Realizations of so(3) and SO(3) in Higher Dimensions . . . . . . 173

B.1. n = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

B.2. n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.3. n = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.4. n = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.5. n = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

1. Introduction

The group SO(3) and its Lie algebra so(3) are of great importance for modern
physics [10]. Higher dimensional realizations of so(3) and SO(3) play a huge
role in many fundamental areas and applications. Rotations and their higher di-
mensional realizations are of interest also in crystallography [13], in the prob-
lems of image recognition [17] and many other areas of modern physics, espe-
cially mechanics [19]. In this paper we will use the Cayley map to produce three-
dimensional submanifolds in SO(n). The so obtained SO(n) rotations are ex-
pressed as polynomials of the general Lie algebra element of the embeddings
so(3) ↪→ so(n) with coefficients that are rational functions of the norm c of the
vector-parameter c.
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2. The Irreducible Representations of so(3)

Recall the standard R-basis J3 = {J3|1, J3|2, J3|3} of so(3)

J3|1 =

0 0 0

0 0−1

0 1 0

 , J3|2 =

 0 0 1

0 0 0

−1 0 0

 , J3|3 =

0−1 0

1 0 0

0 0 0

 .

The embedding j : g→ g̃ of the Lie algebra g is called irreducible [7] if the lowest
dimensional irreducible representation Γ of g̃ remains irreducible when restricted
to g. Campoamor-Stursberg [3] derived explicit formulas for real irreducible em-
beddings of the algebra so(3) into so(n) for n ≥ 3 where n 6= 4m + 2,m ∈ N.
To do this, he uses the explicit embedding sl (2,C) ↪→ sl (n,C), which maps the
generators {h, e, f} of sl (2,C) to the generators {DJ(h), DJ(e), DJ(f)} in di-
mension n = 2J + 1 for J = 1

2 , 1,
3
2 , . . . via the explicit formulas

(DJ(h))k,l = δlk(2J + 2− 2k), (DJ(e))k,l = δlk+1(2J + 1− k)

(DJ(f))k,l = δl+1
k (k − 1)

where 1 ≤ k, l ≤ n are indices, δlk is the Kronecker’s symbol and Mi,j denotes the
(i, j)-th element of the matrix M . If the scalars are restricted to the real numbers,
then {DJ(h), DJ(e), DJ(f)} becomes R−basis of sl (2,R) ↪→ sl (n,R). From
here complex representation of so(3) can be built by the generators {DJ(X1),
DJ(X2), DJ(X3)} where

DJ(X1) =
i

2
DJ(h), DJ(X2) =

1

2
(DJ(e)−DJ(f))

DJ(X3) =
i

2
(DJ(e) +DJ(f)).

Conjugating the matrices {DJ(Xk)}k=1,2,3 with a suitable unitary matrix U = UJ
the real embedding

jn : so(3) ↪→ so(n) (1)

is obtained. The explicit formulas of jn depend on the parity of the number n. Let
us denote the vector Jn = {Jn|1, Jn|2, Jn|3} of obtained by the images of J3|i, i =

1, 2, 3 under jn. Let us introduce

aql =

√
l(2q + 1− l)

4
, 1 ≤ l ≤ q − 1 (2)

where l takes integer values and q ∈ N ∪HN. Below we will present some refined
formulas for computing Jn|1, Jn|2, Jn|3 for any integer n ≥ 3. All numbers n ≥ 2
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can be expressed in the form n = 2J+1 where J = 1, 3
2 , 2,

5
2 , . . ., i.e., J ∈ N∪HN.

The series J = 1, 2, 3, . . . correspond to odd n. The series J = 3
2 ,

7
2 , . . ., i.e., of

the type J = 4k−1
2 for k ∈ N correspond to even n = 4k, k ∈ N. The last

series for J , i.e., of the type J = 4m+1
2 ,m ∈ N correspond to the dimensions

n = 4m + 2,m ∈ N in which no real irreducible representation of so(3) can be
built. However, formulas for real reducible representations in these dimensions are
also available. We consider two different cases for the parity of n

1. n is odd: in this case n = 2m+ 1 for integer m. We have

(Jn|1)k,l =

(
1 + (−1)k

2

)
(δlk+1a

m
[ k2 ] + δl+3

k am
[ k−2

2 ]
)−

(
amm +

√
m2 +m

2

)

× (δlnδ
n−1
k − δln−1δ

n
k )−

(
1 + (−1)k−1

2

)
(δlk+3a

m

[ k+1
2 ]

+ δl+1
k am

[ k−1
2 ]

)

(3)

(Jn|2)k,l =

(
amm +

√
m2 +m

2

)
(δlnδ

n−2
k − δln−2δ

n
k )− (δlk+2a

m

[ k+1
2 ]

+ δl+2
k am

[ k−1
2 ]

)

(Jn|3)k,l =
(1 + (−1)k)δl+1

k (n+ 1− k)− (1 + (−1)k−1)δk+1
l (n− k)

4

where 1 ≤ k, l ≤ n and [x] denotes the integer part of x.

2. n is even: in this case we make use of the parameter r: n = 4r + 2 =

2J + 1 where r ∈ N ∪ HN, J ∈ HN. Here r =
2s− 1

2
∈ HN refers

to the dimensions n = 4s, n ∈ N with irreducible real representations and
r = m ∈ N corresponds to n = 4m+ 2

(Jn|1)k,l =

(
1 + (−1)k

2

)
(δlk+1a

r
[ k2 ] + δl+3

k ar
[ k−2

2 ]
)

−
(

1 + (−1)k−1

2

)
(δlk+3a

r

[ k+1
2 ]

+ δl+1
k ar

[ k−1
2 ]

)

(Jn|2)k,l = δl+2
k ar

[ k−1
2 ]
− δlk+2a

r

[ k+1
2 ]

(4)

(Jn|3)k,l =
(1 + (−1)k)δl+1

k (n+ 1− k)− (1 + (−1)k−1)δk+1
l (n− k)

4

where 1 ≤ k, l ≤ n are matrix indices. For an arbitrary n ∈ N, n ≥ 3, Jn is the
generating set of the Lie subalgebra so(3) ' im jn in so(n).
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2.1. Examples

Let us consider a few examples in order to demonstrate the developed computer
procedure for generating the matrices Jn|1, Jn|2, Jn|3 in the cases

• n = 4 obtained for the spin number r = 1
2 in formulas (4)

• n = 5 obtained for m = 2 via the formulas (3)

• n = 6 obtained for the integer number r = 1 in (4).

In all examples we will show the most arbitrary matrix c.Jn and the matrices
Jn|1, Jn|2, Jn|3. For n = 4 we have

J4|1 =
1

2


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , J4|2 =
1

2


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


(5)

J4|3 =
1

2


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 , c.J4 =
1

2


0 −c3 −c2 −c1

c3 0 c1 −c2

c2 −c1 0 c3

c1 c2 −c3 0

 .

Next, for n = 5 we get

J5|1 =


0 0 0 1 0

0 0 −1 0 0

0 1 0 0 0

−1 0 0 0
√

3

0 0 0 −
√

3 0

 , J5|2 =


0 0 1 0 0

0 0 0 1 0

−1 0 0 0 −
√

3

0 −1 0 0 0

0 0
√

3 0 0



J5|3 =


0 −2 0 0 0

2 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0

 , c.J5 =


0 −2c3 c2 c1 0

2c3 0 −c1 c2 0

−c2 c1 0 −c3 −
√

3c2

−c1 −c2 c3 0
√

3c1

0 0
√

3c2 −
√

3c1 0

 (6)
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and for n = 6 the obtained matrix is

c.J6 =
1√
2



0 −
√

2c3 −c2 −c1 0 0√
2c3 0 c1 −c2 0 0

c2 −c1 0 0 −c2 −c1

c1 c2 0 0 c1 −c2

0 0 c2 −c1 0
√

2c3

0 0 c1 c2 −
√

2c3 0


. (7)

The matrices J6|i, i = 1, 2, 3 can be obtained as
∂(c.J6)

∂ci

∣∣
c=0

.

2.2. Irreducible Representations of SO(3)

Let us recall [14, Propositions 4.4 & 4.5] the following facts: If G is a connected
matrix Lie group with Lie algebra g, Π is a representation of G and π is the asso-
ciated representation of g such that

Π(expX) = exp (π(X)), π(X) =
d
dt

Π(exp (tX))
∣∣∣
t=0

, X ∈ g.

Then Π is irreducible if and only if π is irreducible.

Many years ago Wageningen [23] and Fedorov [9] have constructed irreducible
representations of SO(3) relying on the exponential map. The first named author
had obtained explicit formula for the n-dimensional representation of an SO(3)

matrix as a polynomial of the Lie algebra element used in the exponentiation for
n ≤ 13 whereas the second one did the same for n ≤ 7. The coefficients in
Fedorov ’s formulas are algebraic functions of the norm of the vector-parameter
corresponding to the Lie algebra element whereas in the Wageningen ’s formulas
the coefficients involve the trigonometric functions sin and cos.

In contrast to Wageningen and Fedorov, we will apply the Cayley map to the ele-
ments C = c.Jn ∈ im jn and in this way we will obtain explicit formulas for the
parametrized SO(n) matrices as a polynomials of C whose coefficients are rational
functions of c (c2 = c.c).

3. The Cayley Map for the Embedding so(3) ↪→ so(n)

We will consider the Cayley map defined on im jn, i.e.,

Cay(C) = (I + C)(I − C)−1 (8)



Cayley Map and Higher Dimensional Representations of Rotations 157

for an arbitrary C = Cn = c.Jn = c1.Jn|1 + c2.Jn|2 + c3.Jn|3 ∈ im jn, where

c = (c1, c2, c3), c2 = c2
1 + c2

2 + c2
3 = c.c = |c|2 = c2.

We will derive explicit formulas for (8) depending on the parity of n ≥ 3.

Lemma 1. If C is n × n skew-symmetric matrix then Cay(C) ∈ SO(n). Also, if
R = Cay(c.Jn) thenR−1 = Rt = Cay(−c.Jn).

Proof: Using the fact that Ct = −C and the fact that the matrices I −C and I + C
commute. We obtain

((I + C)(I − C)−1)t(I + C)(I − C)−1 = ((I − C)−1)t(I + C)t(I + C)(I − C)−1

= (I + C)−1(I − C)(I + C)(I − C)−1 = (I + C)−1(I + C)(I − C)(I − C)−1 = I.

Furthermore

det (I + C)(I − C)−1 =
det (I + C)
det (I − C)

=
det (I + C)
det (I + C)t

= 1.

Thus, Cay(C) ∈ SO(n). The second statement follows immediatelly

Cay(C)Cay(−C) = (I + C)(I − C)−1(I − C)(I + C)−1 = I.

�

Lemma 2. If C is n× n skew-symmetric matrix and

i) (Cay(C))2 = I if and only if C = O
ii) (Cay(C))2 = −I if and only if C2 = −I.

Proof: i) Let (Cay(C))2 = I. Because I + C and I − C commute we have

(I + C)2((I − C)2)−1 = I ⇐⇒ (I + C)2 = (I − C)2 ⇐⇒ C = O.

ii) We have

(Cay(C))2 = −I ⇔ (I + C)2 = −(I − C)2 ⇔ 2(C2 + I2) = O ⇔ C2 = −I.

�
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3.1. The Case of Odd Dimensions

Let n = 2m+ 1,m ≥ 1. The characteristic (which is also a minimal) polynomial
[9] of an arbitrary matrix C = Cn = c.Jn is

p2m+1(λ) = −λ(λ2 + 12c2) . . . (λ2 +m2c2) = −λ
m∏
t=1

(λ2 + t2c2)

= −λ2m+1 − α2m−1c2λ2m−1 − . . .− α1c2mλ (9)

= −λ2m+1 −
m∑
t=1

α2m+1−2tc2tλ2m+1−2t.

Because p2m+1 has only simple roots, it coincides with the minimal polynomial
µ2m+1 of C. Consider the polynomial

g2m+1(µ) = µm + α2m−1µ
m−1 + α2m−3µ

m−2 + . . .+ α3µ+ α1

obtained by
−p2m+1(λ)

λc2m
after the substitution of

λ2

c2
with µ. The so obtained poly-

nomial g2m+1(µ) is an unitary and of degree m with simple roots −12,−22, . . .−
m2. Expressions for the coefficients α2m+1, α2m−1, . . . , α1 can be obtained by
Vieta’s formulas for g2m+1

α2m+1−2t =
∑

1≤i1<...<it≤m
i21 . . . i

2
t , t = 1, 2, . . . ,m.

For example, the closed forms of α2m−1, α2m−3 for m ≥ 2 are

α2m−1 =
m(m+ 1)(2m+ 1)

6
, α2m−3 =

m(m2 − 1)(4m2 − 1)(5m+ 6)

180

and α1 = (m!)2. More explicit expressions and relations for the coefficients
α2m+1−2t, t = 1, . . . ,m can be given in terms of the Bernouli ’s coefficients

[2, 16] and the generalized harmonic coefficients Hm,2 =
m∑
k=1

1

k2
· For example,

α3 = (m!)2Hm,2.

Theorem 3. For an arbitrary n = 2m + 1,m ≥ 1 the Cayley map (8) is well-
defined on im jn and the following explicit formula holds true

Cay(C) = I2m+1 + 2

m−1∑
s=0

1 +
m−s−1∑
k=1

α2m+1−2kc2k

1 + α2m−1c2 + . . .+ α1c2m
(C2s+1 + C2s+2) (10)

for all C ≡ Cn = c.Jn ∈ im jn. Also, the map Cay takes values in SO(2m+ 1).
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Proof: We need to prove that I2m+1 − C is invertable and to find an explicit for-
mula for it and in this way for Cay(C) = (I2m+1+C)(I2m+1−C)−1. From now on
we will use I to denote the identity matrix of dimension coherent with the context.
We will seek a formula for (I − C)−1 via the ansatz

(I − C)−1 = ξ0I + ξ1C + . . . ξ2mC2m.

We want to find the coefficients ξ0, . . . ξ2m such that I = (I − C)(
2m∑
k=0

ξkCk).

Taking into account the Hamilton–Cayley formula for C we calculate

I = (I − C)(ξ0I + ξ1C + . . .+ ξ2mC2m)

= ξ0I + (ξ1 − ξ0)C + (ξ2 − ξ1)C2 + . . .+ (ξ2m − ξ2m−1)C2m − ξ2mC2m+1

= ξ0I + (ξ1 − ξ0 + ξ2mα1c2m)C + (ξ2 − ξ1)C2 + . . .

+ (ξ2m−1 − ξ2m−2 + ξ2mα2m−1c2)C2m−1 + (ξ2m − ξ2m−1)C2m (11)

= ξ0I +
m−1∑
s=0

(ξ2s+1 − ξ2s + ξ2mα2s+1c2m−2s)C2s+1

+
m−1∑
s=0

(ξ2s+2 − ξ2s+1)C2s+2.

From (11) we obtain directly a linear system of equations for the unknown quan-
tities ξ0, . . . , ξ2m consisting of 2m + 1 equations which can be splited in the fol-
lowing two sets of equations

ξ2 = ξ1

ξ4 = ξ3

. . .

ξ2m−2 = ξ2m−3

ξ2m = ξ2m−1

ξ0 = 1

ξ1 − ξ0 = −ξ2mα1c2m

ξ3 − ξ2 = −ξ2mα3c2m−2

. . .

ξ2m−1 − ξ2m−2 = −ξ2mα2m−1c2.

(12)

Resolving the system (12) step by step we obtain ξ0 = 1

ξ2 = ξ1 = 1− ξ2mα1c2m

ξ4 = ξ3 = 1− ξ2m(α1c2m + α3c2m−2)

. . .

ξ2m = ξ2m−1 = 1− ξ2m(α1c2m + α3c2m−2 + . . .+ α2m−1c2).

(13)

Summing up all equations on the right hand side of (12), we obtain

ξ2m = ξ2m−1 = 1− ξ2m(α2m−1c2 + . . .+ α1c2m) = 1 + ξ2m(p2m+1(1) + 1)
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and thus

ξ2m = − 1

p2m+1(1)
=

1

1 + α2m−1c2 + . . .+ α1c2m
·

Note also that

−p2m+1(1) = p2m+1(−1) = (1 + c2)(1 + 4c2) . . . (1 +m2c2) > 0

for all c ∈ R3. Substituting this result in (13) gives

ξ2 = ξ1 =
1 + α2m−1c2 + . . .+ α3c2m−2

1 + α2m−1c2 + . . .+ α1c2m

ξ4 = ξ3 =
1 + α2m−1c2 + . . .+ α5c2m−4

1 + α2m−1c2 + . . .+ α1c2m
(14)

. . .

ξ2m = ξ2m−1 =
1

1 + α2m−1c2 + . . .+ α1c2m
·

In this way we have obtained that for all c ∈ R3 the matrix I − C is invertable and

(I − C)−1 = I +
m−1∑
s=0

1 +
m−s−1∑
k=1

αn−2kc2k

1 + α2m−1c2 + . . .+ α1c2m
(C2s+1 + C2s+2). (15)

Now it is a straightforward, but tedious computation to express (I + C)(I − C)−1

as a polynomial in C using the simple fact that

Cay(C) = (I + C)(I − C)−1 = I + 2C(I − C)−1 (16)

and this leads to the formula (10). It is curious that the above formulas (10) and
(15) are so alike. Because of Lemma 1, Cay(C) ∈ SO(n). �

3.1.1. The Case n = 3

In the case n = 3 the map j3 coincides with the identity and the Cayley map
reduces to the known Gibbs vector-parameter representation of SO(3). The char-
acteristic polynomial of C ≡ C3 = c.J3 is p3(λ) = −λ3 − c2λ for all c ∈ R3 and
respectively the Cayley map is



Cayley Map and Higher Dimensional Representations of Rotations 161

Cay(C) = I3 +
2

1 + c2
C +

2

1 + c2
C2 = I3 +

2

1 + c2
(C + C2)

(17)

=
2

1 + c2

1 + c2
1 − c2

2 − c2
3 c1c2 − c3 c1c3 + c2

c1c2 + c3 1− c2
1 + c2

2 − c2
3 c2c3 − c1

c1c3 − c2 c2c3 + c1 1− c2
1 − c2

2 + c2
3

 .

This leads to the composition law [9]

R3(c̃) = Ra(a)Rc(c), c̃ = 〈a, c〉SO(3,R) =
a + c + a× c

1− a.c
(18)

where R(a) = Cay(a.J3) and R(c) = Cay(c.J3) are two proper rotations. If
one wants to extend formula (18) in order to cover all possible scenarios, i.e., the
cases where half-turns are involved in the composition or the result is a half-turn
and to keep its intuitive nature and low computational complexity one could use
the Cayley map for the covering group SU(2) and parametrize the half-turns as it
was done in [6]. For the so extended composition law see Table 1 in Appendix A.

3.1.2. The Case n = 5

In the first non-trivial case n = 5 for the series of odd n we compute the charac-
teristic polynomial of the matrix C ≡ C5 = c.J5

p5(λ) = −λ5 − 5c2λ3 − 4c4λ.

The explicit formula for the Cayley mapR5(c) = Cay(C) reads as

R5(c) = I + 2
5c2 + 1

4c4 + 5c2 + 1
(C + C2) +

2

4c4 + 5c2 + 1
(C3 + C4).

3.2. The Case of Even n = 4s for Integer s

Let r =
2s− 1

2
, s ∈ N be a positive half-integer. Then the number n = 4

2s− 1

2
+

2 = 4s is obviously divisible by 4. The characteristic polynomial of an arbitrary
matrix Cn = c.Jn is

p4s(λ) =

s∏
t=1

(
λ2 + (

2t− 1

2

)2
c2)2. (19)

Lemma 4. The minimal polynomial for the matrix Cn ≡ C4s = c.J4s where s ∈ N,
c ∈ R3 is

µ4s(λ) =

s∏
t=1

(λ2 +
(2t− 1

2

)2
c2).
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Proof: The polynomial µ4s is the polynomial of least degree and can be seen as
the minimal polynomial of C since it contains as simple roots all eigenvalues of C
and is monic. The proof that µ4s(C4s) = O4m is similar to the one done in Lemma
6 below and is omitted here. �

Let us denote the coefficients of µ4s

µ4s(λ) = λ2s + γ2s−2c2λ2s−2 + . . .+ γ2c2s−2λ2 + γ0c2s.

One can seek explicit and closed formulas for these coefficients via combinatorial
means. For example

γ2s−2 =

s∑
t=1

(
2t− 1

2

)2

=
s(2s− 1)(2s+ 1)

3
, γ0 =

(2s− 1)!!

2s
·

By Lemma 4 we have that

C2s
4s = −γ2s−2c2C2s−2

4s − . . .− γ2c2s−2C2
4s − γ0c2sI4s. (20)

Theorem 5. For an arbitrary n = 4s where s ∈ N, the Cayley map (8) is well-
defined on im jn and the following explicit formula holds true

Cay(C) =
1 + γ2s−2c2 + . . .+ γ2c2s−2 − γ0c2s

1 + γ2s−2c2 + . . .+ γ2c2s−2 + γ0c2s
I4s + 2

1 +
s−1∑
k=1

γ2s−2kc2k

µ4s(1)
C
(21)

+ 2

s−1∑
i=1

1 +
s−i−1∑
k=1

γ2s−2kc2k

µ4s(1)
(C2i + C2i+1)

for all C = c.Jn ∈ im jn.

Proof: Similarly to the proof of Theorem 3 and taking into consideration (20) we
use an ansatz for (I − C)−1 as a polynomial of degree 2s− 1 in C

(I − C)−1 = η0In + η1C + . . .+ η2s−1C2s−1.

This leads to the system of linear equations

η1 = η0

η3 = η2

. . .

η2s−1 = η2s−2

η0 − 1 = −η2s−1c2sγ0

η2 − η1 = −η2s−1c2s−2γ2

. . .

η2s−2 − η2s−3 = −η2s−1c2γ2s−2
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which has an unique solution

η1 = η0 =
1 + γ2s−2c2 + . . .+ γ2c2s−2

1 + γ2s−2c2 + . . .+ γ0c2s

η3 = η2 =
1 + γ2s−2c2 + . . .+ γ4c2s−4

1 + γ2s−2c2 + . . .+ γ0c2s

. . .

η2s−1 = η2s−2 =
1

1 + γ2s−2c2 + . . .+ γ0c2s

for all c ∈ R3. We omit the details here. Finally for (I − C)−1 we obtain

(I − C)−1 =

s−1∑
i=0

1 +
s−i−1∑
k=1

γ2s−2kc2k

µ4s(1)
(C2i + C2i+1).

Now it is a straightforward calculation of (I+C)(I−C)−1 to establish the validity
of formula (21). According to Lemma 1 the Cayley map takes values in SO(n). �

The above realizations in the dimensions n = 4s, s ∈ N are quite interesting since
the generating matrices C = c.J4s are invertable for all c ∈ R3\{0}.

3.2.1. The Case n = 4

The Hamilton–Cayley theorem for C reads as

C4 +
c2

2
C2 +

c4

16
I = O4 =⇒ C4 = −c2

2
C2 − c4

16
I

where Ok denotes the zero k× k matrix. Despite this fact, following Lemma 4 we

take into account that C is a root of its minimal polynomial and so C2 = −c2

4
I.

Recall [5] that if we consider an arbitrary su(2) matrix

A = A(c) =
1

2

(
−ic3 −c2 − ic1

c2 − ic1 ic3

)
= c.s

with coordinates c = (c1, c2, c3) in the basis s = (s1, s2, s3) chosen in [5] we have

the same identity A2 = −c2

4
I2.

Direct algebraic simplification of (21) leads to the beautiful formula

Cay(C) = R4(c) =
4− c2

4 + c2
I +

8

4 + c2
C. (22)
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This expression has the same form as that one for Caysu(2) [5, Equation 2.29].
Notice also that

Rt4(c) =
4− c2

4 + c2
I − 8

4 + c2
C.

3.2.2. Extracting the Vector-Parameter From a Rotational Matrix For n = 4

Obviously, the Cayley map is defined for all c ∈ R3. FromRt4.R4 = I4 it follows
that trR4(c) < 4. How do we extract the vector c from a given matrix R4(c) =

Cay(C)? We have that

trR4(c) = 4
4− c2

4 + c2
=⇒ 1

4 + c2
=

4 + trR4(c)

32

and thus if we consider F4 = R4(c)−Rt4(c) =
16

4 + c2
C then we have

2C(c) =
4

4 + trR4(c)
F4

and c = −2(C1,4, C1,3, C1,2), see equation (5).

3.2.3. The Angular Velocity Matrices in the Case n = 4

Let us calculate the angular velocity matrices

ω× ≡ ω×4 = Rt4(c)Ṙ4(c), Ω× ≡ Ω×4 = Ṙ4(c)Rt4(c)

for a rigid body motion. The matrix ω× corresponds to the angular velocity vector
ω ≡ ω4 in the body frame attached to the rigid body, whereas Ω× corresponds to
the angular velocity vector Ω ≡ Ω4 in the inertial frame [21]. Recall [19] that in
the three-dimensional case the formulas for ω3 and Ω3 are

ω3 =
2

1 + c2
(c× ċ + ċ), Ω3 =

2

1 + c2
(ċ× c + ċ).

We are going to compute ω and Ω in the four dimensional case. Direct calculation
gives

∂

∂t

(
4− c2

4 + c2

)
=

∂

∂t

(
−1 +

8

4 + c2

)
= − 16c.ċ

(4 + c2)2

where ċ = (ċ1, ċ2, ċ3). From (22) we have

Ṙ4(c) =− 16c.ċ

(4 + c2)2
I − 16c.ċ

(4 + c2)2
C +

8

4 + c2
Ċ =

8

4 + c2

(
− 2c.ċ

4 + c2
(I + C) + Ċ

)
.
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Now taking into account C2 = −c2

4
I and (22) we obtain

(4 + c2)2

8
Ω×=

(
− 2c.ċ

4 + c2
(I + C) + Ċ

) (
(4− c2)I − 8C)

)
=−2(4− c2)c.ċ

4 + c2
(I + C) +(4− c2)Ċ +

16c.ċ

4 + c2
C− 16c.ċ

4 + c2

c2

4
I−8ĊC

=−2c.ċI + 2c.ċC + (4− c2)Ċ− 8ĊC.

The only difference in the result for ω× is in the term 8ĊC which appears as 8CĊ
in Ω×

ω× =
8

(4 + c2)

(
−2c.ċI + 2c.ċC + (4− c2)Ċ − 8CĊ

)
(23)

Ω× =
8

(4 + c2)

(
−2c.ċI + 2c.ċC + (4− c2)Ċ − 8ĊC

)
. (24)

One can observe though, that the following identities hold true

8CĊ = −2c.ċI + 4(c× ċ).J4, 8ĊC = −2c.ċI − 4(c× ċ).J4

and from these and Ċ = ċ× we obtain that (23) and (24) simplify to

ω× = ω.J4 =
8

4 + c2

(
2(c.ċ)c + (4− c2)ċ− 4c× ċ

)
.J4 (25)

Ω× = Ω.J4 =
8

4 + c2

(
2(c.ċ)c + (4− c2)ċ + 4c× ċ

)
.J4. (26)

We can express formulas (25) and (26) in the following way

ω = −8
∂

∂t

c

4 + c2
+ 32

2ċ− 4c× ċ

(4 + c2)2

Ω = −8
∂

∂t

c

4 + c2
+ 32

2ċ + 4c× ċ

(4 + c2)2
·

Formulas (25) and (26) can be written as matrix equations in the form

ω = Bωċ, Ω = BΩċ

where Bω = Bt
Ω and

BΩ =
8

(4 + c2)2

4 + c2
1 − c2

2 − c2
3 2c1c2 − 4c3 2c1c3 + 4c2

2c1c2 + 4c3 4− c2
1 + c2

2 − c2
3 2c2c3 − 4c1

2c1c3 − 4c2 2c2c3 + 4c1 4− c2
1 − c2

2 + c2
3

 .
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The matrix BΩ is invertible for all c ∈ R3 and it is a straightforward to compute

B−1
Ω =

(4 + c2)2

64
Bt

Ω. (27)

Respectively, the matrix

RΩ := B−1
Ω Bt

Ω = Bt
ΩB
−1
Ω (28)

is the four dimensional analogue to the matrix defined in [21, Formula (32)] which
has many applications in mechanics. From formula (27) follows also that

RΩ =
(4 + c2)2

64
(Bt

Ω)2 =
(4 + c2)2

64
B2
ω.

The matrix form of
(4 + c2)2

8
RΩ is(4 + c2)2 − 32(c2

2 + c2
3) 32c1c2 + 8c3(4− c2) 32c1c3 − 8c2(4− c2)

32c1c2 − 8c3(4− c2) (4 + c2)2 − 32(c2
1 + c2

3) 32c2c3 + 8c1(4− c2)

32c1c3 + 8c2(4− c2) 32c2c3 − 8c1(4− c2) (4 + c2)2 − 32(c2
1 + c2

2)

 .

It is worth noticing that the matrix BΩ = (4 + c2)BΩ

BΩ =
1

4 + c2

 4 + c2
1 − c2

2 − c2
3 2c1c2 − 4c3 2c1c3 + 4c2

2c1c2 + 4c3 4− c2
1 + c2

2 − c2
3 2c2c3 − 4c1

2c1c3 − 4c2 2c2c3 + 4c1 4− c2
1 − c2

2 + c2
3


is an SO(3) matrix which is surprisingly similar to the rotational matrix in equation
(17), i.e., BΩ(c) = Cay(2c.J3).

3.2.4. The Composition Law for n = 4

Let A = a.J4 and C = c.J4 be two arbitrary elements from im j4. Let R(a) and
R(c) be the images of these matrices under the Cayley map, i.e.,

Cay(A) = R(a), Cay(C) = R(c).

Let R = R(a)R(c) be their composition in SO(4). We want to find an element
C̃ = c̃.J4 such that Cay(C̃) = R = R(c̃). Following the same arguments as in
[5, Proposition 1] we obtain

c̃ = 〈a, c〉SO(4,R) =

(
1− c2

4

)
a +

(
1− a2

4

)
c + 4

a
2
× c

2

1− 2
a
2
· c

2
+

a2

4

c2

4

(29)
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provided that it is not true that either a.c = 4 and a||c where || denotes the
collinearity relation. If the latter is fulfilled, it can be calculated directly that in
this case R(a)R(c) = −I4. Note that the matrix −I4 ∈ SO(4,R) is not in the
image of the Cayley map applied to im j4. Because the composition law is the
same as for the group SU(2) we can conclude that as a Lie group

SU(2) ∼= im Cayim j4 ∪ {−I4}.

The isomorphism is achieved via identification of the corresponding Lie algebra
elements and identification of−I2 and−I4. The SO(3) half-turnsO(n) about the
arbitrary axes n ∈ R3,n2 = 1 are associated with vector-parameters c = ±2n of
length 2 in SU(2) and represented as SO(4,R) elements by the matrices

Cay(±2n) = ±


0 −n3 −n2 −n1

n3 0 n1 −n2

n2 −n1 0 n3

n1 n2 −n3 0

 .

These are actually elements from both the Lie group SO(4,R) and its Lie algebra
so(4). Actually in this representation we have that the group element is a half-
turn if and only it actually belongs to the Lie algebra, see Lemma 2, (ii). Let us
note that the composition law 〈a, c〉SO(3) works only “up to a sign” in Fedorov and
Wageningen’s representations, i.e.,

exp(c̃ .J4) = sgn(1− a.c) exp(a.J4) exp(c.J4), c̃ =
a + c + a× c

1− a.c
·

The reason for this is the following connection, see also [5, Proposition 2]

exp(c.J4) = Cay(a.J4), a =
2

c2
(
√

1 + c2 − 1)c.

3.2.5. The Case n = 8

In the special case n = 8 the minimal polynomial of the matrix C ≡ C8 = c.J8 is

p8(λ) = (λ2 +
1

4
c2)2(λ2 +

9

4
c2)2, µ8(λ) =

√
p8(λ) = λ4 +

5

2
c2λ2 +

9

16
c4

and the explicit formula for the Cayley map can be written as (see Theorem 5)

Cay(C) =
16 + 40c2 − 9c4

16 + 40c2 + 9c4
I +

16

16 + 40c2 + 9c4

(
(2 + 5c2)C + 2C2 + 2C3

)
.
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3.3. The Case of Even n = 4m+ 2 for Integer m

Let n = 4m + 2,m ∈ N. The characteristic polynomial of an arbitrary matrix
C ≡ C4m+2 = c.J4m+2 is

p4m+2(λ) = λ2(λ2 + 12c2)2 . . . (λ2 +m2c2)2 = λ2
m∏
t=1

(λ2 + t2c2)2

(30)

= λ4m+2 + β4rc2λ4r + . . .+ β2c4mλ2 = λn +
2r∑
t=1

βn−2tc2tλn−2t.

It should be noted that the polynomial in (30) does not coincide with the charac-
teristic polynomials used in [9, 23]. The latter ones are complex.

One can derive formulas for the coefficients in (30) using Vieta’s formulas for the

polynomial h(ν) = ν2r + β4rν
2ν−1 + . . . β4ν + β2 obtained from

p4r+2(λ)

λ2
by

substitution of
λ2

c2
for ν. The distinct roots of h are −12,−22, . . . ,−r2 and all of

them are of double multiplicity. To obtain Cay(C4m+2) in this case we can proceed
as in Theorem 3. However, due to equations (9) and (30) and Hamilton–Cayley ’s
theorem it is clear that

p4m+2 = p2
2m+1, p4m+2(Cn) = (p2m+1(Cn))2 = M2 = O4m+2

where M = p2m+1(C4m+2) is (4m + 2) × (4m + 2) real matrix. Thus, either
M is non-zero nilpotent matrix of order two or M ≡ On. We will show that
M ≡ O4m+2.

Lemma 6. The minimal polynomial for the matrix Cn = C4m+2 = c.J4m+2 where
m ∈ N, c ∈ R3 is p2m+1, i.e., the characteristic polynomial of C2m+1 = c.J2m+1.

Proof: The polynomial p2m+1(λ) = λ
m∏
t=1

(λ2 + t2c2) is the polynomial of least

degree that is candidate to be the minimal polynomial of C4m+2 since it has all
distinct eigenvalues of C4m+2 as simple roots and is monic. We will prove that
M = p2m+1(C4m+2) = O4m+2. Since C4m+2 is real skew-symmetric matrix it is
similar to the diagonal matrix

Λ = diag(0, 0, ic, ic,−ic,−ic, . . . , , imc, imc,−imc,−imc)

i.e.,
C4m+2 = U†ΛU , U†U = UU† = I4m+2 (31)
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where the † operator performs complex conjugation and transposition. Thus, for
C2 we have C2 = U†Λ2U and

Λ2 = diag(0, 0,−c2,−c2,−c2,−c2, . . . ,−m2c2,−m2c2,−m2c2,−m2c2).

Now for arbitrary 1 ≤ k ≤ m we have also

C2
4m+2 + k2c2I = U†(Λ2 + k2c2I)U = U†ΛkU (32)

and that the elements at positions 4k − 1, 4k, 4k + 1, 4k + 2 on the main diagonal
of Λk vanish. Now from (31) and (32) we obtain that

p2m+1(C4m+2) = C4m+2(C2
4m+2 + c2I)(C2

4m+2 + 22c2I) . . . (C2
4m+2 +m2c2I)

(33)
= U†ΛUU†Λ1UU† . . .U†ΛmU = U†ΛΛ1 . . .ΛmU .

Consider the diagonal matrix Λ̃ = ΛΛ1 . . .Λm. The first two elements on the main
diagonal are zeros due to Λ. Also for all 1 ≤ k ≤ m the elements on the main
diagonal with indexes 4k− 1, 4k, 4k+ 1, 4k+ 2 are also zero. Thus, Λ̃ = O4m+2

and p2m+1(C4m+2) = O4m+2. �

This lemma will allow us to express the 4m+2 rotation matrixR(c) = Cay(C4m+2)

as a polynomial of degree 2m in the variable C4m+2 instead of 4m+ 1.

Theorem 7. For an arbitrary n = 4m + 2,m ∈ N the Cayley map (8) is well-
defined on im j4m+2 and the following explicit formula holds true

Cay(C4m+2) = I4m+2 + 2

m−1∑
s=0

1 +
m−s−1∑
k=1

α2m+1−2kc2k

1 + α2m−1c2 + . . .+ α1c2m
(C2s+1

4m+2 + C2s+2
4m+2)

for all C ≡ C4m+2 = c.J4m+2 ∈ im j4m+2 where the coefficients αi are those
of the characteristic polynomial of c.J2m+1, see (9). Also, the Cayley map takes
values in SO(4m+ 2).

Proof: From Lemma 6 we know that p2m+1(C4m+2) = 0 where p2m+1 is the
characteristic (and minimal) polynomial of C2m+1 = c.J2m+1. Thus the scheme
and calculations in Theorem 3 are applicable here. The above formula and the fact
that the Cayley map takes values in SO(4m+ 2) follow directly. �

3.3.1. The Case n = 6

In this case the characteristic polynomial of the matrix C ≡ C6 = c.J6 is p6(λ) =

λ6 + 2c2λ4 + c4λ2 = (λ3 + c2λ)2. However, the minimal polynomial of C6 is p3,
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the characteristic polynomial of C3 = c.J3. Thus, by Theorem 7 we obtain

Cay(C) = I6 +
2

1 + c2
C +

2

1 + c2
C2. (34)

The matrix form of (1 + c2)R6(c) is
1− c23 −2c3 −

√
2(c2 + c1c3)

√
2(−c1 + c2c3) −c21 + c22 2c1c2

2c3 1− c23
√
2(c1 − c2c3) −

√
2(c2 + c1c3) −2c1c2 −c21 + c22√

2(c2 − c1c3) −
√
2(c1 + c2c3) 1− c21 − c22 + c23 0

√
2(−c2 + c1c3) −

√
2(c1 + c2c3)√

2(c1 + c2c3)
√
2(c2 − c1c3) 0 1− c21 − c22 + c23

√
2(c1 + c2c3)

√
2(−c2 + c1c3)

−c21 + c22 −2c1c2
√
2(c2 + c1c3)

√
2(−c1 + c2c3) 1− c23 2c3

2c1c2 −c21 + c22
√
2(c1 − c2c3)

√
2(c2 + c1c3) −2c3 1− c23

 .

(35)

If we know that a matrix R = R(c) ∈ SO(6) belongs to the im Cay[im j6] of
the Cayley map we can obtain the vector-parameter c in the following way. Let us

define F ≡ F6 = R(c)−Rt(c) =
4

1 + c2
C6 and take into account that

trR(c) =
8

1 + c2
− 2 > −2, c ∈ R3. (36)

One can retrieve c fromR(c) via the formula

c =
3

4 + 2 trR
(
√

2F (4, 1),
√

2F (3, 1), F (2, 1)). (37)

3.3.2. The Composition Law in the Case n = 6

Theorem 8. Let C and A be two so(6) matrices obtained via the j6 map from
the vector-parameters a, c ∈ R3. Let R(a) and R(c) are the SO(6,R) matrices
obtained via the Cayley map from A and C and let R be their composition in
SO(6,R). ThenR = R(c̃) where

R(c̃) = R(a)R(c), c̃ = 〈a, c〉SO(6,R) =
a + c + a× c

1− a.c
(38)

provided that a.c 6= 1.

In other words, the composition law in this six dimensional realization of SO(3) is
that one of the genuine SO(3) representation.

Proof: Let R = Ra.Rc and F ≡ F3 = R3 − Rt3. Straightforward, but tedious
calculation gives

trR3 = 8 + 8
(1− a.c)2

(1 + c2
2)(1 + c2

1)
(39)
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F (2, 1) = −4
1− a.c

(1 + c2
2)
(
1 + c2

1)
(c3 + a3 − c1a2 + c2a1

)
F (3, 1) = −2

√
2

1− a.c
(1 + c2

2)(1 + c2
1)

(
c2 + a2 − c3a1 + c2a3

)
(40)

F (4, 1) = −2
√

2
1− a.c

(1 + c2
2)(1 + c2

1)

(
c1 + a1 − c2a3 + c3a2

)
.

If we suppose that there exists c̃ ∈ R3 such that R3 = R3(c̃) and using equations
(36) and (37) we obtain c̃ = 〈a, c〉SO(3). Now direct substitution proves (38). The
details of these calculations are omitted here. �

What about half-turns in SO(6,R)? We already understood that both the formula
for the Cayley map and the composition law for n = 6 coincide with that one for
n = 3. In SO(3) half-turns can be obtained by taking limits limt→∞ t(n1, n2, n3)

where n = (n1, n2, n3) is a unit vector or by SU(2) vector-parameter 2n, see [6]).
It is well known [14] that if G is a matrix Lie group and {gl}∞l=1 is a sequence in
G that converges to g, then either g ∈ G or g is not invertible.

Let c(t) = tn where n = (n1, n2, n3), n2 = 1. From the structure of the formula
(34) it can immediately be concluded that

lim
t→∞
R6(tn) = O6(n) = (41)
−n23 0 −

√
2n1n3

√
2n2n3 −1 + 2n22 + n23 2n1n2

0 −n23 −
√

2n2n3 −
√

2n1n3 −2n1n2 −1 + 2n22 + n23
−
√

2n1n3 −
√

2n2n3 −1 + 2n23 0
√

2n1n3 −
√

2n2n3√
2n2n3 −

√
2n1n3 0 −1 + 2n23

√
2n2n3

√
2n1n3

−1 + 2n22 + n23 −2n1n2
√

2n1n3
√

2n2n3 −n23 0

2n1n2 −1 + 2n22 + n23 −
√

2n2n3
√

2n1n3 0 −n23


which is a true SO(6,R) matrix.

4. Concluding Remarks

Despite the nice formulas obtained for the SO(n) matrices in dimensions other
than 3, 4 and 6 the subset im jn is not a subgroup in general. We leave for a future
research to find a way to fix this and to derive the correspondence between the
Cayley and the exp realizations.
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Appendix A. The Cayley and Exponential Parametrizations of SO(3)

The general element of the Lie algebra so(3) is of the form

C = c.J =

 0 −c3 c2

c3 0 −c1

−c2 c1 0

 .

The characteristic and the minimal polynomial of C coincide, i.e.,

p(λ) = µ(λ) = −λ3 − c2λ = −λ(c2 + λ2).

The explicit form of the Cayley map is

Cay(c) = I +
2

1 + c2
C +

2

1 + c2
C2.

Composition law in the Cayley realization

Cay(c̃ ) = Cay(a)Cay(c), c̃ = 〈a, c〉SO(3) =
a + c + a× c

1− a.c
·

The exponential map is

exp(C) = I +
sin c

c
C +

1− cos c
c2

C2.

Composition law for the exp realization is given by the formulas [8]

BCH(A, C) = BCH(a.J, c.J) = αA+ βC + γ[A, C]

α =
sin−1(q)

q

m

c
, β =

sin−1(q)

q

n

a
, γ =

sin−1(q)

q

p

ac

where φ = ∠(a, c) = cos−1
(a.c

ac

)
and

m = sin (c) cos2 (a/2)− sin (a) sin2 (c/2) cos(φ)

n = sin (a) cos2 (c/2)− sin (c) sin2 (a/2) cos(φ)

p =
1

2
sin (a) sin (c)− 2 sin2 (a/2) sin2 (c/2) cos(φ)

q =

√
m2 + n2 + 2mn cos(φ) + p2 sin2(φ).

Connection between the exp and Cay realizations is

exp θn× = Cay(ϕn×), ϕ = tan
θ

2
·
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The extended composition law in the Cayley realization is discussed at some length
in [6] and summarized in Table 1.

Table 1. An extended vector-parameter composition law for the group
SO(3) covering all possible scenarios for compositions. A proper ro-
tation associated with the vector-parameter c is denoted by R(c). The
improper rotation (half-turn) about an axis n is denoted by O(n) and
is represented by the ray [n] of all non-zero vectors that are co-linear
with n.

Product of
rotations

Result Condition Compound
rotation

R(c2)R(c1)
c3 =

c2 + c1 + c2 × c1

1− c2.c1
, c2.c1 6= 1 R(c3)

[n3] = [c2 + c1 + c2 × c1], c2.c1 = 1 O(n3)

R(c2)O(n1)
c3 = −n1 + c2 × n1

c2.n1
, c2.n1 6= 0 R(c3)

[n3] = [n1 + c2 × n1], c2.n1 = 0 O(n3)

O(n2)R(c1)
c3 = −n2 + n2 × c1

n2.c1
, n2.c1 6= 0 R(c3)

[n3] = [n2 + n2 × c1], n2.c1 = 0 O(n3)

O(n2)O(n1)
c3 = −n2 × n1

n2.n1
, n2.n1 6= 0 R(c3)

[n3] = [n2 × n1], n2.n1 = 0 O(n3)

Appendix B. Realizations of so(3) and SO(3) in Higher Dimensions

Here we present various explicit formulas derived via the Cayley map for realiza-
tions of SO(3) in SO(n) in this paper and that ones obtained using the exponential
map in [9] and [23]. Let us remind that the matrices Jn|i, i = 1, 2, 3 can be ob-
tained by the formulas

Jn|i =
∂(c.Jn)

∂ci

∣∣
c=0

, i = 1, 2, 3

and satisfy the commutation relations

[Jn|i, Jn|j ] = εi,j,kJn|k
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where εi,j,k ≡ 1 for even permutation of 1, 2, 3 and εi,j,k ≡ −1 otherwise.

We will work with the following notation

c 7→ C = c1Jn|1 + c2Jn|2 + c3Jn|3 = c.Jn

ĉ =
c

c
, Ĉ = ĉ.Jn, α = 2 arctan c

where

c = (c1, c2, c3), c2 := c2
1 + c2

2 + c2
3 = c.c = |c|2 = c2. (42)

We will denote the Fedorov and Wageningen’s SO(n) elements corresponding to
the vector-parameter c respectively by

Fed(c) ≡ Fed(C), Wag(c) ≡Wag(αĈ) ≡ exp(αĈ)

because Fed(C) are expressed in terms of the powers of C whereas Wag(C) are
expressed in terms of the powers of Ĉ and trigonometric functions of α.

B.1. n = 4

The general element of the embedded Lie algebra so(3) is

c.J4 =
1

2


0 −c3 −c2 −c1

c3 0 c1 −c2

c2 −c1 0 c3

c1 c2 −c3 0

 .

The characteristic and the minimal polynomial of C are

p(λ) = (λ2 +
c2

4
)2 = λ4 +

c2

2
λ2 +

c4

16
, µ(λ) = λ2 +

c2

4
·

The formula for the Cayley map is

Cay(C) = R4(c) =
4− c2

4 + c2
I +

8

4 + c2
C.

The composition law in the Cayley realization
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Cay(c̃ ) = Cay(a)Cay(c)

c̃ = 〈a, c〉SO(4) =

(
1− c2

4

)
a +

(
1− a2

4

)
c + 4

a
2
× c

2

1− 2
a
2
· c

2
+

a2

4

c2

4

·

Formulas for the exponential map

Fed(C) =
1

(1 + c2)3/2

(
(1 +

3

2
c2)I + (2 +

7

3
c2)C + 2C2 +

4

3
C3

)
Wag(αĈ) =

(9

8
cos

1

2
α− 1

8
cos

3

2
α
)
I +

(9

4
sin

1

2
α− 1

12
sin

3

2
α
)
Ĉ

+
(1

2
cos

1

2
α− 1

2
cos

3

2
α
)
Ĉ2 +

(
sin

1

2
α− 1

3
sin

3

2
α
)
Ĉ3

Fed(c) = Wag(c).

Composition law in the exp realization

Fed(c̃ ) = sgn(1− a.c)Fed(a)Fed(c), c̃ =
a + c + a× c

1− a.c

Wag(c̃ ) = sgn(1− a.c)Wag(a)Wag(c), c̃ =
a + c + a× c

1− a.c
·

Connection between the exp and Cay realizations

Fed(c) = Wag(c) = Cay(a), a =
2

c2
(
√

1 + c2 − 1)c.

The angular momentum matrices

ω× = ω.J4 =
8

4 + c2

(
2(c.ċ)c + (4− c2)ċ− 4(c× ċ)

)
.J4

Ω× = Ω.J4 =
8

4 + c2

(
2(c.ċ)c + (4− c2)ċ + 4(c× ċ)

)
.J4.

The alternative formulas for ω and Ω can be expressed readily as

ω = −8
∂

∂t

c

4 + c2
+ 32

2ċ− 4c× ċ

(4 + c2)2
, Ω = −8

∂

∂t

c

4 + c2
+ 32

2ċ + 4c× ċ

(4 + c2)2
·
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B.2. n = 5

General element of the embedded Lie algebra so(3)

C = C5 = c.J5 =


0 −2c3 c2 c1 0

2c3 0 −c1 c2 0

−c2 c1 0 −c3 −
√

3c2

−c1 −c2 c3 0
√

3c1

0 0
√

3c2 −
√

3c1 0

 .

The characteristic and the minimal polynomial of C coincide, i.e.,

p(λ) = µ(λ) = −λ(c2 + λ2)(4c2 + λ2) = −λ5 − 5c2λ3 − 4c4λ.

Formula for the Cayley map

Cay(c) = I + 2
5c2 + 1

4c4 + 5c2 + 1
(C + C2) +

2

4c4 + 5c2 + 1
(C3 + C4).

Formulas for the exponential map

Fed(C) = I +
2

3(1 + c2)2

(
(3 + 5c2)C + (3 + 4c2)C2 + 2C3 + C4

)
(43)

Wag(αĈ) = I −
(4

3
sinα− 1

6
sin 2α

)
Ĉ −

(4

3
(cosα− 1)− 1

12
(cos 2α− 1)

)
Ĉ2

−
(1

3
sinα− 1

6
sin 2α

)
Ĉ3 +

( 1

12
(cos 2α− 1)− 1

3
(cosα− 1)

)
Ĉ4

Fed(c) = Wag(c).

Composition law in the exp realization

Fed(c̃ ) = Fed(a)Fed(c), c̃ =
a + c + a× c

1− a.c

Wag(c̃ ) = Wag(a)Wag(c), c̃ =
a + c + a× c

1− a.c
·
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B.3. n = 6

General element of the embedded Lie algebra so(3)

c.J6 =
1√
2



0 −
√

2c3 −c2 −c1 0 0√
2c3 0 c1 −c2 0 0

c2 −c1 0 0 −c2 −c1

c1 c2 0 0 c1 −c2

0 0 c2 −c1 0
√

2c3

0 0 c1 c2 −
√

2c3 0


.

Characteristic and minimal polynomial of C

p(λ) = λ6 + 2c2λ4 + c4λ2 = (λ3 + c2λ)2 = λ2(λ2 + c2)2

µ(λ) = λ3 + c2λ = λ(λ2 + c2).

Formula for the Cayley map

Cay(C) = I6 +
2

1 + c2
C +

2

1 + c2
C2.

Composition law in the Cayley realization coincides with that one for the standard
representation

Cay(c̃) = Cay(a)Cay(c), c̃ = 〈a, c〉SO(3,R) =
a + c + a× c

1− a.c
·

Formulas for the exponential map are respectively

Fed(C) =
1

(1 + c2)5/2

(
(1 +

5

2
c2 +

15

8
c4)I + (2 +

13

3
c2 +

149

60
c4)C

+ (2 +
11

3
c2)C2 + (

4

3
+ 2c2)C3 +

2

3
C4 +

4

15
C5
)

Wag(αĈ) =

(
75

64
cos

1

2
α− 25

128
cos

3

2
α+

3

128
cos

5

2
α

)
I

−
(
−75

32
sin

1

2
α+

25

192
sin

3

2
α− 3

320
sin

5

2
α

)
Ĉ

−
(
−17

24
cos

1

2
α+

13

16
cos

3

2
α− 5

48
cos

5

2
α

)
Ĉ2
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+

(
17

12
sin

1

2
α− 13

24
sin

3

2
α+

1

24
sin

5

2
α

)
Ĉ3

+

(
1

12
cos

1

2
α− 1

8
cos

3

2
α+

1

24
cos

5

2
α

)
Ĉ4

−
(
−1

6
sin

1

2
α+

1

12
sin

3

2
α− 1

60
sin

5

2
α

)
Ĉ5.

Remark 9. We should mention that with the constructed inclusion so(3) ↪→ so(6)

(i.e., using the Lie algebra elements from (7)) for which the formulas Fed(C) and
Wag(C) coincide but do not generate SO(6) matrices. This is due to the different
characteristic polynomials of the used Lie algebra elements (theirs are not real).

Remark 10. The Cowin-Mehrabadi theorem [1, 4, 15] concerning normals to the
planes of symmetry of anisotropic material was generalized to the six dimensional
case and leads to interesting realization of SO(3) in SO(6). The following so(6)

matrix has been derived in [18]

H ≡ H6(c) =
1√
2



0 0 0 0 c2 −c3

0 0 0 −c1 0 c3

0 0 0 c1 −c2 0

0 c1 −c1 0
√

2c3 −
√

2c2

−c2 0 c2 −
√

2c3 0
√

2c1

c3 −c3 0
√

2c2 −
√

2c1 0


.

The characteristic and minimal polynomials ofH are

p(λ) = λ2(c2 + λ2)(4c2 + λ2) = λ6 + 5c2λ4 + 4c4λ2

µ(λ) = −λ(c2 + λ2)(4c2 + λ2) = −λ5 − 5c2λ3 − 4c4λ.

The exponential map gives the SO(6) matrix

exp(αĤ) = I +
2

3(1 + c2)2

(
(3 + 5c2)H+ (3 + 4c2)H2 + 2H3 +H4

)
.

It is no surprise that the coefficients in the formulas exp(αĤ) and Fed(c) ⊂ SO(5)

(see formula (43)) coincide. Besides the fact that they produce rotational matrices
of different dimension, the minimal polynomials of Lie algebra elements H6(c)

and c.J5 coincide. In this realization the composition law is the same as in (18).
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B.4. n = 7

General element of the embedded Lie algebra so(3)

c.J7 =
1√
2



0 −3
√

2c3 −
√

3c2 −
√

3c1 0 0 0

3
√

2c3 0
√

3c1 −
√

3c2 0 0 0√
3c2 −

√
3c1 0 −2

√
2c3 −

√
5c2 −

√
5c1 0√

3c1

√
3c2 2

√
2c3 0

√
5c1 −

√
5c2 0

0 0
√

5c2 −
√

5c1 0 −
√

2c3 2
√

3c2

0 0
√

5c1

√
5c2

√
2c3 0 −2

√
3c1

0 0 0 0 −2
√

3c2 2
√

3c1 0


.

The characteristic and the minimal polynomial of C coincide

p(λ) = µ(λ) = −λ(c2 + λ2)(4c2 + λ2)(9c2 + λ2)

= −36c6λ− 49c4λ3 − 14c2λ5 − λ7.

Formula for the Cayley map

Cay(C) = I +
2

(1 + c2)3

(
(1 +

8

3
c2 +

11

5
c4)C + (1 +

7

3
c2 +

68

45
c4)C2

+
2

3
(1 + 2c2)C3 + (

1

3
+

5

9
c2)C4 +

2

15
C5 +

2

45
C6
)
.

Formulas for the exponential map are

Fed(C) = I +
2

(1 + c2)3

(
(1 +

8

3
c2 +

11

5
c4)C + (1 +

7

3
c2 +

68

45
c4)C2

+
2

3
(1 + 2c2)C3 + (

1

3
+

5

9
c2)C4 +

2

15
C5 +

2

45
C6
)

Wag(αĈ) = I −
(
−3

2
sinα+

3

10
sin 2α− 1

30
sin 3α

)
Ĉ

−
(

3

2
(cosα− 1)− 3

20
(cos 2α− 1) +

1

90
(cos 3α− 1)

)
Ĉ2

+

(
13

24
sinα− 1

3
sin 2α+

1

24
sin 3α

)
Ĉ3

+

(
−13

24
(cosα− 1) +

1

6
(cos 2α− 1)− 1

72
(cos 3α− 1)

)
Ĉ4
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−
(
− 1

24
sinα+

1

30
sin 2α− 1

120
sin 3α

)
Ĉ5

−
(

1

24
(cosα− 1)− 1

60
(cos 2α− 1) +

1

360
(cos 3α− 1)

)
Ĉ6.

Besides
Fed(c) = Wag(c).

Composition law in the exp realization

Fed(c̃ ) = Fed(a)Fed(c), c̃ =
a + c + a× c

1− ac

Wag(c̃ ) = Wag(a)Wag(c), c̃ =
a + c + a× c

1− a.c
·

B.5. n = 8

The general element of the embedded Lie algebra so(3) is

c.J8 =
1

2



0 −3c3 −
√

3c2 −
√

3c1 0 0 0 0

3c3 0
√

3c1 −
√

3c2 0 0 0 0√
3c2 −

√
3c1 0 −c3 −2c2 −2c1 0 0√

3c1

√
3c2 c3 0 2c1 −2c2 0 0

0 0 2c2 −2c1 0 c3 −
√

3c2 −
√

3c1

0 0 2c1 2c2 −c3 0
√

3c1 −
√

3c2

0 0 0 0
√

3c2 −
√

3c1 0 3c3

0 0 0 0
√

3c1

√
3c2 −3c3 0


.

The characteristic and the minimal polynomial of C are respectively

p(λ) = (λ2 + c2)2(λ2 +
1

4
c2)2

µ(λ) = (λ2 + c2)(λ2 +
1

4
c2) = λ4 +

5

2
c2λ2 +

9

16
c4.

Finally the formula for the Cayley map is

Cay(C) =
16 + 40c2 − 9c4

16 + 40c2 + 9c4
I +

16

16 + 40c2 + 9c4

(
(2 + 5c2)C + 2C2 + 2C3

)
.
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