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1. Introduction

In this note, we discuss a non-formal deformation quantization or non-formal star
product. Star products are already treated by Weyl [13], Wigner [14] and Moyal
[10]. These can be regarded as a deformaion of functions of the usual multipli-
cation of functions. For these, Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer
proposed the concept of deformation quantization [1] in 1970’s which introduces
the new point of view for quantization.
Formal deformation quantization means that deformation is considered in the space
of formal power series with deformation parameter, which is very successful. Any
manifold is quantiziable in the sense of formal deformation quantization (Kontse-
vich [7], see also Sternheimer [12]).
Meanwhile non-formal deformation quatnization is to consider deformation with
deformation parameter being a number. Then, a primitive question arises: Can we
consider non formal deformation quantization on a manifold?
At present, we have no general theory for non-formal deformation quantization
problem, and no idea at present either, but we have some examples.
In this note, we show some concrete examples on Rn and Cn which illustrate non-
formal star product computation.
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2. Moyal Product

The canonical commutation relation is a basic identity of quantum mechanics,
which is given by a pair of operators such as

[p̂, q̂] = p̂ q̂ − q̂ p̂ = −i~

where ~ > 0 is the Dirac constant.
The algebra generated by p̂ and q̂ is referred to as the Weyl algebra which plays a
fundamental role in quantum mechanics.
We can realize the same algebra by using polynomials on R2 or C2 without us-
ing operators. We introduce an associative product ∗o, called the Moyal product,
into the space of polynomials. The product is different from the usual multiplica-
tion of functions, which provides a deformation of the usual multiplication in the
following way.
The Moyal Product ∗o For any smooth functions f, g on R2, we have the canoni-
cal Poisson bracket

{f, g}(q, p) = ∂qf∂pg − ∂pf∂qg, (q, p) ∈ R2.

The Poisson bracket is written as a biderivation
←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q such that

{f, g} = f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)
g = ∂qf ∂pg − ∂pf ∂qg .

For polynomials f and g , the Moyal product f ∗og is given by a formal exponential
of the biderivation

←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q such that

f ∗o g = fexp

{
i~
2

(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)}
g = f

∞∑
k=0

1
k!

(
i~
2

)k(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)k
g

= fg +
i~
2
f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)
g + 1

2!

(
i~
2

)2

f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)2
g

+ · · ·+ 1
k!

(
i~
2

)k

f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)k
g + · · ·

where ~ is a positive number.
The product is well-defined on polynomials, then by a direct calculation we easily
see that the Moyal product is associative. Besides, it is obvious that when ~ → 0,
the product converges: f ∗o g = fg+ i~

2 {f, g}+ · · · → fg. Therefore the product
f ∗o g is regarded as a deformation of the usual multiplication fg, which is an
origin of the concept of deformation quantization.
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Now we calculate the commutator of the functions p and q. We have

p ∗o q = p exp

{
i~
2

(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)}
q

= p

∞∑
k=0

1

k!

(
i~
2

)k (←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)k
q

= pq +
i~
2
p
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)
q = pq − i~

2
·

Similarly we see that

q ∗o p = pq +
i~
2

and that the functions p and q satisfy the canonical commutation relation under the
commutator of the product ∗o

[p, q]∗ = p ∗o q − q ∗o p = −i~.

Thus the associative product ∗o is satisfying the canonical commutation relations
on polynomials, and then we obtain the Weyl algebra given by the ordinary poly-
nomials with the product ∗o, (C[q, p], ∗o).

Using this Weyl algebra of polynomials (C[q, p], ∗o), we can obtain some results
of quantum mechanics, for example, the eigenvalues of harmonic oscillator which
is explained in the next section.

3. Star Product Calculation of Eigenvalues

We can calculate the eigenvalues of the harmonic oscillator and also of the MIC-
Kepler problem by means of the star product ∗o.

3.1. Harmonic Oscillator

Eigenvalues. The Schrödinger operator of the harmonic oscillator is

Ĥ = −~2

2

(
∂

∂q

)2

+
1

2
q2.

The eigenvalues are

En = ~(n+
1

2
), n = 0, 1, 2, · · · .

Parallel to the arguments in familiar text books, we can calculate the eigenvalues
En by using the star product ∗o and its eigenfunctions of p and q in the following
way.
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The classical hamiltonian function is

H =
1

2
(p2 + q2).

We take functions such as

a =
1√
2 ~

(q + ip), a† =
1√
2 ~

(q − ip).

Then we see easily that

a† ∗o a =
1

2 ~
(p ∗o p− i[p, q]∗ + q ∗o q) =

1

2 ~
{p · p− i · (−i~) + q · q}

and find also that a†∗o a = 1
2 ~(p

2+q2)− 1
2 . Then we have the identity of functions

H = ~(N +
1

2
), N := a† ∗o a.

The commutator of the functions a and a† with respect to the star product is easily
seen to be

[a, a†]∗ = a ∗o a† − a† ∗o a =
i

2 ~
2[p, q]∗ = 1.

Let us note that [a, a†]∗ = 1 is equivalent to a ∗o a† = a† ∗o a+ 1 = N + 1 , and
then we have the following commutation relation

N ∗o a† = (a† ∗o a) ∗o a† = a† ∗o (a ∗o a†) = a† ∗o (N + 1).

Now we set a function called a vacuum

f0 =
1

π ~
exp (−2 aa†) = 1

π ~
exp

{
−1

~
(p2 + q2)

}
.

Since ~ is positive, the function f0 is smooth at ~ = 0 and all its Taylor coefficients
are equal to 0. Remark here that the vacuum f0 vanishes in the space of formal
power series C∞(R2)[[~]].

We set also the function

fn =
1

n!
a† ∗o · · · ∗o a†︸ ︷︷ ︸

n

∗o f0 ∗o a ∗o · · · ∗o a︸ ︷︷ ︸
n

.

By a direct calculation we see

a ∗o f0 = f0 ∗o a† = 0

and then we have N ∗o f0 = a† ∗o a ∗o f = 0.
Using the commutation relation N ∗o a† = a† ∗o (N + 1), we have as well

N ∗o f1 = N ∗o (a† ∗o f0 ∗o a) = a† ∗o (N + 1) ∗o f0 ∗o a = f1 .
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In a similar manner we easily see that

N ∗o fn = fn ∗o N = n fn .

Since H = ~(N + 1
2) we have the solutions of the star eigenvalue problem

H ∗o fn = fn ∗o H = ~(n+
1

2
)fn = En fn, n = 0, 1, 2, · · · .

Thus we obtain the eigenvalues of the harmonic oscillator.

3.2. MIC-Kepler Problem (cf [4])

We apply the same method to the MIC-Kepler problem, namely the Kepler-problem
with Dirac’s monopole field.

Background. McIntosh and Cisneros [7] studied the dynamical system describing
the motion of a charged particle under the influence of Dirac’s monopole field be-
sides the Coulomb’s potential. Iwai-Uwano [2] gives the Hamiltonian description
for the MIC-Kepler problem. They have showed that the classical system of MIC-
Kepler problem is obtained by the S1-reduction or Marsden-Weinstein reduction
on the phase space. Recently the MIC-Kepler problem is generalized by Meng [8].
A non-formal star product quantizes classical systems on the phase space only
by means of deforming the algebra of functions on phase space with a deformed
product. Then we expect that the non-formal star product is capable to quantize
the MIC-Kepler problem by quantizing the Marsden-Weinstein reduction in a nat-
ural way. However, although formal star products quantize Marsden-Weinstein
reduction (cf. Fedosov, etc), we have no theory for the non-formal star product.

MIC-Kepler Problem. Now we introduce the MIC-Kepler problem.
We consider a closed two form Ω on Ṙ3 = R3 − {0} such that

Ω = ( q1 dq2 ∧ dq3 + q2 dq3 ∧ dq1 + q3 dq1 ∧ dq2)/r
3

where q = (q1, q2, q3) ∈ R3 and r =
√
q21 + q22 + q23 .

We consider the cotangent bundle T ∗Ṙ3 and equiped with the symplectic form

σµ = dp1 ∧ dq1 + dp2 ∧ dq2 + dp3 ∧ dq3 +Ωµ

where (q,p) = (q1, q2, q3, p1, p2, p3) ∈ T ∗Ṙ3 and the two-form

Ωµ = −µΩ

stands for Dirac’s monopole field of strength −µ ∈ R. Then the MIC-Kepler
problem is defined by the triple

(T ∗Ṙ3, σµ , Hµ )
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where Hµ is the Hamiltonian function

Hµ (q, p) =
1

2

(
p21 + p22 + p23

)
+
µ2

2r2
− k

r

in which k > 0 describes the Coulomb’s potential constant. When µ = 0, σµ is
the canonical symplectic form, and then the system is just the Kepler problem.

S1-Action. The MIC-Kepler problem is induced from the harmonic oscillator on
T ∗Ṙ4 by the Marsden-Weinstein reduction with S1-action as follows (for details
see Iwai-Uwano [2]).

We denote the points by y ∈ R4 and (y, η) ∈ T ∗R4. We identify a point in
T ∗R4 ∋ (y1, y2, y3, y4, η1, η2, η3, η4) with a point of C4 by the rule

T ∗R4 ∋ (y1, y2, y3, y4, η1, η2, η3, η4) 7→ (z1, z2, ζ1, ζ2) ∈ T ∗C2 = C4

where

z1 = y1 + i y2, z2 = y3 + i y4, ζ1 = η1 + i η2, ζ2 = η3 + i η4.

Then the canonical one form θ on T ∗R4 can be written as

θ(z, ζ) = Re (ζ̄ · dz).

The S1 action on the cotangent bundle T ∗Ṙ4 = T ∗(R4 − {0}) is given by

φt : (z, ζ) 7→ (eitz, eitζ), t ∈ R

which obviously preserves the canonical one form θ, and then it is an exact sym-
plectic action. The induced vector field v(z, ζ) on T ∗Ṙ4 of the action is

v(z, ζ) = (iz, i ζ).

Then a moment map ψ of the action is given by

ψ(z, ζ) = ιvθ(z, ζ) = Im ζ · z̄ = (ζ · z̄ − ζ̄ · z)/2 i.

S1-Reduction. Following the Marsden-Weinstein reduction theory, we consider a
level set of the moment map ψ−1(µ) for µ ∈ R. Then S1 acts on the level set
ψ−1(µ) and the induced S1-bundle

πµ : ψ−1(µ)→ ψ−1(µ)/S1

has the symplectic structure ωµ such that

ι∗µdθ = π∗µωµ

where ιµ : ψ−1(µ) → T ∗Ṙ4 is the inclusion map, and hence we have a reduced
symplectic manifold

(ψ−1(µ)/S1, ωµ).

Hence we obtain
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Proposition 1 (Iwai-Uwano [2]). The reduced phase space is diffeomorphic to the
symplectic manifold of the MIC-Kepler problem

(ψ−1(µ)/S1, ωµ) ≃ (T ∗Ṙ3, σµ)

Conformal Kepler Problem on T ∗Ṙ4. Now we consider a harmonic oscillator on
T ∗Ṙ4

H(z, ζ) =
1

2
|ζ|2 + 1

2
ω2 |z|2.

Iwai-Uwano [2] have introduced the conformal Kepler problem with the Hamil-
tonian

HCF (z, ζ) =
1

4|z|2
(H(z, ζ)− 4k)− 1

8
ω2 =

1

8|z|2
|ζ|2 − k

|z|2
·

The MIC-Kepler problem is the reduced hamitonian system of the conformal Ke-
pler problem, i.e.,

π∗µHµ = ι∗µHCF .

The conformal Kepler problem is related to the harmonic oscillator on T ∗Ṙ4 as

4|z|2
(
HCF (z, ζ) +

1

8
ω2

)
= H(z, ζ)− 4k

which induces a correspondence of energy surfaces such that

HCF = −1

8
ω2 ⇐⇒ H = 4k.

Star Product Calculation of the Eigenvalues. On eight-dimensional phase space
T ∗Ṙ4, we have the canonical Poisson bracket

←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q . Then by the same

way as the previous section, we have the following Moyal product ∗o

f ∗o g = f exp

{
i~
2

(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)}
g

= fg +
i~
2
f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)
g +

1

2!

(
i~
2

)2

f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)2
g

+ · · ·+ 1

n!

(
i~
2

)n

f
(←−
∂q ·
−→
∂p −

←−
∂p ·
−→
∂q

)n
g + · · ·
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Furthermore we consider the following functions

b1(z, ζ) =
1

2

(√
ω

~
z1 +

i√
ω~

ζ1

)
, b†1(z, ζ) = b1(z, ζ)

b2(z, ζ) =
1

2

(√
ω

~
z2 +

i√
ω~

ζ2

)
, b†2(z, ζ) = b2(z, ζ)

b3(z, ζ) =
1

2

(√
ω

~
z̄1 +

i√
ω~

ζ̄1

)
, b†3(z, ζ) = b3(z, ζ)

b4(z, ζ) =
1

2

(√
ω

~
z̄2 +

i√
ω~

ζ̄2

)
, b†4(z, ζ) = b4(z, ζ).

We see the commutators of these functions are

[bj , bl]∗ = [b†j , b
†
l ]∗ = 0, [bj , b

†
l ]∗ = δjl j, l = 1, 2, 3, 4.

Similarly as before we set

N = b†1 ∗o b1 + b†2 ∗o b2 + b†3 ∗o b3 + b†4 ∗o b4
and then we have

H = ~ω (N + 2).

In terms of bj and b†j the moment map ψ(z, ζ) is written as follows

ψ(z, ζ) =
~
2
(−b†1 ∗o b1 − b

†
2 ∗o b2 + b†3 ∗o b3 + b†4 ∗o b4)

We put the following functions for all j = 1, 2, 3, 4 as before

fj,0(z, ζ) =
1

π~
e−2 b

†
j bj

fj, nj (z, ζ) =
1

nj !
(b†j)

nj
∗ ∗o fj,0 ∗o (bj)

nj
∗ , nj = 0, 1, 2, · · ·

and introduce the following functions

fn = f1, n1 ∗o f2, n2 ∗o f3, n3 ∗o f4, n4 , n = n1 + n2 + n3 + n4.

Using these functions, we can calculate the eigenvalues of the MIC-Kepler problem
as follows. Similarly as before we easily see

H ∗o fn = ~ω(N + 2) ∗o fn = ~ω(n1 + n2 + n3 + n4 + 2) fn

and

ψ ∗o fn =
~
2
(−n1 − n2 + n3 + n4) fn.

Hence the energy level
H = 4k and ψ = µ
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is quantized respectively as

4k = ~ω(n1 + n2 + n3 + n4 + 2) (1)

and

µ =
~
2
(−n1 − n2 + n3 + n4). (2)

Since the corresponding energy levels are corresponding as

H = 4k ⇐⇒ HCF = −1

8
ω2

then the relation (1) yields that the quantized energy level of HCF is

−1

8
ω2 = − 2k2

~2(n1 + n2 + n3 + n4 + 2)2
·

Moreover the strength of the magnetic monopole −µ is quantized by the condition
(2).
Thus we have

Theorem 1. The eigenvalues of the MIC-Kepler problem with the strength of mag-
netic monople −~ m

2 , (m := −n1 − n2 + n3 + n4) is

En = − 2k2

~2(n+ 2)2
, n ≥ |m| and n±m ≡ 0 (mod 2).

The multiplicity of the eigenvalue En is

(n+m+ 2)(n−m+ 2)

4
·

This is the same as the ones given in Iwai-Uwano [3] and Mladenov-Tsanov [9].

4. Star Products (cf [11])

4.1. Definiton of Star Product

Now by generalizing the Moyal product, we define a star product. Notice here that
we consider on complex space Cn.

Biderivation. Let Λ be an arbitrary n×n complex matrix. We consider a bideriva-
tion

←−
∂wΛ
−→
∂w = (

←−
∂w1 , · · · ,

←−−
∂wn)Λ(

−→
∂w1 , · · · ,

−−→
∂wn) =

n∑
k,l=1

Λkl
←−
∂wk

−→
∂wl

where (w1, · · · , wn) is a generators of complex polynomials.
Now we define a star product similarly by the formula
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Definition 1.
f ∗Λ g = f exp

{
i~
2

(←−
∂wΛ
−→
∂w

)}
g .

Then we see easily

Theorem 2. For an arbitrary Λ, the star product ∗Λ is a well-defined associative
product on complex polynomials.

Remark 1 (∗Λ covers various products). i) The star product ∗Λ is a general-
ization of the well-known star products. Actually

• if we put Λ =

(
0 −1
1 0

)
= J0 , then we have the Moyal product

• if we choose Λ =

(
0 0
2 0

)
we have the normal product

• if we take Λ =

(
0 −2
0 0

)
we have the anti-normal product.

ii) If Λ is a symmetric matrix, the star product ∗Λ is commutative. Further-
more, if Λ is a zero matirx, then the star product is nothing but a usual
multiplication product.

Equivalence. For a complex matrix Λ we consider the decomposition

Λ = J +K

where J is the skew-symmetric part and K is the symmetric part of Λ repsectively.
Let

Λ1 = J +K1, Λ2 = J +K2

be complex matrices with common skew-symmetric part. Then we have the fol-
lowing equivalence.

Proposition 2. We have an Weyl algebra isomorphism IK2
K1

: (C[u, v], ∗Λ1
) →

(C[u, v], ∗Λ2
) given by the power series of the differential operator ∂w(K2−K1)∂w

such that

IK2
K1

(f) = exp

{
i~
4
∂w(K2 −K1)∂w

}
(f)

where ∂w(K2 −K1)∂w =
∑
k,l

(K2 −K1)kl ∂wk
∂wl

.

By a direct calculation we have

Theorem 3. Then isomorphisms satisfy the following chain rule

1. IK1
K3
IK3
K2
IK2
K1

= Id

2.
(
IK2
K1

)−1
= IK1

K2
.
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4.2. Star Product Representation

Suppose n = 2m and let J0 be a skew-symmetric matrix such that

J0 =

(
0 −1
1 0

)
.

Let us consider a complex matrix

Λ = J0 +K

where K is an arbitrary 2m× 2m complex symmetric matrix.
Since Λ is determined by the complex symmetric matrix K, we denote the star
product by ∗K instead of ∗Λ .
We denote the variables by (w1, · · · , w2m) = (u1, · · · , um, v1, · · · , vm).
Then we obtain for an arbitrary K

Proposition 3. i) For a star product ∗K , the generators (u1, . . . , um,
v1, . . . , vm) satisfy the canoical commutation relations

[uk, vl]∗ = −i~δkl, [uk, ul]∗ = [vk, vl]∗ = 0, k, l = 1, 2, . . . ,m.

ii) Then the algebra (C[u, v], ∗K ) is isomorphic to the Weyl algebra, and the
algebra is regarded as a polynomial representation of the Weyl algebra.

Remark 2. By the previous proposition we see the algebras (C[u, v], ∗K ) are mu-
tually isomorphic and isomorphic to the Weyl algebra. Then these are the same
(i.e., isomorphic) at the algebra level. However when we consider exponetinal
elements of this algebra, the difference of the expressions plays an important role.

4.3. Star Exponentials

Idea of Definition. For a polynomialH∗ in the star product algebra (C[w], ∗Λ), we

would like to define a star exponential e
tH∗

i~
∗ . However, except special cases, the

expansion ∑
n

tn

n!

(
H∗
i~

)n

=
∑
n

tn

n!

(
H∗
i~

)
∗Λ · · · ∗Λ

(
H∗
i~

)
︸ ︷︷ ︸

n

is not convergent. Then we define a star exponential by means of the differential
equation as follows.

Definition 2. The star exponential e
tH∗

i~
∗ is given as a solution of the following

differential equation
d

dt
Ft = H∗ ∗Λ Ft, F0 = 1.
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For the case where H∗ is linear or quadratic polynomials, we have explicit solu-
tions.

Example 1 (Linear case). We denote a linear polynomial by l =
2m∑
j=1

ajwj . Then

we have the following proposition.

Proposition 4. For l =
∑
j

ajwj = ⟨a,w⟩, the star exponential with respect to

the product ∗Λ is

e
t l
i~
∗ = exp

(
t2
aKa

4i~

)
exp

(
t
l

i~

)
.

Example 2 (Quadratic case). We limit the case where J = J0 , namely the algebra
(C[w], ∗K ) is the Weyl algebra.

Proposition 5. For a quadratic polynomialQ∗ = ⟨wA,w⟩∗ whereA is a 2m×2m
complex symmetric matrix

e
tQ∗

i~
∗ =

2m√
det(I − κ+ e−2tα(I + κ))

e
1
i~ ⟨w

1
I−κ+e−2tα(I+κ)

(I−e−2tα)J0,w⟩

where κ = KJ0 and α = AJ0 .

4.4. Star Functions

Using star exponentials, we can consider several star functions following the stan-
dard method in text book for ordinary exponential functions.

In what follows, we consider the star product for the simplest case. We consider
functions f(w), g(w) of one variable w ∈ C and a commutative star product ∗τ
with complex parameter τ such that

f(w) ∗τ g(w) = f(w) e
τ
2

←−
∂ w
−→
∂ wg(w).

4.4.1. Star Hermite Function
Recall the identity

exp

(√
2 tw − 1

2
t2
)

=

∞∑
n=0

Hn(w)
tn

n!

whereHn(w) is an Hermite polynomial. By applying the explicit formula of linear
case e

t(l/i~)
∗ = et

2aKa/4i~ et(l/i~) for l = w, we get

exp∗(
√
2 tw∗)τ=−1 = exp

(√
2 tw − 1

2
t2
)
.
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Since exp∗ (
√
2 tw∗) =

∑∞
n=0(
√
2w∗)

n tn

n! we have

Hn(w) = (
√
2w∗)

n
τ=−1 .

We define ∗-Hermite function by

Hn(w, τ) = (
√
2w∗)

n, n = 0, 1, 2, · · ·

with respect to ∗τ product and then

exp∗(
√
2 tw∗) =

∞∑
n=0

Hn(w, τ)
tn

n!
·

Identities. Trivial identity d
dt exp∗(

√
2 tw∗) =

√
2w ∗exp∗(

√
2 tw∗) for the prod-

uct ∗τ yields the identity
τ√
2
H ′n(w, τ) +

√
2wHn(w, τ) = Hn+1(w, τ), n = 0, 1, 2, · · ·

for every τ ∈ C.
The exponential law

exp∗

(√
2 sw∗

)
∗ exp∗

(√
2 tw∗

)
= exp∗

(√
2 (s+ t)w∗

)
for the product ∗τ yields the identity∑

k+l=n

n!

k!l!
Hk(w, τ) ∗τ Hl(w, τ) = Hn(w, τ)

for every τ ∈ C.

4.4.2. Star Theta Function
We can express the Jacobi’s theta functions by using star exponentials.

Using the formula for the linear case, a direct calculation gives

exp∗τ itw = exp
(
i tw − (τ/4)t2

)
.

Hence for Re τ > 0, the star exponential exp∗τ niw = exp(niw − (τ/4)n2) is
rapidly decreasing with respect to integer n and then the summation converges to
give
∞∑

n=−∞
exp∗τ 2niw =

∞∑
n=−∞

exp
(
2niw − τ n2

)
=

∞∑
n=−∞

qn
2
e2niw, q = e−τ

The exponential law of the star exponential yields trivial identities such that

exp∗τ 2iw ∗τ θk∗τ (w) = θk∗τ (w), k = 2, 3

exp∗τ 2iw ∗τ θk∗τ (w) = −θk∗τ (w), k = 1, 4.
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Then using exp∗τ 2iw = e−τe2iw and the product formula directly we deduce that
the above identities are just

e2iw−τθk∗τ (w + i τ) = θk∗τ (w), k = 2, 3

e2iw−τθk∗τ (w + i τ) = −θk∗τ (w), k = 1, 4.

4.4.3. ∗-Delta Functions

Since the ∗τ -exponential exp∗(i tw∗) = exp(i tw − τ
4 t

2) is raidly decreasing with
respect to t when Re τ > 0. Then the integral of ∗τ -exponential∫ ∞
−∞

exp∗(it(w−a)∗)dt =
∫ ∞
−∞

exp∗(it(w−a)∗)dt =
∫ ∞
−∞

exp(it(w−a)−τ
4
t2)dt

converges for any a ∈ C. We can introduce a star δ-function

δ∗(w − a) =
∫ ∞
−∞

exp∗(i t(w − a)∗) dt

which has a meaning at τ with Re τ > 0. It is easy to see for any element p∗(w) ∈
P∗(C)

p∗(w) ∗ δ∗(w − a) = p(a)δ∗(w − a), w∗ ∗ δ∗(w) = 0.

Using the Fourier transform we have

Proposition 6.

θ1∗(w) =
1

2

∞∑
n=−∞

(−1)nδ∗(w +
π

2
+ nπ)

θ2∗(w) =
1

2

∞∑
n=−∞

(−1)nδ∗(w + nπ)

θ3∗(w) =
1

2

∞∑
n=−∞

δ∗(w + nπ)

θ4∗(w) =
1

2

∞∑
n=−∞

δ∗(w +
π

2
+ nπ).
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Now, we consider the τ with the condition Re τ > 0. We calcultate the integral
and obtain δ∗(w − a) = 2

√
π√
τ
exp

(
− 1

τ (w − a)
2
)
. Then we have

θ3(w, τ) =
1

2

∞∑
n=−∞

δ∗(w + nπ) =

∞∑
n=−∞

√
π√
τ
exp

(
−1

τ
(w + nπ)2

)

=

√
π√
τ
exp

(
−1

τ

) ∞∑
n=−∞

exp

(
−2n1

τ
w − 1

τ
n2τ2

)
=

√
π√
τ
exp

(
−1

τ

)
θ3∗

(
2πw

i τ
,
π2

τ

)
.

We also have similar identities for other ∗-theta functions by the similar way.
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