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Abstract. We construct a special class of spacelike surfaces in the Minkow-
ski 4-space which are one-parameter systems of meridians of the rotational
hypersurface with lightlike axis and call these surfaces meridian surfaces of
parabolic type. They are analogous to the meridian surfaces of elliptic or
hyperbolic type. Using the invariants of these surfaces we give the complete
classification of the meridian surfaces of parabolic type with constant Gauss
curvature or constant mean curvature. We also classify the Chen meridian
surfaces of parabolic type and the meridian surfaces of parabolic type with
parallel normal bundle.
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1. Introduction

A fundamental problem of the contemporary differential geometry of surfaces in
the Euclidean space Rn or the pseudo-Euclidean space Rn

k is the investigation of
the basic invariants characterizing the surfaces. Our aim is to investigate various
important classes of surfaces in the four-dimensional Minkowski space R4

1 charac-
terized by conditions on their invariants.
In [6] we developed a local theory of spacelike surfaces in R4

1 based on the intro-
ducing of an invariant linear map γ of Weingarten-type in the tangent plane at any
point of the surface. The map γ generates two invariant functions k = det γ and

κ = −1

2
trγ. It turns out that the invariant κ is the curvature of the normal con-

nection of the surface. The existence of principal lines at each point of a spacelike
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surface in R4
1 allows us to introduce a geometrically determined moving frame field

at each point of the surface. Writing derivative formulas for this frame field, we
obtained eight invariant functions γ1, γ2, ν1, ν2, λ, µ, β1, β2 and proved a fun-
damental theorem of Bonnet-type, stating that these eight invariants under some
natural conditions determine the surface up to a rigid motion in R4

1.
The basic geometric classes of surfaces in R4

1 are characterized by conditions on
these invariant functions. For example, Chen surfaces are characterized by the
condition λ = 0, minimal surfaces are determined by the equality ν1 + ν2 = 0,
surfaces with flat normal connection are described by ν1 = ν2, and surfaces with
parallel normal bundle are characterized by β1 = β2 = 0.
In the four-dimensional Minkowski space R4

1 there are three types of rotational
hypersurfaces - rotational hypersurfaces with timelike axis, with spacelike axis,
and with lightlike axis. In [7] we constructed special families of two-dimensional
spacelike surfaces lying on rotational hypersurfaces in R4

1 with timelike or space-
like axis and called them meridian surfaces of elliptic or hyperbolic type, respec-
tively. These surfaces are analogous to the meridian surfaces in the Euclidean space
R4, which are defined and studied in [5] and [9]. We found all marginally trapped
meridian surfaces of elliptic or hyperbolic type. In [10] we found the geometric
invariant functions γ1, γ2, ν1, ν2, λ, µ, β1, β2 of the meridian surfaces of ellip-
tic or hyperbolic type and classified those of them with constant Gauss curvature
or constant mean curvature. We also gave the complete classification of the Chen
meridian surfaces of elliptic or hyperbolic type and the meridian surfaces of elliptic
or hyperbolic type with parallel normal bundle.
In [8] we used the idea from the elliptic and hyperbolic case to construct families of
two-dimensional spacelike surfaces lying on a rotational hypersurface in R4

1 with
lightlike axis. We called these surfaces meridian surfaces of parabolic type. We
found all marginally trapped meridian surfaces of parabolic type.
In the present paper we study meridian surfaces of parabolic type in R4

1 and find the
invariant functions γ1, γ2, ν1, ν2, λ, µ, β1, β2 of these surfaces. Using the invari-
ants we classify completely the meridian surfaces of parabolic type with constant
Gauss curvature (Theorem 2), with constant mean curvature (Theorem 3), and with
constant invariant k (Theorem 4). In Theorem 5 we classify the Chen meridian sur-
faces of parabolic type and in Theorem 6 we give the classification of the meridian
surfaces of parabolic type with parallel normal bundle.

2. Invariants of Meridian Surfaces of Parabolic Type

We consider the four-dimensional Minkowski space R4
1 endowed with the metric

⟨· , ·⟩ of signature (3, 1). A surface M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R2) in
R4
1 is said to be spacelike if ⟨· , ·⟩ induces a Riemannian metric g on M2. Denote
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by ∇′ and ∇ the Levi Civita connections on R4
1 and M2, respectively. Let x and

y be vector fields tangent to M2 and ξ be a normal vector field. The formulas of
Gauss and Weingarten give the decompositions of the vector fields ∇′

xy and ∇′
xξ

into tangent and normal components [3]

∇′
xy = ∇xy + σ(x, y), ∇′

xξ = −Aξx+Dxξ

which define the second fundamental tensor σ, the normal connection D and the
shape operator Aξ with respect to ξ. The mean curvature vector field H of M2 is

defined as H =
1

2
trσ.

Studying spacelike surfaces in R4
1 whose mean curvature vector at any point is a

non-zero spacelike vector or timelike vector, on the base of the principal lines we
introduced a geometrically determined orthonormal frame field {x, y, b, l} at each
point of such a surface [6]. The tangent vector fields x and y are collinear with the
principal directions, the normal vector field b is collinear with the mean curvature
vector field H . Writing derivative formulas of Frenet-type for this frame field, we
obtained eight invariant functions γ1, γ2, ν1, ν2, λ, µ, β1, β2, which determine
the surface up to a rigid motion in R4

1. These invariants are determined by the
geometric frame field {x, y, b, l} as follows

ν1 = ⟨∇′
xx, b⟩, ν2 = ⟨∇′

yy, b⟩, λ = ⟨∇′
xy, b⟩, µ = ⟨∇′

xy, l⟩

γ1 = ⟨∇′
xx, y⟩, γ2 = ⟨∇′

yy, x⟩, β1 = ⟨∇′
xb, l⟩, β2 = ⟨∇′

yb, l⟩.

The invariants k, κ, and the Gauss curvature K of M2 are expressed by the func-
tions ν1, ν2, λ, µ as follows

k = −4ν1 ν2 µ
2, κ = (ν1 − ν2)µ, K = ε(ν1 ν2 − λ2 + µ2)

where ε = sign⟨H,H⟩.
In the present section we give the construction of meridian surfaces of parabolic
type and find their invariant functions γ1, γ2, ν1, ν2, λ, µ, β1, β2.
Let {e1, e2, e3, e4} be the standard orthonormal frame in the Minkowski space R4

1,

i.e., ⟨e1, e1⟩ = ⟨e2, e2⟩ = ⟨e3, e3⟩ = 1, ⟨e4, e4⟩ = −1. We denote ξ1 =
e3 + e4√

2
,

ξ2 =
−e3 + e4√

2
and consider the pseudo-orthonormal base {e1, e2, ξ1, ξ2} of R4

1.

Note that ⟨ξ1, ξ1⟩ = 0, ⟨ξ2, ξ2⟩ = 0, ⟨ξ1, ξ2⟩ = −1. The rotational hypersurface
with lightlike axis in R4

1 can be parametrized by

M′′′ : Z(u,w1, w2) = f(u)w1 cosw2 e1 + f(u)w1 sinw2 e2

+
(
f(u) (w

1)2

2 + g(u)
)
ξ1 + f(u) ξ2
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where f = f(u), g = g(u) are smooth functions, defined in an interval I ⊂ R,
such that −f ′(u)g′(u) > 0, f(u) > 0, u ∈ I .
Let w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R and assume that (ẇ1)2+(ẇ2)2 ̸= 0.
We consider the surface M′′′

m in R4
1 defined as follows

M′′′
m : z(u, v) = Z(u,w1(v), w2(v)) (1)

where u ∈ I, v ∈ J. The surface M′′′
m, defined by (1), is a one-parameter system

of meridians of the rotational hypersurface M′′′ with lightlike axis. We call M′′′
m

a meridian surface of parabolic type.
Without loss of generality we assume that w1 = φ(v), w2 = v. Then the surface
M′′′

m is parameterized as follows:

M′′′
m : z(u, v) = f(u)φ(v) cos v e1 + f(u)φ(v) sin v e2

+
(
f(u) (φ(v))

2

2 + g(u)
)
ξ1 + f(u) ξ2.

(2)

The parametric u-lines of M′′′
m are curves congruent in R4

1 and the curvature of

each u-line is
f ′g′′ − g′f ′′

(−2f ′g′)
3
2

. These curves are the meridians of M′′′
m. We denote

κm(u) =
f ′g′′ − g′f ′′

(−2f ′g′)
3
2

. For each u = u0 = const the curvature of the correspond-

ing parametric v-line is κcv =
φφ̈− 2φ̇2 − φ2

a(φ̇2 + φ2)
3
2

, where a = f(u0). Let us denote

κ(v) =
φφ̈− 2φ̇2 − φ2

(φ̇2 + φ2)
3
2

. Then, the curvature of the v-line u = u0 is expressed as

κcv =
1

a
κ(v) [8].

The tangent vector fields of M′′′
m are

zu = f ′φ cos v e1 + f ′φ sin v e2 +

(
f ′φ

2

2
+ g′

)
ξ1 + f ′ ξ2

zv = f(φ̇ cos v − φ sin v) e1 + f(φ̇ sin v + φ cos v) e2 + fφφ̇ ξ1.

So, the coefficients of the first fundamental form of M′′′
m are

E = −2f ′(u)g′(u), F = 0, G = f2(u)(φ̇2(v) + φ2(v)).

Note that the first fundamental form is positive definite, since −f ′g′ > 0.
Without loss of generality we assume that −2f ′(u)g′(u) = 1, i.e., the meridians

are parameterized by the arc-length. Then κm(u) =
f ′′(u)

f ′(u)
·
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Denote X = zu, Y =
zv

f
√

φ̇2 + φ2
and consider the following orthonormal nor-

mal frame field

n1 =
1√

φ̇2 + φ2

(
(φ̇ sin v + φ cos v) e1 + (−φ̇ cos v + φ sin v) e2 + φ2 ξ1

)
n2 = f ′

(
φ cos v e1 + φ sin v e2 +

f ′φ2 − 2g′

f ′ ξ1 + ξ2

)
.

Thus we obtain a frame field {X,Y, n1, n2} of M′′′
m, such that ⟨n1, n1⟩ = 1,

⟨n2, n2⟩ = −1, ⟨n1, n2⟩ = 0.
Calculating the second partial derivatives of z(u, v) and using the normal frame
{n1, n2} given above, we get the following derivative formulas

∇′
XX =− κm n2, ∇′

Xn1 =0

∇′
XY =0, ∇′

Y n1 =− κ

f
Y

∇′
Y X =

f ′

f
Y, ∇′

Xn2 =κmX

∇′
Y Y =− f ′

f
X +

κ

f
n1 −

f ′

f
n2, ∇′

Y n2 =
f ′

f
Y.

(3)

The invariants k and κ of the meridian surface of parabolic type are given by the
following formulas:

k = −κ2m(u)κ2(v)

f2(u)
, κ = 0.

Since κ is the curvature of the normal connection, from the equality κ = 0 we get
the following result.

Proposition 1. The meridian surface of parabolic type M′′′
m, defined by (2), is a

surface with flat normal connection.

Taking into account (3) and using that κm =
f ′′

f ′ , we find the Gauss curvature K

and the mean curvature vector field H of M′′′
m

K = −f ′′(u)

f(u)
(4)

H =
κ(v)

2f(u)
n1 −

f(u)f ′′(u) + f ′2(u)

2f(u)f ′(u)
n2. (5)

We distinguish the following three cases (see [8])
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I. κ(v) = 0. In this case n1 = const and M′′′
m lies in the hyperplane R3

1 of R4
1

orthogonal to n1, i.e., M′′′
m lies in R3

1 = span{x, y, n2}.
II. κm(u) = 0. In this case M′′′

m is a developable ruled surface in R4
1.

III. κm(u)κ(v) ̸= 0.

In the first two cases the surface M′′′
m consists of flat points, i.e., k = κ = 0. It

is known that surfaces consisting of flat points either lie in a hyperplane of R4
1 or

are developable ruled surfaces. So, we consider the third (general) case, i.e., we
assume that κm ̸= 0 and κ ̸= 0.
The mean curvature vector field H is expressed by formula (5). Since κ ̸= 0, the
surface M′′′

m is non-minimal, i.e., H ̸= 0. Recall that a spacelike surface in R4
1

is called marginally trapped if H ̸= 0 and ⟨H,H⟩ = 0. The marginally trapped
meridian surfaces of parabolic type are described in [8]. So, here we consider the
case ⟨H,H⟩ ̸= 0.
The orthonormal frame field {X,Y, n1, n2} defined above is not the geometric
frame field of the surface, since X and Y are not principal tangents. The principal
tangents of M′′′

m are determined by

x =
X + Y√

2
, y =

−X + Y√
2

·

In the case ⟨H,H⟩ > 0, i.e., κ2f ′2 − (ff ′′ + f ′2)2 > 0, the geometric normal
frame field {b, l} is given by

b =
1√

κ2f ′2 − (ff ′′ + f ′2)2

(
κf ′ n1 − (ff ′′ + f ′2)n2

)
l =

1√
κ2f ′2 − (ff ′′ + f ′2)2

(
(ff ′′ + f ′2)n1 − κf ′ n2

)
.

In this case the normal vector fields b and l satisfy ⟨b, b⟩ = 1, ⟨b, l⟩ = 0, ⟨l, l⟩ =
−1.
In the case ⟨H,H⟩ < 0, i.e., κ2f ′2 − (ff ′′ + f ′2)2 < 0, the geometric normal
frame field {b, l} is given by

b = − 1√
(ff ′′ + f ′2)2 − κ2f ′2

(
κf ′ n1 − (ff ′′ + f ′2)n2

)
l =

1√
(ff ′′ + f ′2)2 − κ2f ′2

(
−(ff ′′ + f ′2)n1 + κf ′ n2

)
.

In this case we have ⟨b, b⟩ = −1, ⟨b, l⟩ = 0, ⟨l, l⟩ = 1.
Using the geometric frame field {x, y, b, l} of M′′′

m and derivative formulas (3), we
obtain that the geometric invariant functions of M′′′

m are expressed by the formulas:
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γ1 = −γ2 =
f ′

√
2f

, ν1 = ν2 =

√
ε(κ2f ′2 − (ff ′′ + f ′2)2)

2ff ′

λ = ε
κ2f ′2 + f2f ′′2 − f ′4

2ff ′
√

ε(κ2f ′2 − (ff ′′ + f ′2)2)
, µ =

κf ′′√
ε(κ2f ′2 − (ff ′′ + f ′2)2)

(6)

β1 =
−εf ′2

√
2(κ2f ′2 − (ff ′′ + f ′2)2)

(
κ

(
ff ′′ + f ′2

f ′

)′
− κ̇

ff ′′ + f ′2

ff ′
√

φ̇2 + φ2

)

β2 =
εf ′2

√
2(κ2f ′2 − (ff ′′ + f ′2)2)

(
κ

(
ff ′′ + f ′2

f ′

)′
+ κ̇

ff ′′ + f ′2

ff ′
√

φ̇2 + φ2

)
where ε = sign⟨H,H⟩ and κ̇ = d

dv (κ).
In the following sections, using the invariants of the meridian surface M′′′

m, we
shall describe and classify some special classes of meridian surfaces of parabolic
type.

3. Meridian Surfaces of Parabolic Type with Constant Gauss
Curvature

The study of surfaces with constant Gauss curvature is one of the main topics in
differential geometry. Surfaces with constant Gauss curvature in Minkowski space
have drawn the interest of many geometers, see for example [4], [13], and the
references therein.
The Gauss curvature of a meridian surface of parabolic type M′′′

m depends only
on the meridian curve m and is expressed by formula (4). The following theorem
describes the meridian surfaces of parabolic type with constant non-zero Gauss
curvature.

Theorem 2. Let M′′′
m be a meridian surface of parabolic type from the general

class. Then M′′′
m has constant non-zero Gauss curvature K if and only if the

meridian m is given by

f(u) = α cos
√
Ku+ β sin

√
Ku, if K > 0

f(u) = α cosh
√
−Ku+ β sinh

√
−Ku, if K < 0

(7)

where α and β are constants, g(u) is defined by g′(u) = − 1

2f ′(u)
·

Proof: It follows from (4) that the Gauss curvature K = const ̸= 0 if and only if
the function f(u) satisfies the following differential equation

f ′′(u) +Kf(u) = 0.
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The general solution of the above equation is given by (7), where α and β are

constants. The function g(u) is determined by g′(u) = − 1

2f ′(u)
· �

4. Meridian Surfaces of Parabolic Type with Constant Mean
Curvature

Surfaces with constant mean curvature in arbitrary spacetime are important ob-
jects for the special role they play in the theory of general relativity. The study
of constant mean curvature surfaces (CMC surfaces) involves not only geometric
methods but also PDE and complex analysis, that is why the theory of CMC sur-
faces is of great interest not only for mathematicians but also for physicists and
engineers. Surfaces with constant mean curvature in Minkowski space have been
studied intensively in the last years. See for example [1], [2], [11], [12], [14].
Let M′′′

m be a meridian surface of parabolic type. Equality (5) implies that the
mean curvature of M′′′

m is given by

||H|| =

√
ε(κ2f ′2 − (ff ′′ + f ′2)2)

4f2f ′2 · (8)

The following theorem gives the classification of the meridian surfaces of parabolic
type with constant mean curvature.

Theorem 3. Let M′′′
m be a meridian surface of parabolic type from the general

class. Then M′′′
m has constant mean curvature ||H|| = a = const, a ̸= 0 if and

only if κ = const = b, b ̸= 0, and the meridian m is determined by f ′ = y(f)
where

y(t) =
1

t

(
C ± t

2

√
b2 − 4a2t2 ± b2

4a
arcsin

2at

b

)
, if ⟨H,H⟩ > 0

y(t) =
1

t

(
C ± t

2

√
b2 + 4a2t2 ± b2

4a
ln |2at+

√
b2 + 4a2t2|

)
, if ⟨H,H⟩ < 0

C = const, g(u) is defined by g′(u) = − 1

2f ′(u)
·

Proof: Using (8) we obtain that ||H|| = a if and only if

κ2(v) =
(ff ′′ + f ′2)2 + ε4a2f2f ′2

f ′2

which implies
κ = const = b, b ̸= 0

(ff ′′ + f ′2)2 + ε4a2f2f ′2 = b2f ′2.
(9)
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If we set f ′ = y(f) in the second equality of (9), we obtain that the function
y = y(t) is a solution of the following differential equation

tyy′ + y2 = ±y
√

b2 − ε4a2t2. (10)

In the case ε = 1 the general solution of equation (10) is given by the formula

y(t) =
1

t

(
C ± t

2

√
b2 − 4a2t2 ± b2

4a
arcsin

2at

b

)
, C = const . (11)

In the case ε = −1 the general solution of (10) is given by

y(t) =
1

t

(
C ± t

2

√
b2 + 4a2t2 ± b2

4a
ln |2at+

√
b2 + 4a2t2|

)
(12)

where C = const. The function f(u) is determined by f ′ = y(f) and (11) or (12),

respectively. The function g(u) is defined by g′(u) = − 1

2f ′(u)
·

�

5. Meridian Surfaces of Parabolic Type with Constant Invariant k

Let M′′′
m be a meridian surface of parabolic type. Then the invariant k is given by

the formula

k = −κ2m(u)κ2(v)

f2(u)
· (13)

In the following theorem we describe the meridian surfaces of parabolic type with
constant invariant k.

Theorem 4. Let M′′′
m be a meridian surface of parabolic type from the general

class. Then M′′′
m has constant invariant k = const = −a2, a ̸= 0 if and only if

κ = const = b, b ̸= 0, and the meridian m is determined by f ′ = y(f) where

y(t) = c± at2

2b
, c = const

g(u) is defined by g′(u) = − 1

2f ′(u)
·

Proof: Using that κm(u) =
f ′′(u)

f ′(u)
, from (13) we obtain that k = const =

−a2, a ̸= 0 if and only if

κ2(v) =
a2f2(u)f ′2(u)

f ′′ 2(u)
·
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The last equality implies

κ = const = b, b ̸= 0

bf ′′(u) = ±af(u)f ′(u).
(14)

Setting f ′ = y(f) in the second equality of (14), we obtain that the function y =
y(t) is a solution of the following differential equation

byy′ = ±aty.

The general solution of the above equation is given by

y(t) = c± at2

2b
, c = const . (15)

The function f(u) is determined by f ′ = y(f) and (15). The function g(u) is

defined by g′(u) = − 1

2f ′(u)
·

�

6. Chen Meridian Surfaces of Parabolic Type

In [6] we showed that a spacelike surface in R4
1 is a non-trivial Chen surface if and

only if the invariant function λ is zero. In the next theorem we give the classifica-
tion of all Chen meridian surfaces of parabolic type.

Theorem 5. Let M′′′
m be a meridian surface of parabolic type from the general

class. Then M′′′
m is a Chen surface if and only if κ = const = b, b ̸= 0, and the

meridian m is determined by f ′ = y(f) where

y(t) =
1

2c t±1

(
c2t±2 + b2

)
, c = const ̸= 0

g(u) is defined by g′(u) = − 1

2f ′(u)
·

Proof: It follows from (6) that λ = 0 if and only if

κ2(v) =
f ′4(u)− f2(u)f ′′2(u)

f ′2(u)

which implies
κ = const = b, b ̸= 0

f ′4(u)− f2(u)f ′′2(u) = b2f ′2(u).

Hence, the function f(u) is a solution of the following differential equation

ff ′′ = ±f ′
√

f ′2 − b2. (16)
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Setting f ′ = y(f) in equation (16), we obtain that the function y = y(t) is a
solution of the equation

tyy′ = ±y
√

y2 − b2. (17)
Since y ̸= 0 the last equation is equivalent to

y′√
y2 − b2

= ±1

t
· (18)

Integrating both sides of (18), we get

y +
√

y2 − b2 = c t±1, c = const .

Hence, the general solution of differential equation (17) is given by

y(t) =
1

2c t±1

(
c2t±2 + b2

)
, c = const ̸= 0.

�

7. Meridian Surfaces with Parallel Normal Bundle

Surfaces with parallel normal bundle are characterized by the conditions β1 = 0,
β2 = 0 (see [10]). In this section we describe the meridian surfaces of parabolic
type with parallel normal bundle.

Theorem 6. Let M′′′
m be a meridian surface of parabolic type from the general

class. Then M′′′
m has parallel normal bundle if and only if one of the following

cases holds

a) the meridian m is defined by

f(u) = ±(cu+ d)
1
2 , g(u) = ∓ 2

3c2
(cu+ d)

3
2 + a

where a, c, and d are constants
b) κ = const = b, b ̸= 0, and the meridian m is determined by f ′ = y(f)

where

y(t) =
c+ at

t
, a = const ̸= 0, c = const

g(u) is defined by g′(u) = − 1

2f ′(u)
·

Proof: Using formulas (6) we get that β1 = β2 = 0 if and only if

κ
d

du

(
ff ′′ + f ′2

f ′

)
− d

dv
(κ)

ff ′′ + f ′2

ff ′
√
φ̇2 + φ2

= 0

κ
d

du

(
ff ′′ + f ′2

f ′

)
+

d

dv
(κ)

ff ′′ + f ′2

ff ′
√
φ̇2 + φ2

= 0.

(19)
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It follows from (19) that there are two possible cases
Case a): ff ′′ + f ′2 = 0. The general solution of this differential equation is

f(u) = ±
√
cu+ d, c = const, d = const. Using that g′(u) = − 1

2f ′(u)
, we

get g′ = ∓
√
cu+ d

c
· Integrating both sides of the last equation we obtain g(u) =

∓ 2

3c2
(cu+ d)

3
2 + a, a = const. Consequently, the meridian m is defined as

described in a).

Case b):
ff ′′ + f ′2

f ′ = a = const, a ̸= 0 and κ = b = const, b ̸= 0. In this case

the meridian m is determined by the following differential equation

ff ′′ + f ′2 = af ′, a = const ̸= 0. (20)

The solutions of differential equation (20) can be found in the following way. Set-
ting f ′ = y(f) in equation (20), we obtain that the function y = y(t) is a solution
of the equation

tyy′ + y2 = ay.

Since y ̸= 0 the last equation is equivalent to the equation

y′ +
1

t
y =

a

t

whose general solution is given by the formula

y(t) =
c+ at

t
, a = const ̸= 0, c = const .
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