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Abstract. We give a brief review on Weyl manifold as a quantization of
symplectic manifold, equipped with a system of quantized canonical charts
and quantized canonical transformations among them called Weyl diffeomor-
phism. Weyl manifold is deeply related to deformation quantization on sym-
plectic manifolds. We explain a relation between Weyl manifolds and defor-
mation quantization.

MSC: 46L65, 53D55
Keywords: Deformation quantization, quantized symplectic manifold, star
products, Weyl manifold

1. Introduction

In this note, we discuss Weyl manifold defined by Omori-Maeda-Yoshioka [5] (see
also Yoshioka [7]). Weyl manifold is regarded as a quantized symplectic manifold
and has a structure of fiber bundle over a symplectic manifold with fiber consisting
of Weyl algebra, which is deeply related to deformation quantization on a symplec-
tic manifold. The concept of deformation quantization was given by Bayen-Flato-
Fronsdal-Lichnerowicz-Sternheimer [1], and the existence on symplectic manifold
is established independently with different methods, first by Dewilde-Lecomte [2],
then [5] and Fedosov [3]. The existence of deformation quantization on general
Poisson manifolds are finally proved by Kontsevich [4].

A Weyl manifold has quantized canonical charts or quantized Darboux charts,
glued by quantized canonical transformations, called Weyl diffeomorphisms. From
a Weyl manifold over a symplectic manifold M we can construct a deformation
quantization on M and also from a deformation quantization on M we obtain a
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Weyl manifold over M . Fedosov [3] and Omori-Maeda-Yoshioka [5] took a sim-
ilar way, namely, they both consider the Weyl algebraic bundle over a symplectic
manifold, and using an isomorphism between formal power series of functions on
the symplectic manifold and the space of sections of the bundle, then they con-
structed a formal deformation quantization on the symplectic manifold by means
of the algebra structure of sections.
We emphasize here that despite of the similarity, the basic idea is slightly different.
Fedosov used his connection on the Weyl algebraic bundle, and Omori-Maeda-
Yoshioka consider to quantize Darboux coordinates by means of a quantization of
canonical transformation. The latter used the quantized contact structure to ma-
nipulate the Weyl algebraic bundle (cf. [7]) while Fedosov used the connection,
thus the idea of Omori-Maeda-Yoshioka is more closely related to quantization of
Hamiltonian systems, or quantization of symplectic manifold.

In this note we give a brief review on Weyl manifolds and deformation quantization
based on the idea of [5].

2. Star Product, Deformation Quantization

2.1. Example: Moyal Product

We start by the well-known example of star product. Let M be a 2n dimensional
euclidean space R2n. We write the coordinate as (x1, . . . , xn, y1, . . . , yn) ∈ R2n,
and the canonical symplectic structure as ω =

∑n
k=1 dyk∧dxn. Its Poisson bracket

is given as the following biderivation.

{f, g} =
n∑

k=1

(∂xk
f ∂ykg − ∂ykf ∂xk

g) =
n∑

k=1

(f
←−
∂ xk

−→
∂ ykg − f

←−
∂ yk

−→
∂ xk

g)

= f
←−
∂ x ·
−→
∂ yg − f

←−
∂ y ·
−→
∂ xg=f(

←−
∂ x ·
−→
∂ y −

←−
∂ y ·
−→
∂ x)g = f

←−
∂ x ∧

−→
∂ yg.

The lth power of the biderivation is calculated by means of the binomial theorem
such as (←−

∂ x ∧
−→
∂ y

)l
=

l∑
k=0

(
l
k

)
(−1)k(

←−
∂ x ·
−→
∂ y)

l−k(
←−
∂ y ·
−→
∂ x)

k

which defines a bidifferential operator.
The Moyal product ∗0 is given by a formal power series of the biderivation of
exponential type such that

f ∗0 g = fg + (ν2 )f(
←−
∂ x ∧

−→
∂ y)g + · · ·+ (ν2 )

l 1
l!f(
←−
∂ x ∧

−→
∂ y)

lg + · · ·

= f exp
(
ν
2

←−
∂ x ∧

−→
∂ y

)
g
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for any f, g ∈ C∞(M), M = R2n, where ν is a formal parameter. The Moyal
product is extended naturally to the formal power series such as f, g ∈ C∞(M)[[ν]].
Then it is easy to see that the Moyal product is an associative product on the space
of formal power series C∞(M)[[ν]].
We sometimes write the Moyal product in general form such as

f ∗0 g = fg + νC1(f, g) + ν2C2(f, g) + · · ·+ νlCl(f, g) + · · ·

where Cl(f, g) =
1
l!(

1
2)

l(
←−
∂ x ∧

−→
∂ y)

l, l = 1, 2, . . ..

2.2. Star Product

The definition of star product is direct from the Moyal product.

For a manifold M , we consider a binary product on the space of formal power
series C∞(M)[[ν]] such that

f ∗ g = fg + νC1(f, g) + ν2C2(f, g) + · · ·+ νlCl(f, g) + · · ·
where Cl(·, ·) is a bilinear map from C∞(M)× C∞(M) to C∞(M).

Definition 1. A product f ∗ g is called a star product when it is associative.

Then for a star product ∗ on M , we have an associative algebra (Aν(M), ∗), called
a star product algebra.
Poisson Structure. We see that the star product naturally induces a Poisson struc-
ture on the manifold M .
Consider skewsymmetric part C−

1 of C1, namely, C−
1 (f, g) = 1

2(C1(f, g)−C1(g, f)),
for all f, g ∈ C∞(M). Then, the associative product satisfies

• [f, g ∗ h]∗ = [f, g]∗ ∗ h+ g ∗ [f, h]∗
• [f, [g, h]∗]∗ + (cyclic) = 0

where [f, g]∗ = f ∗ g − g ∗ f , and the expansion of the above gives

Proposition 1. The skew symmetric part of C1 is a Poisson bracket on M .

Suppose we have a Poisson structure {·, ·} on M .

Definition 2. A star product ∗ on M is called a deformation quantization of the
Poisson manifold (M, {·, ·}) when the skew symmetric part of C1 is equal to {·, ·}.

Equivalence. Suppose we have star products ∗, ∗′ on a manifold M . Then we
have star product algebras (Aν(M), ∗), (Aν(M), ∗′).

Definition 3. The star products ∗, ∗′ are equivalent if there exists an algebra iso-
morphism T : (Aν(M), ∗)→ (Aν(M), ∗′) of the form

T (f) = f + νT1(f) + ν2T2(f) + · · ·+ νlTl(f) + · · ·



Weyl Manifold: A Quantized Symplectic Manifold 395

where Tl is a linear map of C∞(M), l = 1, 2, . . ..

We have the following proposition [5].

Proposition 2. For every equivalence class of star product on M , there is a repre-
sentative f ∗ g = fg + νC1(f, g) + · · ·+ νlCl(f, g) + · · · , ∀f, g ∈ Aν(M) such
that C1 is a Poisson bracket, namely, its symmetric part is zero. Moreover, we can
take every Cl ( l = 1, 2, . . . ) is local, namely, a differential operator on M .

Back Ground. Star products are already treated by Weyl, Wigner, Moyal. These
can be regarded as a deformation of the usual multiplication of functions. For
these, Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer proposed a concept of de-
formation quantization on a manifold.
By many people’s efforts, the existence and classification problem became clear
and was established. Kontsevich proved that there is a deformation quantiaztion
on every Poisson manifold.

Symplectic Manifold. When M is symplectic, star products have a geometric
picture which we call a Weyl manifold. From a Weyl manifold WM over M , we
can obtain a deformation quantization of the symplectic manifold M .

3. Weyl Manifold

In what follows, we will explain the construction of Weyl manifold on arbitrary
symplectic manifold (M,ω) and also explain that from Weyl manifold we can
obtain a deformation quantization of (M,ω). This section is based on [5].

Let (M,ω) be a 2n dimensional symplectic manifold.
Weyl manifold WM is a Weyl algebra bundle over (M,ω) with certain properties.
Weyl manifold has a deep relationship with deformation quantization of symplectic
manifold.

3.1. Idea

We can show the existence of deformation quantization on a symplectic manifold
by showing that every symplectic manifold has Weyl manifold over it from which
one can obtain a deformation quantization.

The basic idea of the construction of Weyl manifold is to embed local functions
on a Darboux chart into Weyl algebra, whose embedded image is called Weyl
functions.

Quantized Darboux Chart. For any point p ∈M , there exists a coodinate neigh-
borhood (U, (x1, . . . , xn, y1, . . . , yn)) such that ω =

∑n
j=1 dyj ∧ dxj by Darboux
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theorem, which is called a canonical coordinate or a Darboux chart. Here we some-
times write as z = (x, y) for simplicity. With respect to this coordinate system the
Poisson bracket of (M,ω) is written as {·, ·} =

←−
∂ x∧

−→
∂ y, then we have the Moyal

product on U

f ∗0 g = fg + (ν2 )f(
←−
∂ x ∧

−→
∂ y)g + · · ·+ (ν2 )

l 1
l!f(
←−
∂ x ∧

−→
∂ y)

lg + · · ·

= f exp
(
ν
2

←−
∂ x ∧

−→
∂ y

)
g, f, g ∈ Aν(U) = C∞(U)[[ν]].

Hence, the triplet (U, (x, y), ∗0) is regarded as a quantized Darboux chart.

Quantized Darboux Theorem. Suppose we have a deformation quantization ∗ of
the symplectic manifold (M,ω)

f ∗ g = fg + νC1(f, g) + ν2C2(f, g) + · · ·+ νlCl(f, g) + · · · .

By the Proposition 2, we can assume C1 = 1
2{·, ·} and Cl (l = 1, 2, . . .) are

bidifferential operators. Since the star product ∗ is local we can restrict to every
(U, (x, y), ∗). Then we have a “Quantized Darboux theorem” as follows.

Proposition 3. On every U , the star product ∗ is equivalent to the Moyal prod-
uct ∗0. Hence, the star product ∗ has a local coordinate expression of quantized
Darboux chart (U, (x, y), ∗0) for every point.

Quantized Symplectic Atlas. Suppose we have a symplectic atlas {(Uα, zα)}α∈Λ,
then quantized Darboux theorem shows that the star product has a quantized sym-
plectic atlas {(Uα, zα, ∗0)}α∈Λ. And local star product algebras {(Aν(Uα), ∗0)}α∈Λ
are glued together to be an original star product by algebra isomorphisms

Tβα : (Aν(Uα), ∗0)|Uα∩Uβ
→ (Aν(Uβ), ∗0)|Uβ∩Uα .

These isomorphisms obviously satisfy the following lemma.

Lemma 1.
i) TαγTγβTβα = 1 for Uα ∩ Uβ ∩ Uγ ̸= ∅.

ii) T−1
βα = Tαβ for Uα ∩ Uβ ̸= ∅.

Weyl Manifold and Deformation Quantization. For any symplectic manifod
(M,ω), we construct a deformation quantization of (M,ω) by gluing local Moyal
algebras, or Quantized Darboux charts by algebra isomorphisms. For this purpose,
we first construct a Weyl algebra bundle over (M,ω) from which we can obtain a
deformation quantization.
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3.2. Weyl Manifold

In a word, Weyl manifold is a locally trivial Weyl algebra bundle over a symplectic
manifold whose gluing maps are Weyl diffeomorphisms of local trivial bundles.
Here Weyl diffeomorphism is an isomorphism of Weyl algebra bundles which pre-
serves Weyl functions. The Weyl functions are the key concept, or the geometric
structure, of quantized symplectic manifold or Weyl manifold.

Formal Weyl Algebra. A formal Weyl algebra W is an associative algebra, with
the multiplication denoted by ∗̂, formally generated over R or C by elements
ν,X1, . . . , Xn, Y1, . . . , Yn where ν commutes with any elements and satisfy the
canonical commutation relation

[Xj , Yk]∗ = νδjk, [Xj , Xk]∗ = [Yj , Yk]∗ = 0, j, k = 1, 2, . . . , n.

Here the bracket [·, ·]∗ is the commutator of W ; [F,G]∗ = F ∗̂G−G∗̂F , F,G ∈W .
For simplicity, instead of X1, . . . , Xn, Y1, . . . , Yn we sometimes use a notation
(X1, . . . , Xn, Y1, . . . , Yn) = (Z1, . . . , Z2n).
Weyl Ordered Expression and Moyal Product Formula. Using the basis of
monomials by completely symmetric polynomials such as X1∗̂X2 + X2∗̂X1/2,
etc.
Using this basis, the formal Weyl algebra W is expressed as the formal power
series of the generators with the Moyal product formula. Namely, we have a linear
isomorphism

σ : W → C[[ν,X1, . . . , Xn, Y1, . . . , Yn]].

With this linear isomorphism we identify W with C[[ν,X1, . . . , Xn, Y1, . . . , Yn]]
and the multiplication ∗̂ is given as the Moyal product, namely any elements are
expressed as a formal power series, F =

∑
lα alαν

lZα, G =
∑

mβ bmβν
mZβ ,

and we have

Lemma 2.

F ∗̂G = F exp
(
ν
2

←−
∂ X ∧

−→
∂ Y

)
G

= FG+ (ν2 )F (
←−
∂ X ∧

−→
∂ Y )G+ · · ·+ (ν2 )

l 1
l!F (
←−
∂ X ∧

−→
∂ Y )

lG+ · · · .

Weyl Function. Let U be an open subset of R2n. We consider to embed a function
f on U into a formal Weyl algebra W . The embedding is called a Weyl continua-
tion of function denoted by f# such that

f#(z) =
∑
α

1
αf

(α)(z)Zα, z ∈ U

where f (α)(z) = ∂α
z f(z).



398 Akira Yoshioka and Tomoyo Kanazawa

The Weyl continuation is obviously extended to the formal power series Aν(U) =
C∞(U)[[ν]], and gives a section of the trivial Weyl algebra bundle U ×W = WU ,
namely, f# ∈ Γ(WU ). We denote the image of # by F(WU ) = Aν(U)# ⊂
Γ(WU ).
It is direct to see that the products ∗0 and ∗̂ commute with the Weyl continuation
#, namely we have

Proposition 4.
(f ∗0 g)# = f#∗̂g#, f, g ∈ Aν(U).

Then we have

Corollary 1.
i) The space of the Weyl functions is an associative algebra under the multi-

plication ∗̂, namely (F(WU ), ∗̂) is an associative algebra.
ii) The Weyl continuation is an algebra isomorphism

# : (Aν(U), ∗0)→ (F(WU ), ∗̂).

3.3. Weyl Diffeomorphism

Instead of gluing local Moyal algebras (Aν(U), ∗0), we glue the isomorphic Weyl
function algebras (F(WU ), ∗̂). Since F(WU ) is a certain class of sections of the
trivial bundle WU , then we gain a bundle picture for star products.
Consider trivial bundles WU = U ×W , and WU ′ for open subsets U,U ′ ⊂ R2n.

Definition 4. A bundle isomorphism Φ : WU → WU ′ is called a Weyl diffeomor-
phism when

i) Φ(ν) = ν.
ii) Φ∗(F(WU ′) = F(WU ).

iii) Φ∗f# = (ϕ∗f)# +O(ν2), f ∈ Aν(U
′).

iv) Φ(F ) = Φ(F ), F ∈WU , where F is a conjugation in W .

Remark 1.
• The condition i) is natural which means that Φ is C[[ν]]-linear.
• The condition ii) is essential to our theory. We regard the Weyl functions
F(WU ) as the geometric structure of Weyl manifold WM , or quantized sym-
plectic manifold.
• The conditions iii) and iv) are optional. The condition iii) corresponds that

the symmetric part C+
1 vanishes, and the condition iv) means that the ob-

tained star product has the conjugation operation, or so called a parity.
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A bundle map naturally induces a map between the base space. As to Weyl diffeo-
morpism we have the following lemma.

Lemma 3. The induced map ϕ : U → U ′ of a Weyl differomorphism Φ : WU →
WU ′ is a symplectic diffeomorphism.

On the other hand, we have

Theorem 1. For a symplectic diffeomorphism ϕ : U → U ′, there exists a Weyl
diffeomorphism Φ : WU →WU ′ whose induced map is ϕ.

Gluing and Contact Algebra. Let {Uα, zα)}α∈Λ be a symplectic atlas of (M,ω).
Then (M,ω) is given by patching together {(Uα, zα)}α∈Λ by canonical transfor-
mations ϕαβ between Uα and Uβ . Then we can take Weyl diffeomorphisms Φαβ

between trivial bundles WUα and WUβ
by quantizing the canoical transformations

ϕαβ . We consider to glue local Weyl functions {F(WUα)}α∈Λ by Weyl diffeomor-
phisms.
We remark here the structure of a Weyl diffeomorphism Φ : WU → WU ′ is
roughly Φ = dϕ ◦ exp

(
1
ν ad(f#

)
), where dϕ is the tangent map of the induced

symplectic diffeomorphism and f# is a certain Weyl function on U . Hence,
for a given symplectic diffeomorphism ϕ, a Weyl diffeomorphism with induced
map ϕ, a quantization of ϕ, is not unique. For each canonical transformation
ϕαβ : Uα → Uβ , we take a quantized canonical transformation, a Weyl diffeo-
morphism Φαβ : WUα →WUβ

with induced map ϕαβ . For Uαβ ∩Uβγ ∩Uγα ̸= ∅,
the composition Φγα ◦ Φβγ ◦ Φαβ is not equal to the identity in general. So in
order to adjust Weyl diffeomorphisms to satisfy transition function rule of the bun-
dles, we have an idea to control the center. The idea is what we call a contact Lie
algebra, which can be regarded as a quantized contact structure in some sense.
We introduce a degree d of the elements of the Weyl algebra W by setting

d(ν) = 2, d(Xj) = d(Yj) = 1, j = 1, 2, . . . , n.

Then the degree is well-defined for the Weyl algebra since it is of no contradiction
with the relation [Xj , Yk]∗ = νδjk. For exmaple we see d(νX1∗̂Y2) = 4, etc.
Using the degree we can introduce a derivation of the Weyl algebra D : W → W
such that

D(ν) = 2ν, D(Xj) = νXj , D(Yj) = νYj , j = 1, 2, . . . , n.

Notice that the center of W is equal to C[[ν]] and D does not vanish on the center.
We introduce an element τ such that

[τ, F ] = −[F, τ ] = D(F ), F ∈W.

We consider a direct sum
g = Cτ ⊕W
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and then we can define a Lie algebra, called a contact Lie algebra, by putting

[λτ + a, µτ + b] = λ[τ, a] + µ[a, τ ] + [a, b]∗, λ, µ ∈ C, a, b ∈W.

Now we extend the Weyl diffeomorphism to a contact Weyl diffeomorphism. We
consider a locally trivial Lie algebra bundle gU = U × U . We define

Definition 5. A contact Lie algebra bundle isomorphism Ψ : gU → g
U

′ is called a
contact Weyl diffeomorphism when it satisfies

i) Ψ∗τ = τ + f#, f ∈ C∞(U)[[ν]].
ii) The restriction to the Weyl algebra bundle Ψ|WU induces a Weyl diffeomor-

phism Ψ|WU : WU →WU ′ .

We have

Proposition 5.
i) For a Weyl diffeomorphism Φ : WU → WU ′ , there exists a contact Weyl

diffeomorphism Ψ : gU → g
U

′ such that the restriction Ψ|WU is equal to
Φ.

ii) For contact Weyl diffeomorphisms Ψ,Ψ′ : gU → g
U

′ having the same
restriction Ψ|WU = Ψ′|WU there exists uniquely a central element c =
c0 + c1ν

2 + · · ·+ ckν
2k + · · · such that Ψ′ = Ψexp

(
ad( 1ν c)

)
.

Especially, a contact Weyl diffeomorphism which induces an identity Weyl
diffeomorphism is uniquely written as Ψ = exp

(
ad( 1ν c)

)
, c ∈ C[[ν2]].

Using contact Weyl diffeomorphisms to control central elements, and we can glue
a system of trivial contact Lie algebra bundles {gUα}α∈Λ by contact Weyl diffeo-
morphisms and we obtain (see [5], [7])

Theorem 2. For any symplectic manifold, there exists a contact Lie algebra bundle
gM . Restricting the fiber g to the Weyl algebra W , we obtain a Weyl manifold WM .

4. Deformation Quantization

Using a Weyl diffeomorphism we can obtain a deformation quantization of the
symplectic manifold in the following way.
By a transition functions, that is gluing Weyl diffeomorphisms, the local Weyl
functions are also glued together to give a global Weyl functions. We denote this
algebra by (F(WM ), ∗̂) called a space of Weyl functions on M .

Theorem 3. We have a C[[ν]]-linear map σ : C∞(M)[[ν]]→ F(WM ).

By means of this linear isomorphism we can define an associative product on
C∞(M)[[ν]] by

f ∗ g = σ−1(σ(f)∗̂σ(g)).
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By expanding this product in the power of ν we see that the product ∗ is a defor-
mation quantization of (M,ω).
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