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Abstract. The work is concerned with a special family of axially symmetric
surfaces providing local extrema to the so-called Willmore functional, which
assigns to each surface its total squared mean curvature. The components of
the position vector of the profile curves of the regarded Willmore surfaces
satisfy a system of first-order ordinary differential equations. The solutions
of this system are expressed by quadratures in terms of the tangent angle and,
in this way, the corresponding Willmore surfaces are determined.
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1. Introduction

The functional
W =

∫
S
H2dA (1)

which assigns to each surface S immersed in the three-dimensional Euclidean
space its total squared mean curvature H , dA being the induced surface element,
was proposed about two centuries ago by the prominent French scientists Siméon
Denis Poisson and Marie-Sophie Germain as the bending energy of thin elastic
shells [6, 9]. Nowadays, however, it is widely known as the Willmore functional
(energy) due to the work [16] published in 1965 by the English geometer Thomas
James Willmore (see also [17]).
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The aforementioned note of T. J. Willmore attracted the interest of mathematicians
to study the surfaces that provide local extrema to the functional (1) currently called
“Willmore surfaces“. These surfaces are determined by the solutions of the Euler-
Lagrange equation corresponding to the Willmore functional, namely

∆H + 2(H2 −K)H = 0 (2)

where ∆ is the Laplace-Beltrami operator on the surface S and K is its Gaussian
curvature.
In the past four decades, the Willmore surfaces were studied by many authors both
from purely mathematical point of view (see, e.g. [1,7,10] and references therein)
and in the context of applications, for instance, in structural mechanics, biophysics
and mathematical biology (see, e.g. [2, 7, 8, 11, 12]).
In this paper, which can be thought of as a continuation of our works [14, 15],
we consider a special family of axially symmetric Willmore surfaces determined
through a system of two first-order ordinary differential equations and express by
quadratures the components of the position vector of the profile curves of the cor-
responding Willmore surfaces of revolution.

2. Axially Symmetric Willmore Surfaces

2.1. Axially Symmetric Surfaces

Denote by X,Y, Z the axes of a right-handed rectangular Cartesian coordinate
system {x, y, z} in R3. Consider an axially symmetric surface S in R3 obtained
by revolving around the OZ-axis a plane curve Γ laying in the XOZ-plane. Then,
without loss of generality, the components x, y, z of the position vector x of such
a surface S can be given in the form

x(t, θ) =

 x(t, θ)
y(t, θ)
z(t, θ)

 =

 r(t) cos θ
r(t) sin θ
h(t)

 , θ ∈ [0, 2π], t ∈ Ω ⊆ R (3)

where the functions r(t) and h(t) are supposed to have as many derivatives as may
be required on the domain Ω. Let us remark that t is an arbitrary parameter along
the curve Γ, i.e., the contour of the surface S at θ = 0. In this notations, the first
and second fundamental tensors of the surface S read

gαβ =

(
r2t + h2t 0

0 r2

)
, bαβ =

1√
r2t + h2t

(
rthtt − htrtt 0

0 rht

)
(4)

respectively, and

g = det(gαβ) = r2
(
r2t + h2t

)
, dA =

√
gdθdt = r

√
r2t + h2tdθdt. (5)
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Here and in what follows, the sub-indexes indicate derivatives with respect to the
respective variable.
Consequently, the mean and Gaussian curvatures of the regarded surface read

H =
1

2

r (rthtt − htrtt) + ht
(
r2t + h2t

)
r
(
r2t + h2t

)3/2 (6)

K =
zt (rthtt − htrtt)

r
(
r2t + h2t

)2 · (7)

2.2. Willmore Energy of Axially Symmetric Surfaces

On account of equations (5) and (6), the Willmore energy (1) of an axially sym-
metric surface S takes the form

W =

∫
Ω
Ldt (8)

where

L = 2π

[
r (rthtt − htrtt) + ht

(
r2t + h2t

)
2r

(
r2t + h2t

)3/2
]2

r
√

r2t + h2t . (9)

2.3. Euler-Lagrange Equations

The application of the Euler operators

Er =
∂

∂ r
−Dt

∂

∂ rt
+DtDt

∂

∂ rtt
− · · ·

Eh =
∂

∂ h
−Dt

∂

∂ ht
+DtDt

∂

∂ htt
− · · ·

where

Dt =
∂

∂ t
+ rt

∂

∂ r
+ ht

∂

∂ h
+ rtt

∂

∂ rt
+ htt

∂

∂ ht
+ · · ·

is the total differentiation operator, on the Lagrangian density L of the functional
(8) leads to the Euler-Lagrange equations ErL = 0 and EhL = 0. However, it
turned out that rtErL ≡ −htEhL and hence we have a single equation determin-
ing the extremals of the Willmore energy (8), say

ErL = 0 (10)

instead of a system of two Euler-Lagrange equations for two dependent variables
r(t) and h(t) as expected. In other words, we have obtained an underdetermined
system and to complete it we may add another equation of our own choice to
equation (10). Three such cases are considered below.
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First, assume
r2t + h2t = 1. (11)

This means that t is the arc length s along the contour curve Γ. Then, in terms of
the tangent angle φ we have

ṙ = cosφ, ḣ = sinφ (12)

and can rewrite equation ErL = 0 in the form

...
φ = −2 cosφ

r
φ̈− 1

2
φ̇3+

3 sinφ

2r
φ̇2+

2− 3 sin2 φ

2r2
φ̇−

(
cos2 φ+ 1

)
sinφ

2r3
(13)

where the dots indicate derivatives with respect to the arc length s. At the same
time, the expressions (6) and (7) for the mean and Gaussian curvatures take the
familiar form

H =
1

2

(
φ̇+

sinφ

r

)
, K = φ̇

sinφ

r
· (14)

Next, assume t = h and denote r = u(h). Then, equation (10) becomes

2u3
(
u2h + 1

)2
uhhhh

+4u2uh
(
u2h + 1

) (
u2h + 1− 5uuhh

)
uhhh

(15)
+5u3

(
6u2h − 1

)
u3hh − 3u2

(
u2h + 1

) (
4u2h − 1

)
u2hh

−u
(
u2h + 1

)2 (
2u2h − 1

)
uhh −

(
u2h + 1

)3 (
2u2h + 1

)
= 0.

It should be remarked that a variety of boundary value problems for Willmore
surfaces of revolution have been studied recently on the ground of equation (15),
see e.g. [3–5, 11, 12] and references therein.
Finally, assume t = r and denote h = w(r). In this case, equation (10) takes the
form

2r3
(
w2
r + 1

)2
wrrrr

+4r2(w2
r + 1)(w2

r + 1− 5rwrwrr)wrrr
(16)

+5r3(6w2
r − 1)w3

rr − 15r2wr(w
2
r + 1)w2

rr

+r(w2
r + 1)(w2

r − 2)wrr + wr(w
2
r + 1)3(w2

r + 2) = 0

and the mean and Gaussian curvatures read

H =
1

2r

rwrr + w3
r + wr

(1 + w2
r)

3/2
, K =

1

r

wrrwr

(1 + w2
r)

2 · (17)

Note that the mappings

w → −w, w → w + ω, w → wη, r → rη, ω, η ∈ R (18)
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transform one solution of equation (16) into another, i.e. one axisymmetric Will-
more surface determined in this way into another one obtained from it by reflection
about the XOY -plane or scaling of the respective position vector.

3. A Particular Family of Willmore Surfaces of Revolution

3.1. Determining Equations

It was established in [13] that each solution of the following normal system of two
ordinary differential equations

dw

dr
= v,

dv

dr
=

1

r

(
v2 + 1

)√
v2 + 2α

√
v2 + 1, α ∈ R (19)

satisfies equation (16) and hence determines a Willmore surface of revolution. In-
deed, taking into account that the above system is equivalent to the single second-
order equation

d2w

dr2
=

1

r

[(
dw

dr

)2

+ 1

]√√√√(
dw

dr

)2

+ 2α

√(
dw

dr

)2

+ 1 (20)

and substituting the expressions for the derivatives wrr, wrrr and wrrrr obtained
from equation (20) into the left-hand side of equation (16) one can verify that it
equals zero.
Substituting equations (19) into equations (17) one obtains the following expres-
sions for the mean and Gaussian curvatures of a surface belonging to the regarded
family of axially symmetric Willmore surfaces

H =
v +

√
v2 + 2α

√
v2 + 1

2r
√
v2 + 1

, K =
v
√

v2 + 2α
√
v2 + 1

r2 (v2 + 1)
(21)

where v = v(r) should satisfy the second equation of system (19).

3.2. Parametrization by Quadratures

Evidently, system (19) can be cast in the form
dr

dv
=

r

(v2 + 1)
√

v2 + 2α
√
v2 + 1

dw

dv
=

vr

(v2 + 1)
√

v2 + 2α
√
v2 + 1

(22)

in which v plays the role of the independent variable while r and w are regarded
as dependent variables. It is straightforward to present the solutions of system (22)
by quadratures, namely



374 V. Vassilev, P. Djondjorov, M. Hadzhilazova and I. Mladenov

r(v) = c1 exp [ρ(v)]
(23)

w(v) = c1

∫
exp [ρ(v)] v dv

(v2 + 1)
√

v2 + 2α
√
v2 + 1

+ c2

where c1 and c2 are arbitrary real numbers and

ρ(v) =

∫
dv

(v2 + 1)
√
v2 + 2α

√
v2 + 1

· (24)

Thus, the axially symmetric Willmore surfaces belonging to the considered family
are parametrized analytically in terms of the parameter v, which is nothing but the
tangent of the slope angle.
It can be proved that each solution of system (22) is real-valued and bounded pro-
vided that v ∈ (−∞,∞) if α > 0 and v ∈ (−∞,−ε) or v ∈ (ε,+∞), where
ε =

√
2α2 + 2

√
α2 + α4, if α < 0. In the case α = 0 one obtains only spheres

and catenoids, see [13, p. 259].

4. Numerical Results

In this study, the integrals on the right-hand sides in formulas (23) and (24) are
computed numerically. The expression (24) can be written in the form

ρ(v) =

∫ b

a

dτ

(τ2 + 1)
√

τ2 + 2α
√
τ2 + 1

(25)

where a and b (a ≤ b) are chosen appropriately for each case considered here
and the integral is computed by the routine NIntegrate in Mathematicar. The
second expression in (23) is written in the form

w(v) =

∫ b

a

τ r(τ) dτ

(τ2 + 1)
√

τ2 + 2α
√
τ2 + 1

(26)

and in order to avoid nested NIntegrate routines, this integral is computed
in the following manner: the interval [a, b] is divided in n subintervals of equal
length ∆τ = (b−a)/n and the expression (26) is computed numerically using the
midpoint approximation, namely

w(v) =

n∑
τ=1

∆τ
τ̃ r(τ̃)

(τ̃2 + 1)
√

τ̃2 + 2α
√
τ̃2 + 1

, τ̃ = τ +
∆τ

2
(27)

where for each τ̃ , r(τ̃) = eρ(τ̃) is computed using NIntegrate as is mentioned
above.
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Figure 1. Parametric plots of two distinct shapes, provided by the ex-
pressions (25), (26) for α = 1: the curve to the left corresponds to
v ∈ (−∞, 0], and the curve to the right – to v ∈ [0,∞).

a) b) c)

Figure 2. Parametric plots of a fragment of a nodoid-like profile a),
and samples of the corresponding profile curve b), and surface c) for
α = 1.

In the case α > 0, the root in the right-hand side of the second equation (19) is real
for −∞ < v < ∞ and formulas (25), (26) imply

r(0) = 1, w(0) = 0. (28)

In fact, the expressions (25), (26) comprise two distinct fragments in (r, w)-plane,
corresponding to positive or negative values of v, respectively. The boundaries of
the integrals (25), (26) are chosen to be a = 0, b = v for the positive values of v
and a = v, b = 0 for the negative ones. A particular example of such fragments is
shown in Fig. 1.
Using appropriate transformations of form (18) of these two fragments, one can
construct a variety of profile curves that are smooth solutions to system (19).
Indeed, using the reflection w → −w and translation one obtains the fragment
shown in Fig.2a). Reflecting and translating appropriately this fragment one gets
the profile curve (see Fig.2b)), which gives rise to the nodoid-like surface shown
in Fig.2c).
In the case α < 0 the formulas (28) do not hold any more; see the note at the end
of subsection 3.2. In this case, expressions (25), (26) give rise to another couple
of curves in (r, w)-plane, one of which is obtained for negative values of v and
the boundaries of the integrals (25), (26) are a = v, b = ε, whereas the other one
is obtained for positive values of v and a = ε, b = v. A particular example of
such fragments is shown in Fig.3. As in the previous case, transforming these two
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Figure 3. Parametric plots of the two shapes, provided by expressions
(25), (26) for α = −0.5325: the curve to the left corresponds to v ∈
(−∞,−ϵ), and the curve to the right – to v ∈ (ϵ,∞).

a) b) c)

Figure 4. Parametric plots of a fragment of a unduloid-like profil a),
and samples of the corresponding profile curve b), and surface c) for
α = −1.

curves by means of the mappings (18) one can plot a fragment of a profile curve,
which corresponds to the unduloid-like surface shown in Fig.4.
Finally, it is possible co combine profile curves corresponding to various values of
α in order to obtain a smooth axially symmetric Willmore surface, provided that
the curvatures at the contact points are continuous. Indeed, the two fragments in
Fig.1 can be combined into the profile, shown in Fig.5a). Combining it with the
fragment shown in Fig.4a) one obtains the smooth profile curve Fig.5b), giving
raise to the surface depicted in Fig.5c).

a) b) c)

Figure 5. Parametric plots of: a) a fragment of a nodoid-like profile,
b) a combination of the curve in Fig.4a) and this fragment, c) the cor-
responding surface.

5. Concluding Remarks

This work studies the Willmore surfaces in revolution. It is established that the
system of Euler-Lagrange equations associated with the corresponding variational
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problem (8), (9) is underdetermined. Three types of well-known ordinary differ-
ential equations (12) - (13), (15) and (16) describing such surfaces are shown to
come out of this variational formulation.
Then, a special family of axially symmetric Willmore surfaces are studied – those
determined by the system of two first-order ordinary differential equations (19).
A closed form solution by quadratures of form (23) to equations (19) is derived
using a parametrization of form r(v), w(v), where (r, w) is the position vector and
v is the tangent of the slope angle of the respective profile curve. This solution
gives rise to three sorts of Willmore surfaces of revolution, namely nodoid-like,
unduloid-like and the one presented in Figs. 2, 4 and 5, respectively.
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