BOUR SURFACE COMPANIONS IN SPACE FORMS

ERHAN GÜLER ${ }^{\dagger}$, SHOTARO KONNAI ${ }^{\ddagger}$ and MASASHI YASUMOTO ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Bartin University, Bartin 74100 Turkey
${ }^{\ddagger}$ Department of Mathematics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan

Abstract

In this paper, we give explicit parametrizations for Bour type surfaces in various three-dimensional space forms, using Weierstrass-type representations. We also determine classes and degrees of some Bour type zero mean curvature surfaces in three-dimensional Minkowski space.

MSC: 53A35, 53C42
Keywords: Bour type surface, class, constant mean curvature surface, degree, zero mean curvature surface

1. Introduction

Minimal surfaces in three-dimensional Euclidean space \mathbb{R}^{3} isometric to rotational surfaces were first introduced by Bour [2] in 1862. All such minimal surfaces are given via the well-known Weierstrass representation for minimal surfaces by choosing suitable data depending on a parameter m, as shown by Schwarz [15]. They are called Bour's minimal surfaces \mathfrak{B}_{m} of value m. Furthermore, when m is an integer greater than one, \mathfrak{B}_{m} become algebraic, that is, there is an implicit polynomial equation satisfied by the three coordinates of \mathfrak{B}_{m}, see also [5,13,18]. Kobayashi [9] gave an analogous Weierstrass-type representation for conformal spacelike surfaces with mean curvature identically zero, called maximal surfaces, in three-dimensional Minkowski space $\mathbb{R}^{2,1}$. We remark that Magid [12] gave a Weierstrass-type representation for timelike surfaces with mean curvature identically zero, called timelike minimal surfaces, in $\mathbb{R}^{2,1}$, see also [8].
On the other hand, Lawson [10] showed that there is an isometric correspondence between constant mean curvature (CMC for short) surfaces in Riemannian space
forms, and Palmer [14] showed that there is an analogous correspondence between spacelike CMC surfaces in Lorentzian space forms. In particular, minimal surfaces in \mathbb{R}^{3} correspond to CMC 1 surfaces in three-dimensional hyperbolic space \mathbb{H}^{3}, and maximal surfaces in $\mathbb{R}^{2,1}$ correspond to CMC 1 surfaces in threedimensional de Sitter space $\mathbb{S}^{2,1}$. Thus it is natural to expect existence of corresponding Weierstrass-type representations in these cases. Bryant [3] gave such a representation formula for CMC 1 surfaces in \mathbb{H}^{3}, and Umehara, Yamada [16] applied it. Similarly, Aiyama and Akutagawa [1] gave a representation formula for CMC 1 surfaces in $\mathbb{S}^{2,1}$. However, analogues of Bour's surfaces in other threedimensional space forms had not yet been studied.
In Sections 2 and 3 of this paper, in order to show that several maximal and timelike minimal Bour's surfaces of value m are algebraic, we review Weierstrass-type representations for maximal surfaces and timelike minimal surfaces in $\mathbb{R}^{2,1}$, and give explicit parametrizations for spacelike and timelike minimal Bour's surfaces of value m. In Section 4, we introduce Bour type CMC 1 surfaces in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$, and show several properties of those surfaces. Finally, in Section, 5 we calculate the degrees, classes and implicit equations of the maximal and timelike minimal Bour's surfaces of values 2, 3, 4 in $\mathbb{R}^{2,1}$ in terms of their coordinates. We remark that in the cases of \mathbb{H}^{3} and $\mathbb{S}^{2,1}$, all surfaces are algebraic in some sense, because the Lorentz $\left(\mathbb{R}^{3,1}\right)$ norm of all elements in $\mathbb{H}^{3} \subset \mathbb{R}^{3,1}$ or $\mathbb{S}^{2,1} \subset \mathbb{R}^{3,1}$ is constant. However, we have the following three remaining problems:
Problem.

- What is the class of maximal and timelike minimal Bour's surfaces of general value m in $\mathbb{R}^{2,1}$?
- Are there any other implicit equations for CMC 1 Bour type surfaces? If there exist implicit equations, what are the corresponding degrees and classes?

2. Spacelike Maximal Bour Type Surfaces in $\mathbb{R}^{2,1}$

Let $\mathbb{R}^{n, 1}:=\left(\left\{x=\left(x_{1}, \cdots, x_{n}, x_{0}\right)^{t} ; x_{i} \in \mathbb{R}\right\},\langle\cdot, \cdot\rangle\right)$ be the $(n+1)$-dimensional Lorentz-Minkowski (for short, Minkowski) space with Lorentz metric $\langle x, y\rangle=$ $x_{1} y_{1}+\cdots+x_{n} y_{n}-x_{0} y_{0}$. Then the three-dimensional hyperbolic space \mathbb{H}^{3} and three-dimensional de Sitter space $\mathbb{S}^{2,1}$ are defined as follows

$$
\begin{aligned}
& \mathbb{H}^{3}:=\left\{x \in \mathbb{R}^{3,1} ;\langle x, x\rangle=-1, x_{0}>0\right\} \cong\left\{F \bar{F}^{t} ; F \in \mathrm{SL}(2, \mathbb{C})\right\} \\
& \mathbb{S}^{2,1}:=\left\{x \in \mathbb{R}^{3,1} ;\langle x, x\rangle=1\right\} \cong\left\{F\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \bar{F}^{t} ; F \in \mathrm{SL}(2, \mathbb{C})\right\} .
\end{aligned}
$$

A vector $x \in \mathbb{R}^{n, 1}$ is called spacelike if $\langle x, x\rangle>0$, timelike if $\langle x, x\rangle<0$, and lightlike if $x \neq 0$ and $\langle x, x\rangle=0$. A surface in $\mathbb{R}^{n, 1}$ is called spacelike (respectively timelike, lightlike) if the induced metric on the tangent planes is a positive definite Riemannian (respectively Lorentzian, degenerate) metric.
Kobayashi [9] has found a Weierstrass-type representation for spacelike conformal maximal surfaces in $\mathbb{R}^{2,1}$.

Theorem 1. Let g be a meromorphic function and let ω be a holomorphic function defined on a simply connected open subset $\mathcal{U} \subset \mathbb{C}$ such that ω does not vanish on \mathcal{U}. Then

$$
f(z)=\operatorname{Re} \int\left(\begin{array}{c}
\left(1+g^{2}\right) \omega \\
\mathrm{i}\left(1-g^{2}\right) \omega \\
2 g \omega
\end{array}\right) \mathrm{d} z
$$

is a spacelike conformal immersion with mean curvature identically 0 (i.e., spacelike conformal maximal surface). Conversely, any spacelike conformal maximal surface can be described in this manner.

Remark 2. A pair of a meromorphic function g and a holomorphic function ω (g, ω) is called Weierstrass data for a maximal surface. In Section 4 we also call (g, ω) the Weierstrass data for CMC 1 surfaces in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$.

We call maximal surfaces $\mathfrak{B}_{m}\left(m \in \mathbb{Z}_{\geq 2}:=\{n \in \mathbb{Z} ; n \geq 2\}\right)$ given by $(g, \omega)=$ $\left(z, z^{m-2}\right)$ the spacelike Bour's maximal surfaces \mathfrak{B}_{m} of value m (spacelike \mathfrak{B}_{m}, for short). Several properties of spacelike \mathfrak{B}_{m} can be found in the first author's paper [6]. The parametrization of spacelike \mathfrak{B}_{m} is

$$
\begin{align*}
& \mathfrak{B}_{m}(u, v) \\
& =\operatorname{Re}\left(\begin{array}{c}
\frac{1}{m-1} \sum_{k=0}^{m-1}\binom{m-1}{k} u^{m-1-k}(\mathrm{i} v)^{k}+\frac{1}{m+1} \sum_{k=0}^{m+1}\binom{m+1}{k} u^{m+1-k}(\mathrm{i} v)^{k} \\
\frac{\mathrm{i}}{m-1} \sum_{k=0}^{m-1}\binom{m-1}{k} u^{m-1-k}(\mathrm{i} v)^{k}-\frac{\mathrm{i}}{m+1} \sum_{k=0}^{m+1}\binom{m+1}{k} u^{m+1-k}(\mathrm{i} v)^{k} \\
\frac{2}{m} \sum_{k=0}^{m}\binom{m}{k} u^{m-k}(\mathrm{i} v)^{k}
\end{array}\right. \tag{1}
\end{align*}
$$

with a Gauss map $n=\left(\frac{2 u}{u^{2}+v^{2}-1}, \frac{2 v}{u^{2}+v^{2}-1}, \frac{u^{2}+v^{2}+1}{u^{2}+v^{2}-1}\right)$, where $z=$ $u+\mathrm{i} v$. The left two pictures in Figure 1 are two examples of spacelike \mathfrak{B}_{m}.

3. Timelike Minimal Bour Type Surfaces in $\mathbb{R}^{2,1}$

Next, we give the Weierstrass-type representation for timelike minimal surfaces in $\mathbb{R}^{2,1}$, which was obtained by Magid [12] (see also [8]).

Figure 1. Left two pictures: spacelike \mathfrak{B}_{3} and \mathfrak{B}_{6} in $\mathbb{R}^{2,1}$. Right two pictures: timelike \mathfrak{B}_{3} and \mathfrak{B}_{6} in $\mathbb{R}^{2,1}$.

Theorem 3. Let $g_{1}(u), \omega_{1}(u)$ (respectively $\left.g_{2}(v), \omega_{2}(v)\right)$ be smooth functions depending on only u (respectively v) on a connected orientable 2-manifold with local coordinates u, v. Then

$$
\hat{f}(u, v)=\int\left(\begin{array}{c}
2 g_{1} \omega_{1} \\
\left(1-g_{1}^{2}\right) \omega_{1} \\
-\left(1+g_{1}^{2}\right) \omega_{1}
\end{array}\right) \mathrm{d} u+\int\left(\begin{array}{c}
2 g_{2} \omega_{2} \\
\left(1-g_{2}^{2}\right) \\
\left(1+\omega_{2}^{2}\right) \\
\omega_{2}
\end{array}\right) \mathrm{d} v
$$

is a timelike surface with mean curvature identically 0 (i.e., timelike minimal surface). Conversely, any timelike minimal surface can be described in this manner.

The timelike minimal surfaces given by $\left(g_{1}(u), \omega_{1}(u)\right)=\left(u, u^{m-2}\right),\left(g_{2}(v), \omega_{2}(v)\right)$ $=\left(v, v^{m-2}\right)$ are called timelike Bour surfaces \mathfrak{B}_{m} of value m (timelike \mathfrak{B}_{m}, for short) in $\mathbb{R}^{2,1}$, where $m \in \mathbb{Z}_{\geq 2}$. The parametrization of timelike \mathfrak{B}_{m} is

$$
\mathfrak{B}_{m}(u, v)=\left(\begin{array}{c}
\frac{2}{m}\left(u^{m}+v^{m}\right) \tag{2}\\
\frac{1}{m-1}\left(u^{m-1}+v^{m-1}\right)-\frac{1}{m+1}\left(u^{m+1}+v^{m+1}\right) \\
-\frac{1}{m-1}\left(u^{m-1}-v^{m-1}\right)-\frac{1}{m+1}\left(u^{m+1}-v^{m+1}\right)
\end{array}\right)
$$

with Gauss map $n=\left(\frac{u v-1}{1+u v}, \frac{u+v}{1+u v}, \frac{u-v}{1+u v}\right)$.
The right two pictures in Figure 1 are two examples of timelike \mathfrak{B}_{m}.

4. CMC 1 Bour Type Surfaces in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$

In this section we consider CMC 1 surfaces in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$. Here we identify elements in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$ with $\mathrm{SL}_{2} \mathbb{C}$ matrix forms as in Section 2. In this setting Bryant [3] showed the following representation formula for CMC 1 surfaces in \mathbb{H}^{3}, and Aiyama and Akutagawa [1] showed the following Bryant-type representation formula for CMC 1 surfaces in $\mathbb{S}^{2,1}$.

Figure 2. Left two pictures: \mathfrak{B}_{3} cousins in \mathbb{H}^{3}. Right two pictures: their dual cousins in \mathbb{H}^{3} (in the Poincaré ball model for \mathbb{H}^{3}).

Theorem 4. Let $F \in \mathrm{SL}(2, \mathbb{C})$ be a solution of the equation

$$
\frac{\mathrm{d} F}{\mathrm{~d} z}=F\left(\begin{array}{cc}
g & -g^{2} \tag{3}\\
1 & -g
\end{array}\right) \omega,\left.\quad F\right|_{z=z_{0}} \in \mathrm{SL}(2, \mathbb{C})
$$

for some z_{0} in a given domain, where (g, ω) is Weierstrass data. Then the surface $f=F \bar{F}^{t}$ (respectively $f=F\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \bar{F}^{t}$) is a conformal CMC 1 immersion into \mathbb{H}^{3} (respectively $\mathbb{S}^{2,1}$). Conversely, any conformal CMC 1 immersion in $\mathbb{H}^{3}\left(\right.$ respectively $\left.\mathbb{S}^{2,1}\right)$ can be described in this way.

We call CMC 1 surfaces in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$ given by the Weierstrass data $(g, \omega)=$ $\left(z, z^{m-2}\right)$ the Bour type CMC 1 cousins \mathfrak{B}_{m} of value m (\mathfrak{B}_{m} cousin, for short). We now describe F explicitly

Theorem 5. Let $F(z)=\left(\begin{array}{ll}a(z) & b(z) \\ c(z) & d(z)\end{array}\right) \in \operatorname{SL}(2, \mathbb{C})$ be a solution of equation (3) with $(g, \omega)=\left(z, z^{m-2} d z\right)$ and with initial condition $F(0)=\mathrm{Id}$. Then

$$
\begin{align*}
& a(z)=m^{\frac{1}{m}} \Gamma\left(\frac{m+1}{m}\right) z^{\frac{m-1}{2}} \operatorname{Bessel} I\left(-\frac{m-1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right) \\
& b(z)=-m^{\frac{1}{m}} \Gamma\left(\frac{m+1}{m}\right) z^{\frac{m+1}{2}} \operatorname{Bessel} I\left(\frac{m+1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right) \\
& c(z)=m^{\frac{-1}{m}} \Gamma\left(\frac{m-1}{m}\right) z^{\frac{m-1}{2}} \operatorname{Bessel} I\left(\frac{m-1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right) \tag{4}\\
& d(z)=-m^{\frac{-1}{m}} \Gamma\left(\frac{m-1}{m}\right) z^{\frac{m+1}{2}} \operatorname{Bessel} I\left(-\frac{m+1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right)
\end{align*}
$$

where Γ denotes the Gamma function and Bessel I represents the modified Bessel function. The definition of Bessel I can be found in standard textbooks, for example, see [7].

Figure 3. Left two pictures: \mathfrak{B}_{6} cousins in \mathbb{H}^{3}. Right two pictures: their dual cousins in \mathbb{H}^{3}.

Proof: Equation (3) gives

$$
\begin{array}{rr}
X^{\prime \prime}-\frac{\omega^{\prime}}{\omega} X^{\prime}-g^{\prime} \omega X=0, & X=a(z), c(z) \\
Y^{\prime \prime}-\frac{\left(g^{2} \omega\right)^{\prime}}{g^{2} \omega} Y^{\prime}-g^{\prime} \omega Y=0, & Y=b(z), d(z) \tag{6}
\end{array}
$$

which are given in [16]. Here we solve equation (5). Inserting $(g, \omega)=\left(z, z^{m-2}\right)$ into equation (5), we have

$$
\begin{equation*}
X^{\prime \prime}-\frac{m-2}{z} X^{\prime}-z^{m-2} X=0, \quad m \in \mathbb{Z}_{\geq 2} \tag{7}
\end{equation*}
$$

We give two independent power series solutions of the differential equation (7) by the Frobenius method. The indicial equation at $z=0$ is $\rho(\rho-1)-(m-2) \rho=0$. So we see that the characteristic exponents of the equation (7) are 0 and $m-1$. Then we have a solution of the form

$$
z^{m-1} \sum_{p=0}^{\infty} a_{p} z^{p}
$$

where the coefficients a_{p} are inductively given by

$$
\begin{aligned}
a_{m k+l} & =0, \quad l=0, \cdots, m \\
a_{m k+m+1} & =\frac{a_{m(k-1)+m-1}}{(m-2) k(m k+m-1)} \\
& =\frac{\Gamma\left(\frac{m-1}{m}+k\right)}{m^{2} \Gamma\left(\frac{m-1}{m}+k+1\right)} a_{m(k-1)+m-1}, \quad l \geq m+1
\end{aligned}
$$

Therefore we obtain a solution of the differential equation (7)

$$
z^{\frac{m-1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma\left(\frac{m-1}{m}+k+1\right)}\left(\frac{z^{\frac{m}{2}}}{m}\right)^{2 k+\frac{m-1}{m}}=z^{\frac{m-1}{2}} \operatorname{Bessel} I\left(\frac{m-1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right)
$$

Similarly, we obtain another independent solution as

$$
z^{\frac{m-1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma\left(\frac{1-m}{m}+k+1\right)}\left(\frac{z^{\frac{m}{2}}}{m}\right)^{2 k-\frac{m-1}{m}}=z^{\frac{m-1}{2}} \operatorname{Bessel} I\left(\frac{1-m}{m}, \frac{2}{m} z^{\frac{m}{2}}\right)
$$

So we have two independent solutions of equation (5). Next, we find two independent solutions of equation (6). Inserting $(g, \omega)=\left(z, z^{m-2}\right)$ into equation (6), we have

$$
Y^{\prime \prime}-\frac{m}{z} Y^{\prime}-z^{m-2} Y=0, \quad m \in \mathbb{Z}_{\geq 2}
$$

Similarly to the way we solved equation (5), we have two independent solutions

$$
z^{\frac{m+1}{2}} \operatorname{Bessel} I\left(\frac{m+1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right), \quad z^{\frac{m+1}{2}} \operatorname{Bessel} I\left(-\frac{m+1}{m}, \frac{2}{m} z^{\frac{m}{2}}\right)
$$

Using the initial conditions, we have the solution F as in equations (4).
Remark 6. If F is a solution of equation (3), the surface

$$
f^{\sharp}=\left(F^{-1}\right){\overline{\left(F^{-1}\right)}}^{t}\left(\text { respectively } f^{\sharp}=\left(F^{-1}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right){\overline{\left(F^{-1}\right)}}^{t}\right)
$$

is also a CMC 1 surface in \mathbb{H}^{3} (respectively $\mathbb{S}^{2,1}$). This was proven in [17] (respectively [11]). The surface f^{\sharp} is called the CMC 1 dual of f.

Using the explicit parametrization of the \mathfrak{B}_{m} cousin, we can easily show the following corollary, which implies the rotational symmetric property of the \mathfrak{B}_{m} cousins in \mathbb{H}^{3} and $\mathbb{S}^{2,1}$.

Corollary 7. Let $F(z) \in \mathrm{SL}_{2} \mathbb{C}$ be the form as in Theorem 5 with complex coordinate z. Then

$$
F\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{m}} \cdot z\right)=\left(\begin{array}{cc}
a(z) & \mathrm{e}^{\mathrm{i} \frac{2 \pi}{m}} \cdot b(z) \\
\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{m}} \cdot c(z) & d(z)
\end{array}\right)
$$

Writing \mathfrak{B}_{m} cousin in \mathbb{H}^{3} or $\mathbb{S}^{2,1}$ as $f(z)=\left(x_{1}(z), x_{2}(z), x_{3}(z), x_{0}(z)\right)^{t}$, given by Theorem 5 , and setting $f\left(\mathrm{e}^{\mathrm{i} \frac{2 \pi}{m}} \cdot z\right)=\left(\hat{x}_{1}(z), \hat{x}_{2}(z), \hat{x}_{3}(z), \hat{x}_{0}(z)\right)^{t}$. By Corollary 7, we have

$$
\begin{aligned}
& \hat{x}_{1}(z)=\cos \left(\frac{2 \pi}{m}\right) x_{1}(z)-\sin \left(\frac{2 \pi}{m}\right) x_{2}(z) \\
& \hat{x}_{2}(z)=\sin \left(\frac{2 \pi}{m}\right) x_{1}(z)+\cos \left(\frac{2 \pi}{m}\right) x_{2}(z) \\
& \hat{x}_{3}(z)=x_{3}(z), \quad \hat{x}_{0}(z)=x_{0}(z)
\end{aligned}
$$

that is, by rotating z by angle $\frac{2 \pi}{m}$, the first and second coordinates are also rotated by the same angle. So like in \mathbb{R}^{3} and $\mathbb{R}^{2,1}, \mathfrak{B}_{m}$ has symmetry with respect to rotation by angle $\frac{2 \pi}{m}$. Its dual $\left(\mathfrak{B}_{m}\right)^{\sharp}$ also has the same symmetry.

Figure 4. Left two pictures: \mathfrak{B}_{3} cousins in $\mathbb{S}^{2,1}$. Right two pictures: their dual cousins in $\mathbb{S}^{2,1}$.

Figure 5. Left two pictures: \mathfrak{B}_{6} cousins in $\mathbb{S}^{2,1}$. Right two pictures: their dual cousins in $\mathbb{S}^{2,1}$.

In order to see CMC 1 surfaces in \mathbb{H}^{3}, we use a stereographic projection. Consider the map

$$
\begin{array}{ccc}
\begin{array}{c}
\mathbb{H}^{3} \\
\Psi
\end{array} & \longrightarrow & \begin{array}{c}
\mathbb{B}^{3} \\
\Psi
\end{array} \\
\left(x_{1}, x_{2}, x_{3}, x_{0}\right)^{t} & \longmapsto & \left(\frac{x_{1}}{1+x_{0}}, \frac{x_{2}}{1+x_{0}}, \frac{x_{3}}{1+x_{0}}\right)^{t}
\end{array}
$$

where \mathbb{B}^{3} denotes the 3 -dimensional unit ball. This is the Poincaré ball model for \mathbb{H}^{3}. The pictures in Fig. 2 and Fig. 3 are two examples of \mathfrak{B}_{m} cousins projected into \mathbb{B}^{3}.
In order to show graphics of CMC 1 surfaces in $\mathbb{S}^{2,1}$, the hollow ball model is used, see [4] for example. Consider the map

$$
\begin{array}{ccc}
\mathbb{S}^{2,1} & \longrightarrow & \mathbb{B}_{(-\pi, \pi)}^{3} \\
\left(x_{1}, x_{2}, x_{3}, x_{0}\right)^{t} & \longmapsto\left(\frac{\mathrm{e}^{\arctan \left(x_{0}\right)} \cdot x_{1}}{\sqrt{1+x_{0}^{2}}}, \frac{\mathrm{e}^{\arctan \left(x_{0}\right)} \cdot x_{2}}{\sqrt{1+x_{0}^{2}}}, \frac{\mathrm{e}^{\arctan \left(x_{0}\right)} \cdot x_{3}}{\sqrt{1+x_{0}^{2}}}\right)^{t}
\end{array}
$$

where $\mathbb{B}_{(-\pi, \pi)}^{3}:=\left\{\left(y_{1}, y_{2}, y_{3}\right)^{t} \in \mathbb{R}^{3} ; \mathrm{e}^{-\pi}<y_{1}^{2}+y_{2}^{2}+y_{3}^{2}<\mathrm{e}^{\pi}\right\}$. Fig. 4 and Fig. 5 show two examples of \mathfrak{B}_{m} projected into $\mathbb{B}_{(-\pi, \pi)}^{3}$.

5. Degree and Class of Bour Type Surfaces in $\mathbb{R}^{2,1}$

For $\mathbb{R}^{2,1}$, the set of roots of a polynomial $Q(x, y, z)=0$ gives an algebraic surface. An algebraic surface f is said to be of degree (or order) n when $n=\operatorname{deg}(f)$.
The tangent plane at a point (u, v) on a surface $f(u, v)=(x(u, v), y(u, v), z(u, v))$ is given by

$$
\begin{equation*}
X x+Y y-Z z+P=0 \tag{8}
\end{equation*}
$$

where the Gauss map is $n=(X(u, v), Y(u, v), Z(u, v))$ and $P=P(u, v)$. We have inhomogeneous tangential coordinates $a=X / P, b=Y / P$, and $c=Z / P$. When we can obtain an implicit equation $\hat{Q}(a, b, c)=0$ of $f(u, v)$ in tangential coordinates, the maximum degree of the equation gives the class of $f(u, v)$.
Next, using Groebner and other polynomial elimination methods (in Maple software), we calculate the implicit equations, degrees and classes of spacelike and timelike $\mathfrak{B}_{2}, \mathfrak{B}_{3}$ and \mathfrak{B}_{4}.

5.1. Degree and Class of Spacelike $\mathfrak{B}_{2}, \mathfrak{B}_{3}, \mathfrak{B}_{4}$ in $\mathbb{R}^{2,1}$

From (2), the parametrization of \mathfrak{B}_{2} (maximal Enneper surface) is

$$
\mathfrak{B}_{2}(u, v)=\left(\begin{array}{c}
\frac{1}{3} u^{3}-u v^{2}+u \\
u^{2} v-\frac{1}{3} v^{3}-v \\
u^{2}-v^{2}
\end{array}\right)=\left(\begin{array}{c}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
$$

where $u, v \in \mathbb{R}$. In this section, $Q_{m}(x, y, z)=0$ denotes the irreducible implicit equation that spacelike or timelike \mathfrak{B}_{m} will satisfy. Then

$$
\begin{aligned}
& Q_{2}(x, y, z)=-64 z^{9}+432 x^{2} z^{6}-432 y^{2} z^{6}+1215 x^{4} z^{3}+6318 x^{2} y^{2} z^{3} \\
& -3888 x^{2} z^{5}+1215 y^{4} z^{3}-3888 y^{2} z^{5}+1152 z^{7}+729 x^{6}-2187 x^{4} y^{2} \\
& -4374 x^{4} z^{2}+2187 x^{2} y^{4}+6480 x^{2} z^{4}-729 y^{6}+4374 y^{4} z^{2}-6480 y^{2} z^{4} \\
& -729 x^{4} z+1458 x^{2} y^{2} z+3888 x^{2} z^{3}-729 y^{4} z+3888 y^{2} z^{3}-5184 z^{5}
\end{aligned}
$$

and its degree is $\operatorname{deg}\left(\mathfrak{B}_{2}\right)=9$. Therefore, \mathfrak{B}_{2} is an algebraic maximal surface. To find the class of the surface \mathfrak{B}_{2}, we obtain $P_{2}(u, v)=\frac{\left(u^{2}+v^{2}-3\right)(u-v)(u+v)}{3\left(u^{2}+v^{2}-1\right)}$, where $P_{m}(u, v)$ denotes the function as in equation (8) for spacelike or timelike \mathfrak{B}_{m}. The inhomogeneous tangential coordinates are $a=\frac{6 u}{\alpha(u, v)}, b=$ $\frac{6 v}{\alpha(u, v)}, c=\frac{6\left(u^{2}+v^{2}+1\right)}{\alpha(u, v)}$, where $\alpha(u, v)=\left(u^{2}+v^{2}-3\right)(u-v)(u+v)$. In
a, b, c coordinates \mathfrak{B}_{2} is given by

$$
\begin{aligned}
& \hat{Q}_{2}(a, b, c)=4 a^{6}+9 a^{4}+9 b^{4}+6 a^{2} b^{2} c^{2}+12 b^{2} c^{3}-3 b^{4} c^{2}-18 b^{4} c \\
& -4 a^{4} b^{2}+18 a^{4} c-12 a^{2} c^{3}-4 a^{2} b^{4}-3 a^{4} c^{2}+18 a^{2} b^{2}-4 a^{2} b^{4}+4 b^{6}
\end{aligned}
$$

and in general $\hat{Q}_{m}(a, b, c)=0$ denotes the irreducible implicit equation for spacelike or timelike \mathfrak{B}_{m} in terms of tangential coordinates. Therefore, the class of the spacelike \mathfrak{B}_{2} is $\operatorname{cl}\left(\mathfrak{B}_{2}\right)=6$. Similarly

$$
\begin{aligned}
& \mathfrak{B}_{3}(u, v)=\left(\begin{array}{c}
\frac{u^{4}}{4}+\frac{v^{4}}{4}-\frac{3}{2} u^{2} v^{2}+\frac{u^{2}}{2}-\frac{v^{2}}{2} \\
u^{3} v-u v^{3}-u v \\
\frac{2}{3} u^{3}-2 u v^{2}
\end{array}\right)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right) \\
& \mathfrak{B}_{4}(u, v)=\left(\begin{array}{c}
\frac{1}{3} u^{3}-u v^{2}+\frac{1}{5} u^{5}-2 u^{3} v^{2}+u v^{4} \\
-u^{2} v+\frac{1}{3} v^{3}+u^{4} v-2 u^{2} v^{3}+\frac{1}{5} v^{5} \\
\frac{1}{2} u^{4}-3 u^{2} v^{2}+\frac{1}{2} v^{4}
\end{array}\right)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{3}(x, y, z)=-43046721 z^{16}+272097792 x^{3} z^{12}-816293376 x y^{2} z^{12} \\
& +3009871872 x^{6} z^{8}+14834368512 x^{4} y^{2} z^{8}+(69 \text { other lower order terms }) \\
& Q_{4}(x, y, z)=-1514571848868138319872 z^{25} \\
& +9244212944751820800000 x^{4} z^{20} \\
& -24192761655761718750000000 x^{4} y^{12} z^{5} \\
& -55465277668510924800000 x^{2} y^{2} z^{20} \\
& -3065257232666015625000000 x^{12} y^{6} z^{2}+(233 \text { other lower order terms })
\end{aligned}
$$

and their degrees are $\operatorname{deg}\left(\mathfrak{B}_{3}\right)=16, \operatorname{deg}\left(\mathfrak{B}_{4}\right)=25$. Therefore, \mathfrak{B}_{3} and \mathfrak{B}_{4} are algebraic spacelike maximal surfaces. Furthermore

$$
\begin{aligned}
& P_{3}(u, v)=\frac{u\left(u^{2}+v^{2}-2\right)\left(u^{2}-3 v^{2}\right)}{\left(u^{2}+v^{2}-1\right)} \\
& P_{4}(u, v)=\frac{\left(3 u^{2}+3 v^{2}-5\right)\left(u^{2}-2 u v-v^{2}\right)\left(u^{2}+2 u v-v^{2}\right)}{30\left(u^{2}+v^{2}-1\right)}
\end{aligned}
$$

and the inhomogeneous tangential coordinates are

$$
\begin{array}{llll}
a=\frac{12}{\beta(u, v)}, & b=\frac{12 v}{u \beta(u, v)}, \quad c=\frac{6\left(u^{2}+v^{2}+1\right)}{u \beta(u, v)}, & m=3 \\
a=\frac{60 u}{\gamma(u, v)}, & b=\frac{60 v}{\gamma(u, v)}, & c=\frac{30\left(u^{2}+v^{2}+1\right)}{\gamma(u, v)}, & m=4
\end{array}
$$

where $\beta(u, v)=\left(u^{2}+v^{2}-2\right)\left(u^{2}-3 v^{2}\right), \gamma(u, v)=\left(3 u^{2}+3 v^{2}-5\right)\left(u^{2}-2 u v-\right.$ $\left.v^{2}\right)\left(u^{2}+2 u v-v^{2}\right)$. Then

$$
\begin{aligned}
& \hat{Q}_{3}(a, b, c)=9 a^{8}+72 a^{6} b^{2}-8 a^{6} c^{2}+144 a^{4} b^{4}-168 a^{4} b^{2} c^{2} \\
& -96 a^{2} b^{4} c^{2}+96 a^{2} b^{2} c^{4}+64 b^{6} c^{2}-48 b^{4} c^{4}-72 a^{7} \\
& -288 a^{5} b^{2}+288 a^{5} c^{2}+288 a^{3} b^{2} c^{2}-192 a^{3} c^{4}+144 a^{6} \\
& \hat{Q}_{4}(a, b, c)=-16 a^{10}-8640 a^{2} b^{2} c^{5}-9000 a^{4} b^{4} c-3600 a^{2} b^{6} c \\
& +12000 a^{2} b^{4} c^{3}+570 a^{4} b^{4} c^{2}-180 a^{2} b^{6} c^{2}+15 b^{8} c^{2}-900 b^{8}+1440 a^{4} c^{5} \\
& +1440 b^{4} c^{5}-5400 a^{4} b^{4}-3600 a^{2} b^{6}+900 b^{8} c-2400 b^{6} c^{3}-416 a^{6} b^{4} \\
& -416 a^{4} b^{6}+176 a^{2} b^{8}-16 b^{10}+12000 a^{4} b^{2} c^{3}-3600 a^{6} b^{2} c-180 a^{6} b^{2} c^{2} \\
& -3600 a^{6} b^{2}+176 a^{8} b^{2}-2400 a^{6} c^{3}+900 a^{8} c+15 a^{8} c^{2}-900 a^{8}
\end{aligned}
$$

Therefore, $\operatorname{cl}\left(\mathfrak{B}_{3}\right)=8$ and $\operatorname{cl}\left(\mathfrak{B}_{4}\right)=10$.

5.2. Degree and Class of Timelike $\mathfrak{B}_{2}, \mathfrak{B}_{3}, \mathfrak{B}_{4}$ in $\mathbb{R}^{2,1}$

From (2), the parametrization of \mathfrak{B}_{2} (timelike Enneper surface) is

$$
\mathfrak{B}_{2}(u, v)=\left(\begin{array}{c}
u^{2}+v^{2} \\
u+v-\frac{1}{3}\left(u^{3}+v^{3}\right) \\
-u+v-\frac{1}{3}\left(u^{3}-v^{3}\right)
\end{array}\right)=\left(\begin{array}{c}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
$$

where $u, v \in \mathbb{R}$. Then

$$
\begin{aligned}
& Q_{2}(x, y, z)=-16 z^{9}-2916 y^{4} z+4374 x^{4} y^{2}-6318 y 2 x^{2} z^{3}+4374 x^{2} y^{4} \\
& -15552 y^{2} z^{3}-2916 x^{4} z-5832 x^{2} y^{2} z-20736 z^{5}+1152 z^{7}-8748 x^{4} z^{2} \\
& +8748 y^{4} z^{2}+3888 y^{2} z^{5}-3888 x^{2} z^{5}+15552 x^{2} z^{3}+1215 x^{4} z^{3}+1458 x^{6} \\
& +216 x^{2} z^{6}+1458 y^{6}+1215 y^{4} z^{3}+216 y^{2} z^{6}+12960 y^{2} z^{4}+12960 x^{2} z^{4}
\end{aligned}
$$

Its degree is $\operatorname{deg}\left(\mathfrak{B}_{2}\right)=9$. Hence, \mathfrak{B}_{2} is an algebraic timelike minimal surface. To find the class of surface \mathfrak{B}_{2} we obtain $P_{2}(u, v)=\frac{(u v+3)\left(u^{2}+v^{2}\right)}{3(u v+1)}$, and the inhomogeneous tangential coordinates are $a=-\frac{(u v-1)(3 u v+3)}{\hat{\alpha}(u, v)}, b=$ $-\frac{(u+v)(3 u v+3)}{\hat{\alpha}(u, v)}, c=-\frac{(u-v)(3 u v+3)}{\hat{\alpha}(u, v)}$, where $\hat{\alpha}(u, v)=(u v+1)(u v+$ 3) $\left(u^{2}+v^{2}\right)$. Then

$$
\begin{aligned}
& \hat{Q}_{2}(a, b, c)=16 a^{6}+9 a^{4}+36 b^{4} c+24 a^{2} c^{3}+24 b^{2} c^{3}-24 a^{2} b^{2} c^{2} \\
& -12 a^{4} c^{2}-16 a^{2} b^{4}-12 b^{4} c^{2}-36 a^{4} c+16 a^{4} b^{2}+9 b^{4}-16 b^{6}-18 a^{2} b^{2}
\end{aligned}
$$

Hence, $\operatorname{cl}\left(\mathfrak{B}_{2}\right)=6$. Similarly

$$
\begin{aligned}
& \mathfrak{B}_{3}(u, v)=\left(\begin{array}{c}
\frac{2}{3}\left(u^{3}+v^{3}\right) \\
\frac{1}{2}\left(u^{2}+v^{2}\right)-\frac{1}{4}\left(u^{4}+v^{4}\right) \\
-\frac{1}{2}\left(u^{2}-v^{2}\right)-\frac{1}{4}\left(u^{4}-v^{4}\right)
\end{array}\right)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right) \\
& \mathfrak{B}_{4}(u, v)=\left(\begin{array}{c}
\frac{1}{2}\left(u^{4}+v^{4}\right) \\
\frac{1}{3}\left(u^{3}+v^{3}\right)-\frac{1}{5}\left(u^{5}+v^{5}\right) \\
-\frac{1}{3}\left(u^{3}-v^{3}\right)-\frac{1}{5}\left(u^{5}-v^{5}\right)
\end{array}\right)=\left(\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{3}(x, y, z)=43046721 z^{16}-1836660096 z^{14} \\
& +5435817984 x^{6} z^{4}+602404356096 x^{4} z^{8} \\
& +165112971264 x^{2} z^{8}+(69 \text { other lower order terms }) \\
& Q_{4}(x, y, z)=311836912602146628334544598941564928 z^{25} \\
& -3806602937037922709161921373798400000 x^{4} z^{20} \\
& -22839617622227536254971528242790400000 x^{2} y^{2} z^{20} \\
& -3806602937037922709161921373798400000 y^{4} z^{20} \\
& -271833827901267673933071777792000000000 x^{8} z^{15} \\
& +(233 \text { other lower order terms }) .
\end{aligned}
$$

So $\operatorname{deg}\left(\mathfrak{B}_{3}\right)=16, \operatorname{deg}\left(\mathfrak{B}_{4}\right)=25$. In the tangential coordinates a, b, c

$$
\begin{aligned}
& \hat{Q}_{3}(a, b, c)=81 a^{6} b^{2}-27 a^{4} b^{4}-72 a^{4} b^{2} c^{2}-45 a^{2} b^{6}-48 a^{2} b^{4} c^{2}-9 b^{8} \\
& -8 b^{6} c^{2}-108 a^{6} b+180 a^{4} b^{3}+432 a^{4} b c^{2}-36 a^{2} b^{5}-288 a 2 b^{3} c^{2}-288 a^{2} b c^{4} \\
& -36 b^{7}-144 b^{5} c^{2}-96 b^{3} c^{4}+36 a^{6}-108 a^{4} b^{2}+108 a^{2} b^{4}-36 b^{6} \\
& \hat{Q}_{4}(a, b, c)=-16 a^{10}+16 b^{10}-450 a^{8} c+15 b^{8} c^{2}-225 b^{8}-720 a^{4} c^{5} \\
& -1350 a^{4} b^{4}+900 a^{2} b^{6}-450 b^{8} c-1200 b^{6} c^{3}-416 a^{6} b^{4}+416 a^{4} b^{6} \\
& +176 a^{2} b^{8}-4320 a^{2} b^{2} c^{5}+4500 a^{4} b^{4} c-1800 a^{2} b^{6} c-6000 a^{2} b^{4} c^{3} \\
& +570 a^{4} b^{4} c^{2}+180 a^{2} b^{6} c^{2}+6000 a^{4} b^{2} c^{3}-1800 a^{6} b^{2} c+180 a^{6} b^{2} c^{2} \\
& -225 a^{8}-720 b^{4} c^{5}+900 a^{6} b^{2}-176 a^{8} b^{2}+1200 a^{6} c^{3}+15 a^{8} c^{2}
\end{aligned}
$$

Therefore, $\operatorname{cl}\left(\mathfrak{B}_{3}\right)=8, \operatorname{cl}\left(\mathfrak{B}_{4}\right)=10$.
Remark 8. It is clear that $\operatorname{deg}(x)=m, \operatorname{deg}(y)=m+1, \operatorname{deg}(z)=m+1$ for Bour's algebraic maximal and timelike \mathfrak{B}_{m}.

Acknowledgements

The authors thank Wayne Rossman for helpful discussions and Christos Konaxis for assisting with Maple code. The first author was supported by the 2219TUBITAK International Post Doctoral Research Fellowship Programme, and the third author was supported by the Grant-in-Aid for JSPS Fellows Number 26-3154.

References

[1] Aiyama R. and Akutagawa K., Kenmotsu-Bryant Type Representation Formulas for Constant Mean Curvature Surfaces in $\mathbb{H}^{3}\left(-c^{2}\right)$ and $\mathbb{S}_{1}^{3}\left(c^{2}\right)$, Ann. Global Anal. Geom. 17 (1998) 49-75.
[2] Bour E., Théorie de la Déformation des Surfaces, Journal de l'Êcole Imperiale Polytechnique 22, Cahier 39 (1862) 1-148.
[3] Bryant R., Surfaces of Mean Curvature One in Hyperbolic Space, Astérisque 154155 (1987) 321-347.
[4] Fujimori S., Spacelike CMC 1 Surfaces with Elliptic Ends in de Sitter 3-Space, Hokkaido Math. J. 35 (2006) 289-320.
[5] Gray A., Modern Differential Geometry of Curves and Surfaces with Mathematica, Second edition, CRC Press, Boca Raton, New York 1998.
[6] Güler E., Bour's Spacelike Maximal and Timelike Minimal Surfaces in the Three Dimensional Lorentz-Minkowski Space, submitted.
[7] Ince E., Ordinary Differential Equations, Dover, New York 1956.
[8] Inoguchi J. and Lee S., Null Curves in Minkowski 3-Space, Int. Electron. J. Geom. 1 (2008) 40-83.
[9] Kobayashi O., Maximal Surfaces in the 3-Dimensional Minkowski Space \mathbb{L}^{3}, Tokyo J. Math. 6 (1983) 297-309.
[10] Lawson B., Complete Minimal Surfaces in \mathbb{S}^{3}, Ann. of Math. 92 (1960) 335-374.
[11] Lee S., Spacelike Surfaces of Constant Mean Curvature ± 1 in de Sitter 3-Space $\mathbb{S}_{1}^{3}(1)$, Illinois J. Math. 49 (2005) 63-98.
[12] Magid M., Timelike Surfaces in Lorentz 3-Space with Prescribed Mean Curvature and Gauss Map, Hokkaido Math. J. 20 (1991) 447-464.
[13] Nitsche J., Lectures on Minimal Surfaces I. Introduction, Fundamentals, Geometry and Basic Boundary Value Problems, Cambridge University Press, Cambridge 1989.
[14] Palmer B., Spacelike Constant Mean Curvature Surfaces in Pseudo-Riemannian Space Forms, Ann. Glob. Anal. Geom. 8 (1990) 217-226.
[15] Schwarz H., Miscellen aus dem Gebiete der Minimalfä chen, Crelle Journal 80 (1875) 280-300.
[16] Umehara M. and Yamada K., Complete Surfaces of Constant Mean Curvature 1 in the Hyperbolic 3-Space, Ann. Math. 137 (1993) 611-638.
[17] Umehara M. and Yamada K., A Duality on CMC-1 Surfaces in Hyperbolic Space, and a Hyperbolic Analogue of the Osserman Inequality, Tsukuba J. Math. 21 (1997) 229-237.
[18] Whittemore J., Minimal Surfaces Applicable to Surfaces of Revolution, Ann. Math. 19 (1917) 1-20.

