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1. Introduction

Minimal surfaces in three-dimensional Euclidean space R3 isometric to rotational
surfaces were first introduced by Bour [2] in 1862. All such minimal surfaces
are given via the well-known Weierstrass representation for minimal surfaces by
choosing suitable data depending on a parameter m, as shown by Schwarz [15].
They are called Bour’s minimal surfaces Bm of value m. Furthermore, when m
is an integer greater than one, Bm become algebraic, that is, there is an implicit
polynomial equation satisfied by the three coordinates of Bm, see also [5, 13, 18].
Kobayashi [9] gave an analogous Weierstrass-type representation for conformal
spacelike surfaces with mean curvature identically zero, called maximal surfaces,
in three-dimensional Minkowski space R2,1. We remark that Magid [12] gave a
Weierstrass-type representation for timelike surfaces with mean curvature identi-
cally zero, called timelike minimal surfaces, in R2,1, see also [8].
On the other hand, Lawson [10] showed that there is an isometric correspondence
between constant mean curvature (CMC for short) surfaces in Riemannian space
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forms, and Palmer [14] showed that there is an analogous correspondence be-
tween spacelike CMC surfaces in Lorentzian space forms. In particular, mini-
mal surfaces in R3 correspond to CMC 1 surfaces in three-dimensional hyperbolic
space H3, and maximal surfaces in R2,1 correspond to CMC 1 surfaces in three-
dimensional de Sitter space S2,1. Thus it is natural to expect existence of corre-
sponding Weierstrass-type representations in these cases. Bryant [3] gave such a
representation formula for CMC 1 surfaces in H3, and Umehara, Yamada [16] ap-
plied it. Similarly, Aiyama and Akutagawa [1] gave a representation formula for
CMC 1 surfaces in S2,1. However, analogues of Bour’s surfaces in other three-
dimensional space forms had not yet been studied.
In Sections 2 and 3 of this paper, in order to show that several maximal and time-
like minimal Bour’s surfaces of value m are algebraic, we review Weierstrass-type
representations for maximal surfaces and timelike minimal surfaces in R2,1, and
give explicit parametrizations for spacelike and timelike minimal Bour’s surfaces
of value m. In Section 4, we introduce Bour type CMC 1 surfaces in H3 and S2,1,
and show several properties of those surfaces. Finally, in Section, 5 we calculate
the degrees, classes and implicit equations of the maximal and timelike minimal
Bour’s surfaces of values 2, 3, 4 in R2,1 in terms of their coordinates. We remark
that in the cases of H3 and S2,1, all surfaces are algebraic in some sense, because
the Lorentz (R3,1) norm of all elements in H3 ⊂ R3,1 or S2,1 ⊂ R3,1 is constant.
However, we have the following three remaining problems:
Problem.

• What is the class of maximal and timelike minimal Bour’s surfaces of gen-
eral value m in R2,1?

• Are there any other implicit equations for CMC 1 Bour type surfaces?
If there exist implicit equations, what are the corresponding degrees and
classes?

2. Spacelike Maximal Bour Type Surfaces in R2,1

Let Rn,1 :=
(
{x = (x1, · · · , xn, x0)t ; xi ∈ R}, ⟨·, ·⟩

)
be the (n+ 1)-dimensional

Lorentz-Minkowski (for short, Minkowski) space with Lorentz metric ⟨x, y⟩ =
x1y1 + · · · + xnyn − x0y0. Then the three-dimensional hyperbolic space H3 and
three-dimensional de Sitter space S2,1 are defined as follows

H3 := {x ∈ R3,1 ; ⟨x, x⟩ = −1, x0 > 0} ∼=
{
FF̄ t ; F ∈ SL(2,C)

}
S2,1 := {x ∈ R3,1 ; ⟨x, x⟩ = 1} ∼=

{
F

(
1 0
0 −1

)
F̄ t ; F ∈ SL(2,C)

}
.
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A vector x ∈ Rn,1 is called spacelike if ⟨x, x⟩ > 0, timelike if ⟨x, x⟩ < 0, and
lightlike if x ̸= 0 and ⟨x, x⟩ = 0. A surface in Rn,1 is called spacelike (respectively
timelike, lightlike) if the induced metric on the tangent planes is a positive definite
Riemannian (respectively Lorentzian, degenerate) metric.
Kobayashi [9] has found a Weierstrass-type representation for spacelike conformal
maximal surfaces in R2,1.

Theorem 1. Let g be a meromorphic function and let ω be a holomorphic function
defined on a simply connected open subset U ⊂ C such that ω does not vanish on
U . Then

f(z) = Re

∫  (1 + g2
)
ω

i
(
1− g2

)
ω

2gω

dz

is a spacelike conformal immersion with mean curvature identically 0 (i.e., space-
like conformal maximal surface). Conversely, any spacelike conformal maximal
surface can be described in this manner.

Remark 2. A pair of a meromorphic function g and a holomorphic function ω
(g, ω) is called Weierstrass data for a maximal surface. In Section 4 we also call
(g, ω) the Weierstrass data for CMC 1 surfaces in H3 and S2,1.

We call maximal surfaces Bm (m ∈ Z≥2 := {n ∈ Z ; n ≥ 2}) given by (g, ω) =
(z, zm−2) the spacelike Bour’s maximal surfaces Bm of value m (spacelike Bm,
for short). Several properties of spacelike Bm can be found in the first author’s
paper [6]. The parametrization of spacelike Bm is

Bm(u, v)

(1)

= Re

 1
m−1

∑m−1
k=0

(
m−1
k

)
um−1−k (iv)k + 1

m+1

∑m+1
k=0

(
m+1
k

)
um+1−k (iv)k

i
m−1

∑m−1
k=0

(
m−1
k

)
um−1−k (iv)k − i

m+1

∑m+1
k=0

(
m+1
k

)
um+1−k (iv)k

2
m

∑m
k=0

(
m
k

)
um−k (iv)k


with a Gauss map n =

(
2u

u2 + v2 − 1
,

2v

u2 + v2 − 1
,
u2 + v2 + 1

u2 + v2 − 1

)
, where z =

u+ iv. The left two pictures in Figure 1 are two examples of spacelike Bm.

3. Timelike Minimal Bour Type Surfaces in R2,1

Next, we give the Weierstrass-type representation for timelike minimal surfaces in
R2,1, which was obtained by Magid [12] (see also [8]).
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Figure 1. Left two pictures: spacelike B3 and B6 in R2,1. Right two
pictures: timelike B3 and B6 in R2,1.

Theorem 3. Let g1(u), ω1(u) (respectively g2(v), ω2(v)) be smooth functions de-
pending on only u (respectively v) on a connected orientable 2-manifold with local
coordinates u, v. Then

f̂(u, v) =

∫  2g1ω1(
1− g21

)
ω1

−
(
1 + g21

)
ω1

 du+

∫  2g2ω2(
1− g22

)
ω2(

1 + g22
)
ω2

dv

is a timelike surface with mean curvature identically 0 (i.e., timelike minimal sur-
face). Conversely, any timelike minimal surface can be described in this manner.

The timelike minimal surfaces given by (g1(u), ω1(u)) =
(
u, um−2

)
, (g2(v), ω2(v))

=
(
v, vm−2

)
are called timelike Bour surfaces Bm of value m (timelike Bm, for

short) in R2,1, where m ∈ Z≥2. The parametrization of timelike Bm is

Bm(u, v) =


2
m (um + vm)

1
m−1

(
um−1 + vm−1

)
− 1

m+1

(
um+1 + vm+1

)
− 1

m−1

(
um−1 − vm−1

)
− 1

m+1

(
um+1 − vm+1

)
 (2)

with Gauss map n =

(
uv − 1

1 + uv
,
u+ v

1 + uv
,
u− v

1 + uv

)
.

The right two pictures in Figure 1 are two examples of timelike Bm.

4. CMC 1 Bour Type Surfaces in H3 and S2,1

In this section we consider CMC 1 surfaces in H3 and S2,1. Here we identify
elements in H3 and S2,1 with SL2C matrix forms as in Section 2. In this setting
Bryant [3] showed the following representation formula for CMC 1 surfaces in H3,
and Aiyama and Akutagawa [1] showed the following Bryant-type representation
formula for CMC 1 surfaces in S2,1.
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Figure 2. Left two pictures: B3 cousins in H3. Right two pictures:
their dual cousins in H3 (in the Poincaré ball model for H3).

Theorem 4. Let F ∈ SL(2,C) be a solution of the equation

dF

dz
= F

(
g −g2

1 −g

)
ω, F |z=z0 ∈ SL(2,C) (3)

for some z0 in a given domain, where (g, ω) is Weierstrass data. Then the sur-

face f = FF̄ t (respectively f = F

(
1 0
0 −1

)
F̄ t) is a conformal CMC 1 immer-

sion into H3 (respectively S2,1). Conversely, any conformal CMC 1 immersion in
H3 (respectively S2,1) can be described in this way.

We call CMC 1 surfaces in H3 and S2,1 given by the Weierstrass data (g, ω) =
(z, zm−2) the Bour type CMC 1 cousins Bm of value m (Bm cousin, for short).
We now describe F explicitly

Theorem 5. Let F (z) =

(
a(z) b(z)
c(z) d(z)

)
∈ SL(2,C) be a solution of equation (3)

with (g, ω) = (z, zm−2dz) and with initial condition F (0) = Id. Then

a(z) =m
1
mΓ

(
m+ 1

m

)
z

m−1
2 Bessel I

(
−m− 1

m
,
2

m
z

m
2

)
b(z) =−m

1
mΓ

(
m+ 1

m

)
z

m+1
2 Bessel I

(
m+ 1

m
,
2

m
z

m
2

)
c(z) =m

−1
m Γ

(
m− 1

m

)
z

m−1
2 Bessel I

(
m− 1

m
,
2

m
z

m
2

)
d(z) =−m

−1
m Γ

(
m− 1

m

)
z

m+1
2 Bessel I

(
−m+ 1

m
,
2

m
z

m
2

)
(4)

where Γ denotes the Gamma function and Bessel I represents the modified Bessel
function. The definition of Bessel I can be found in standard textbooks, for exam-
ple, see [7].
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Figure 3. Left two pictures: B6 cousins in H3. Right two pictures:
their dual cousins in H3.

Proof: Equation (3) gives

X ′′ − ω′

ω
X ′ − g′ωX = 0, X = a(z), c(z) (5)

Y ′′ − (g2ω)′

g2ω
Y ′ − g′ωY = 0, Y = b(z), d(z) (6)

which are given in [16]. Here we solve equation (5). Inserting (g, ω) = (z, zm−2)
into equation (5), we have

X ′′ − m− 2

z
X ′ − zm−2X = 0, m ∈ Z≥2. (7)

We give two independent power series solutions of the differential equation (7) by
the Frobenius method. The indicial equation at z = 0 is ρ(ρ− 1)− (m− 2)ρ = 0.
So we see that the characteristic exponents of the equation (7) are 0 and m − 1.
Then we have a solution of the form

zm−1
∞∑
p=0

apz
p

where the coefficients ap are inductively given by

amk+l = 0, l = 0, · · · ,m

amk+m+1 =
am(k−1)+m−1

(m− 2)k(mk +m− 1)

=
Γ (m−1

m + k)

m2Γ (m−1
m + k + 1)

am(k−1)+m−1, l ≥ m+ 1.

Therefore we obtain a solution of the differential equation (7)

z
m−1

2

∞∑
k=0

(−1)k

k!Γ (m−1
m + k + 1)

(
z

m
2

m

)2k+m−1
m

= z
m−1

2 Bessel I

(
m− 1

m
,
2

m
z

m
2

)
.
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Similarly, we obtain another independent solution as

z
m−1

2

∞∑
k=0

(−1)k

k!Γ (1−m
m + k + 1)

(
z

m
2

m

)2k−m−1
m

= z
m−1

2 Bessel I

(
1−m

m
,
2

m
z

m
2

)
.

So we have two independent solutions of equation (5). Next, we find two indepen-
dent solutions of equation (6). Inserting (g, ω) = (z, zm−2) into equation (6), we
have

Y ′′ − m

z
Y ′ − zm−2Y = 0, m ∈ Z≥2.

Similarly to the way we solved equation (5), we have two independent solutions

z
m+1

2 Bessel I

(
m+ 1

m
,
2

m
z

m
2

)
, z

m+1
2 Bessel I

(
−m+ 1

m
,
2

m
z

m
2

)
.

Using the initial conditions, we have the solution F as in equations (4). �
Remark 6. If F is a solution of equation (3), the surface

f ♯ = (F−1)(F−1)
t
(

respectively f ♯ = (F−1)

(
1 0
0 −1

)
(F−1)

t
)

is also a CMC 1 surface in H3 (respectively S2,1). This was proven in [17] (respec-
tively [11]). The surface f ♯ is called the CMC 1 dual of f .

Using the explicit parametrization of the Bm cousin, we can easily show the
following corollary, which implies the rotational symmetric property of the Bm

cousins in H3 and S2,1.

Corollary 7. Let F (z) ∈ SL2C be the form as in Theorem 5 with complex coordi-
nate z. Then

F (ei
2π
m · z) =

(
a(z) ei

2π
m · b(z)

e−i 2π
m · c(z) d(z)

)
.

Writing Bm cousin in H3 or S2,1 as f(z) = (x1(z), x2(z), x3(z), x0(z))
t, given by

Theorem 5, and setting f
(
ei

2π
m · z

)
= (x̂1(z), x̂2(z), x̂3(z), x̂0(z))

t. By Corollary
7, we have

x̂1(z) = cos

(
2π

m

)
x1(z)− sin

(
2π

m

)
x2(z)

x̂2(z) = sin

(
2π

m

)
x1(z) + cos

(
2π

m

)
x2(z)

x̂3(z) = x3(z), x̂0(z) = x0(z)

that is, by rotating z by angle 2π
m , the first and second coordinates are also rotated

by the same angle. So like in R3 and R2,1, Bm has symmetry with respect to
rotation by angle 2π

m . Its dual (Bm)♯ also has the same symmetry.
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Figure 4. Left two pictures: B3 cousins in S2,1. Right two pictures:
their dual cousins in S2,1.

Figure 5. Left two pictures: B6 cousins in S2,1. Right two pictures:
their dual cousins in S2,1.

In order to see CMC 1 surfaces in H3, we use a stereographic projection. Consider
the map

H3 −→ B3

∈ ∈

(x1, x2, x3, x0)
t 7−→

(
x1

1 + x0
,

x2
1 + x0

,
x3

1 + x0

)t

where B3 denotes the 3-dimensional unit ball. This is the Poincaré ball model for
H3. The pictures in Fig. 2 and Fig. 3 are two examples of Bm cousins projected
into B3.
In order to show graphics of CMC 1 surfaces in S2,1, the hollow ball model is used,
see [4] for example. Consider the map

S2,1 −→ B3
(−π,π)

∈ ∈

(x1, x2, x3, x0)
t 7−→

(
earctan(x0) · x1√

1 + x20
,
earctan(x0) · x2√

1 + x20
,
earctan(x0) · x3√

1 + x20

)t

where B3
(−π,π) := {(y1, y2, y3)t ∈ R3 ; e−π < y21 + y22 + y23 < eπ}. Fig. 4 and

Fig. 5 show two examples of Bm projected into B3
(−π,π).
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5. Degree and Class of Bour Type Surfaces in R2,1

For R2,1, the set of roots of a polynomial Q(x, y, z) = 0 gives an algebraic surface.
An algebraic surface f is said to be of degree (or order) n when n = deg(f).

The tangent plane at a point (u, v) on a surface f (u, v) = (x(u, v), y(u, v), z(u, v))
is given by

Xx+ Y y − Zz + P = 0 (8)

where the Gauss map is n = (X(u, v), Y (u, v), Z(u, v)) and P = P (u, v). We
have inhomogeneous tangential coordinates a = X/P, b = Y/P, and c = Z/P.

When we can obtain an implicit equation Q̂(a, b, c) = 0 of f (u, v) in tangential
coordinates, the maximum degree of the equation gives the class of f (u, v) .

Next, using Groebner and other polynomial elimination methods (in Maple soft-
ware), we calculate the implicit equations, degrees and classes of spacelike and
timelike B2, B3 and B4.

5.1. Degree and Class of Spacelike B2, B3, B4 in R2,1

From (2), the parametrization of B2 (maximal Enneper surface) is

B2 (u, v) =

1
3u

3 − uv2 + u
u2v − 1

3v
3 − v

u2 − v2

 =

x(u, v)
y(u, v)
z(u, v)


where u, v ∈ R. In this section, Qm(x, y, z) = 0 denotes the irreducible implicit
equation that spacelike or timelike Bm will satisfy. Then

Q2(x, y, z) = −64z9 + 432x2z6 − 432y2z6 + 1215x4z3 + 6318x2y2z3

−3888x2z5 + 1215y4z3 − 3888y2z5 + 1152z7 + 729x6 − 2187x4y2

−4374x4z2 + 2187x2y4 + 6480x2z4 − 729y6 + 4374y4z2 − 6480y2z4

−729x4z + 1458x2y2z + 3888x2z3 − 729y4z + 3888y2z3 − 5184z5

and its degree is deg(B2) = 9. Therefore, B2 is an algebraic maximal surface. To

find the class of the surface B2, we obtain P2(u, v) =
(u2 + v2 − 3)(u− v)(u+ v)

3(u2 + v2 − 1)
,

where Pm(u, v) denotes the function as in equation (8) for spacelike or time-

like Bm. The inhomogeneous tangential coordinates are a =
6u

α(u, v)
, b =

6v

α(u, v)
, c =

6(u2 + v2 + 1)

α(u, v)
, where α(u, v) = (u2 + v2 − 3)(u− v)(u+ v). In
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a, b, c coordinates B2 is given by

Q̂2(a, b, c) = 4a6 + 9a4 + 9b4 + 6a2b2c2 + 12b2c3 − 3b4c2 − 18b4c

−4a4b2 + 18a4c− 12a2c3 − 4a2b4 − 3a4c2 + 18a2b2 − 4a2b4 + 4b6

and in general Q̂m(a, b, c) = 0 denotes the irreducible implicit equation for space-
like or timelike Bm in terms of tangential coordinates. Therefore, the class of the
spacelike B2 is cl(B2) = 6. Similarly

B3 (u, v) =

u4

4 + v4

4 − 3
2u

2v2 + u2

2 − v2

2
u3v − uv3 − uv

2
3u

3 − 2uv2

 =

x(u, v)
y(u, v)
z(u, v)


B4 (u, v) =

 1
3u

3 − uv2 + 1
5u

5 − 2u3v2 + uv4

−u2v + 1
3v

3 + u4v − 2u2v3 + 1
5v

5

1
2u

4 − 3u2v2 + 1
2v

4

 =

x(u, v)
y(u, v)
z(u, v)


and

Q3(x, y, z) = −43046721z16 + 272097792x3z12 − 816293376xy2z12

+3009871872x6z8 + 14834368512x4y2z8 + (69 other lower order terms)

Q4(x, y, z) = −1514571848868138319872z25

+9244212944751820800000x4z20

−24192761655761718750000000x4y12z5

−55465277668510924800000x2y2z20

−3065257232666015625000000x12y6z2 + (233 other lower order terms)

and their degrees are deg(B3) = 16, deg(B4) = 25. Therefore, B3 and B4 are
algebraic spacelike maximal surfaces. Furthermore

P3(u, v) =
u(u2 + v2 − 2)(u2 − 3v2)

(u2 + v2 − 1)

P4(u, v) =
(3u2 + 3v2 − 5)(u2 − 2uv − v2)(u2 + 2uv − v2)

30(u2 + v2 − 1)

and the inhomogeneous tangential coordinates are

a =
12

β(u, v)
, b =

12v

uβ(u, v)
, c =

6(u2 + v2 + 1)

uβ(u, v)
, m = 3

a =
60u

γ(u, v)
, b =

60v

γ(u, v)
, c =

30(u2 + v2 + 1)

γ(u, v)
, m = 4

where β(u, v) = (u2+ v2− 2)(u2− 3v2), γ(u, v) = (3u2+3v2− 5)(u2− 2uv−
v2)(u2 + 2uv − v2). Then
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Q̂3(a, b, c) = 9a8 + 72a6b2 − 8a6c2 + 144a4b4 − 168a4b2c2

−96a2b4c2 + 96a2b2c4 + 64b6c2 − 48b4c4 − 72a7

−288a5b2 + 288a5c2 + 288a3b2c2 − 192a3c4 + 144a6

Q̂4(a, b, c) = −16a10 − 8640a2b2c5 − 9000a4b4c− 3600a2b6c

+12000a2b4c3 + 570a4b4c2 − 180a2b6c2 + 15b8c2 − 900b8 + 1440a4c5

+1440b4c5 − 5400a4b4 − 3600a2b6 + 900b8c− 2400b6c3 − 416a6b4

−416a4b6 + 176a2b8 − 16b10 + 12000a4b2c3 − 3600a6b2c− 180a6b2c2

−3600a6b2 + 176a8b2 − 2400a6c3 + 900a8c+ 15a8c2 − 900a8.

Therefore, cl(B3) = 8 and cl(B4) = 10.

5.2. Degree and Class of Timelike B2, B3, B4 in R2,1

From (2), the parametrization of B2 (timelike Enneper surface) is

B2 (u, v) =

 u2 + v2

u+ v − 1
3

(
u3 + v3

)
−u+ v − 1

3

(
u3 − v3

)
 =

x(u, v)
y(u, v)
z(u, v)


where u, v ∈ R. Then

Q2(x, y, z) = −16z9 − 2916y4z + 4374x4y2 − 6318y2x2z3 + 4374x2y4

−15552y2z3 − 2916x4z − 5832x2y2z − 20736z5 + 1152z7 − 8748x4z2

+8748y4z2 + 3888y2z5 − 3888x2z5 + 15552x2z3 + 1215x4z3 + 1458x6

+216x2z6 + 1458y6 + 1215y4z3 + 216y2z6 + 12960y2z4 + 12960x2z4.

Its degree is deg(B2) = 9. Hence, B2 is an algebraic timelike minimal surface.

To find the class of surface B2 we obtain P2(u, v) =
(uv + 3)(u2 + v2)

3(uv + 1)
, and

the inhomogeneous tangential coordinates are a = −(uv − 1)(3uv + 3)

α̂(u, v)
, b =

−(u+ v)(3uv + 3)

α̂(u, v)
, c = −(u− v)(3uv + 3)

α̂(u, v)
, where α̂(u, v) = (uv + 1)(uv +

3)(u2 + v2). Then

Q̂2(a, b, c) = 16a6 + 9a4 + 36b4c+ 24a2c3 + 24b2c3 − 24a2b2c2

−12a4c2 − 16a2b4 − 12b4c2 − 36a4c+ 16a4b2 + 9b4 − 16b6 − 18a2b2.
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Hence, cl(B2) = 6. Similarly

B3 (u, v) =

 2
3

(
u3 + v3

)
1
2

(
u2 + v2

)
− 1

4

(
u4 + v4

)
−1

2

(
u2 − v2

)
− 1

4

(
u4 − v4

)
 =

x(u, v)
y(u, v)
z(u, v)



B4 (u, v) =

 1
2

(
u4 + v4

)
1
3

(
u3 + v3

)
− 1

5

(
u5 + v5

)
−1

3

(
u3 − v3

)
− 1

5

(
u5 − v5

)
 =

x(u, v)
y(u, v)
z(u, v)


and

Q3(x, y, z) = 43046721z16 − 1836660096z14

+5435817984x6z4 + 602404356096x4z8

+165112971264x2z8 + (69 other lower order terms)

Q4(x, y, z) = 311836912602146628334544598941564928z25

−3806602937037922709161921373798400000x4z20

−22839617622227536254971528242790400000x2y2z20

−3806602937037922709161921373798400000y4z20

−271833827901267673933071777792000000000x8z15

+(233 other lower order terms).

So deg(B3) = 16, deg(B4) = 25. In the tangential coordinates a, b, c

Q̂3(a, b, c) = 81a6b2 − 27a4b4 − 72a4b2c2 − 45a2b6 − 48a2b4c2 − 9b8

−8b6c2 − 108a6b+ 180a4b3 + 432a4bc2 − 36a2b5 − 288a2b3c2 − 288a2bc4

−36b7 − 144b5c2 − 96b3c4 + 36a6 − 108a4b2 + 108a2b4 − 36b6

Q̂4(a, b, c) = −16a10 + 16b10 − 450a8c+ 15b8c2 − 225b8 − 720a4c5

−1350a4b4 + 900a2b6 − 450b8c− 1200b6c3 − 416a6b4 + 416a4b6

+176a2b8 − 4320a2b2c5 + 4500a4b4c− 1800a2b6c− 6000a2b4c3

+570a4b4c2 + 180a2b6c2 + 6000a4b2c3 − 1800a6b2c+ 180a6b2c2

−225a8 − 720b4c5 + 900a6b2 − 176a8b2 + 1200a6c3 + 15a8c2.

Therefore, cl(B3) = 8, cl(B4) = 10.

Remark 8. It is clear that deg (x) = m, deg (y) = m + 1, deg (z) = m + 1 for
Bour’s algebraic maximal and timelike Bm.
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