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Abstract. Our main idea is to suggest a new model of non-perturbative and
geometrically motivated nonlinearity in quantum mechanics. The Schrödin-
ger equation and corresponding relativistic linear wave equations derivable
from variational principles are analyzed as usual self-adjoint equations of
mathematical physics. It turns out that introducing the second-order time
derivatives to dynamical equations, even as small corrections, can help to
obtain the regular Legendre transformation. Following the conceptual transi-
tion from the special to general theory of relativity, where the metric tensor
loses its status of the absolute geometric object and becomes included into
degrees of freedom (gravitational field), in our treatment the Hilbert-space
scalar product becomes a dynamical quantity which satisfies together with
the state vector the system of differential equations. The structure of ob-
tained Lagrangian and equations of motion is very beautiful, as usually in
high-symmetry problems.
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Introduction

It is well known that quantum mechanics is still plagued with some paradoxes
concerning

• decoherence
• measurement process
• reduction of the state vector.
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There is an opinion that the main concern is the linearity of the Schrödinger equa-
tion which seems to be drastically incompatible with the above-mentioned prob-
lems. But at the same time the linearity works well when

• describing the unobserved unitary quantum evolution
• finding the energy levels
• in all statistical predictions.

It seems that we deal here with a very sophisticated and delicate nonlinearity which
becomes active and remarkable just in the process of interaction between quantum
systems and “large” classical objects.
Therefore, the main idea is to analyze the Schrödinger equation and corresponding
relativistic linear wave equations as usual self-adjoint equations of mathematical
physics which are derivable from variational principles. It is easy to construct their
Lagrangians, but some problems appear when trying to formulate Hamiltonian for-
malism, because Lagrangians for the Schrödinger or Dirac equations are highly
degenerate and the corresponding Legendre transformation is non-invertible and
leads to constraints in the phase space. Nevertheless, using the Dirac formalism
for such Lagrangians, one can find the corresponding Hamiltonian formalism.
Incidentally, it turns out that introducing the second-order time derivatives to dy-
namical equations, even as small corrections, one can obtain the regular Legendre
transformation. In non-relativistic quantum mechanics there are certain hints sug-
gesting just such a modification in the nano-scale physics [3, 4]

1. As the first step a formal analogy between the quantum Fourier equation
which describes the heat (or mass) diffusion on the atomic level and the
free Schrödinger equation is constructed with the help of the following sub-
stitution

∂T

∂t
=

~
m
∇2T

where t → it/2 and T → ψ, then we obtain the free Schrödinger equation
as it was expected

i~
∂ψ

∂t
= − ~2

2m
∇2ψ.

2. Then the complete Schrödinger equation with the potential term V

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ

after the reverse substitutions t → −2it and ψ → T gives us the parabolic
quantum Fokker-Planck equation

∂T

∂t
=

~
m
∇2T − 2V

~
T
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which describes the quantum heat transport for time intervals ∆t > τ ,
where τ = ~/mα2c2 ∼ 10−17 sec, and distances cτ ∼ 1 nm.

3. From the other side for ultrashort time processes when ∆t < τ one can
obtain the generalized quantum hyperbolic heat transport equation

τ
∂2T

∂t2
+
∂T

∂t
=

~
m
∇2T − 2V

~
T

which leads us to the second-order modified Schrödinger equation

2τ~
∂2ψ

∂t2
+ i~

∂ψ

∂t
= − ~2

2m
∇2ψ + V ψ

in which the additional term describes the interaction of electrons with sur-
rounding space-time filled with virtual positron-electron pairs.

This situation also reminds us the other problem of Klein-Gordon-Dirac equation
studied in a bit different context motivated by the idea of conformal invariance
[1, 5, 6]. There the wave equation with the superposition of Dirac and d’Alembert
operators were studied.
The main idea of our approach is to follow the conceptual transition from special
to general theory of relativity [2]

• in specially-relativistic theories the metric tensor is fixed once for all as an
absolute geometric object, whereas all physical fields are “flexible” and sat-
isfy differential equations as a rule derivable from the variational principle

• in generally-relativistic theories the metric tensor becomes “flexible” as
well, it is included into degrees of freedom and satisfies differential equa-
tions together with the other “physical” fields; moreover it becomes itself
the physical field, in this case the gravitational one.

Similarly, in our treatment the Hilbert-space scalar product becomes a dynamical
quantity which satisfies (together with the state vector) the system of differential
equations.
So, the main idea is that there is no fixed scalar product metric and the dynamical
term of Lagrangian describing the self-interaction of the metric is invariant under
the total group GL(n,C). But this invariance is possible only for models non-
quadratic in the metric, just like in certain problems of the dynamics of affinely-
rigid bodies [9–11].
There is a natural metric of this kind and it introduces to the theory a very strong
nonlinearity which induces also the effective nonlinearity of the wave equation
even if there is no “direct nonlinearity” in it. The structure of Lagrangian and
equations of motion is very beautiful as usually in high-symmetry problems. Nev-
ertheless, the very strong nonlinearity prevents us from finding a rigorous solution.
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But some partial results are possible if we fix the behaviour of the wave function to
some simple form, then for the scalar product behaviour there are rigorous expo-
nential solutions, including ones which are infinitely growing and ones which are
exponentially decaying in the future. This makes some hope for describing, e.g.,
some decay/reduction phenomena.
So, we are dealing with two kinds of degrees of freedom, i.e., the dynamical vari-
ables: the wave function and the scalar product, which are mutually interacting.

1. N -Level Quantum System in the N -Dimensional “Hilbert” Space

Let us interpret the unitary evolution of a quantum system described by the Schrö-
dinger equation as a Hamiltonian system on Hilbert space [2, 7, 8]. The most con-
venient way to visualize this is to start from finite-dimensional, i.e., “n-level”,
quantum system (n <∞). Then we can define the “wave function” as a following
n-vector

ψ =

 ψ
1

...
ψn

 , ψa = ψ(a) ∈ C.

Let H be a unitary space (n-dimensional “Hilbert space” Cn) with the scalar prod-
uct (a sesquilinear hermitian form) defined as follows

G : H ×H → C.

Let us consider the following most general form of the Lagrangian admitting the
second time derivatives of both the wave function ψ and scalar product G

L = α1iGāb

(
ψāψ̇b − ψ̇āψb

)
+ α2Gābψ̇

āψ̇b

+α3

[
Gbā + α9ψ

āψb
]
Ġāb +Ω[ψ,G]dc̄bāĠābĠc̄d (1)

+ [α4Gāb + α5Hāb]ψ
āψb − V (ψ,G)

where the introduced auxiliary object Ω[ψ,G] is defined as follows

Ω[ψ,G]dc̄bā = α6

[
Gdā + α9ψ

āψd
] [
Gbc̄ + α9ψ

c̄ψb
]

+α7

[
Gbā + α9ψ

āψb
] [
Gdc̄ + α9ψ

c̄ψd
]

+α8 ψ
āψbψc̄ψd

and it satisfies also the following symmetry condition

Ω[ψ,G]dc̄bā = Ω[ψ,G]bādc̄.

In the above formulae ψā = ψa denotes the usual complex conjugation and αi,
i = 1, ..., 9, κ are some constants.
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The interpretation of the consecutive terms in Lagrangian (1) is as follows

• the first and second terms (those with α1 and α2) describe the free evolution
of wave function ψ while G is fixed

• the third term (that with α4) describes the trivial part of the linear dynamics
and it can be also taken in the more general form

f
(
Gābψ

āψb
)

where f : R → R
• the forth term (that with α5) corresponds to the Schrödinger dynamics while
G is fixed and then

Ha
b = Gac̄Hc̄b

is the usual Hamilton operator (if we properly choose the constants α1 and
α5, then we obtain precisely the Schrödinger equation — see Section 5.2)

• the next two terms (those linear and quadratic in the time derivatives of G)
describe the dynamics of the scalar product G

• and the last term is the potential V (ψ,G) which can be taken, for instance,
in the following quartic form

V (ψ,G) = κ
(
Gābψ

āψb
)2
.

2. GL(n,C)-Invariance and Conservation Laws

So, if we investigate the invariance of our general Lagrangian (1) under the group
GL(n,C) and consider some one-parameter group of transformations

{exp (Aτ) ; τ ∈ R} , A ∈ L(n,C)

then the infinitesimal transformations rules for ψ and G are as follows

ψa 7→ La
bψ

b, Gac̄ 7→ La
bL

c̄
ēG

bē, Gāb 7→ Gc̄dL−1c̄
āL

−1d
b

where

La
b = δab + ϵAa

b, L−1a
b ≈ δab − ϵAa

b, ϵ ≈ 0.

So leaving only the first-order terms with respect to ϵ we obtain that the variations
of ψ and G are as follows

δψa = ϵAa
bψ

b, δψā = ϵAā
c̄ψ

c̄

δGac̄ = ϵ
(
Aa

bG
bc̄ +Ac̄

ēG
aē
)
, δGāb = −ϵ

(
Gc̄bA

c̄
ā +GādA

d
b

)
.
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Then

1

ϵ

(
∂L

∂ψ̇ā
δψā +

∂L

∂ψ̇b
δψb

)
= Gāb

(
α2ψ̇

ā + α1iψ
ā
)
Ab

dψ
d

+Gāb

(
α2ψ̇

b − α1iψ
b
)
Aā

c̄ψ
c̄ (2)

and

1

ϵ

∂L

∂Ġāb

δGāb = −
[
α3

(
δbf + α9Gāfψ

āψb
)
+ 2Ω[ψ,G]bādc̄Gāf Ġc̄d

]
Af

b

(3)

−
[
α3

(
δāē + α9Gēbψ

āψb
)
+ 2Ω[ψ,G]bādc̄GēbĠc̄d

]
Aē

ā.

If we consider some fixed scalar product G0 and take the G0-hermitian A’s, then

Aa
b = G0

ac̄Ãc̄b, A
ā
c̄ = Ãc̄bG

bā
0 , Ã† = Ã

and therefore the expressions (2) and (3) are written together in the matrix form as
follows

J (A) = Tr
(
V Ã
)

where the hermitian tensor V describing the system of conserved physical quanti-
ties is given as follows

V = α2

(
ψψ̇†GG−1

0 +G−1
0 Gψ̇ψ†

)
+(α1i− α3α9)ψψ

†GG−1
0 − (α1i + α3α9)G

−1
0 Gψψ†

−2α3G
−1
0 − 2

(
G−1

0 Gω[ψ,G] + ω[ψ,G]GG−1
0

)
where

ω [ψ,G]bā = Ω [ψ,G]bādc̄ Ġc̄d.

Similarly for the G0-antihermitian A’s, i.e., when Ã† = −Ã, we obtain another
hermitian tensor W as a conserved value

J (A) = Tr
(
iWÃ

)
where

iW = α2

(
ψψ̇†GG−1

0 −G−1
0 Gψ̇ψ†

)
+(α1i− α3α9)ψψ

†GG−1
0 + (α1i+ α3α9)G

−1
0 Gψψ†

+2
(
G−1

0 Gω[ψ,G]− ω[ψ,G]GG−1
0

)
.
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3. Euler-Lagrange Equations of Motion

Applying the variational procedure we obtain the following Euler-Lagrange equa-
tions of motion for the system “wave function + flexible scalar products” which
are essentially nonlinear (this is the non-perturbative nonlinearity, i.e., it cannot be
interpreted as an artificial extra correction to some basic linear background)

δL

δψā
= α2Gābψ̈

b +
(
α2Ġāb − 2α1iGāb

)
ψ̇b − 2α8Ġābψ

bĠc̄dψ
c̄ψd

−2α9

(
α6ĠādĠc̄b + α7ĠābĠc̄d

)
ψb
(
Gdc̄ + α9ψ

c̄ψd
)

+
[(

2κGc̄dψ
c̄ψd − α4

)
Gāb − α5Hāb − [α3α9 + α1i] Ġāb

]
ψb = 0

and

δL

δGāb
= 2Ω[ψ,G]bādc̄G̈c̄d + 2Ω̇[ψ,G]bādc̄Ġc̄d +

(
2κGc̄dψ

c̄ψd − α4

)
ψāψb

+2Gdā
[
α6G

bē
(
Gfc̄ + α9ψ

c̄ψf
)
+ α7G

bc̄
(
Gfē + α9ψ

ēψf
)]
Ġc̄dĠēf

−α2ψ̇
āψ̇b + [α3α9 + α1i] ψ̇

āψb + [α3α9 − α1i]ψ
āψ̇b = 0.

The explicit form of the time derivative of the auxiliary object Ω[ψ,G] can be
written as follows

Ω̇[ψ,G]bādc̄ = α8

(
ψ̇āψbψc̄ψd + ψāψ̇bψc̄ψd + ψāψbψ̇c̄ψd + ψāψbψc̄ψ̇d

)
+α6α9

([
ψ̇āψd + ψāψ̇d

] [
Gbc̄ + α9ψ

c̄ψb
]

+
[
ψ̇c̄ψb + ψc̄ψ̇b

] [
Gdā + α9ψ

āψd
])

+α7α9

([
ψ̇āψb + ψāψ̇b

] [
Gdc̄ + α9ψ

c̄ψd
]

+
[
ψ̇c̄ψd + ψc̄ψ̇d

] [
Gbā + α9ψ

āψb
])

−α6

[
GdēGfā

(
Gbc̄ + α9ψ

c̄ψb
)

+ GbēGfc̄
(
Gdā + α9ψ

āψd
)]
Ġēf

−α7

[
GbēGfā

(
Gdc̄ + α9ψ

c̄ψd
)

+ GdēGfc̄
(
Gbā + α9ψ

āψb
)]
Ġēf .



202 Vasyl Kovalchuk

4. Canonical Formalism and Hamiltonian

The above obtained Euler-Lagrange equations of motion may be expressed in
Hamiltonian terms. Therefore, the Legendre transformations leads us to the fol-
lowing canonical variables

πb =
∂L

∂ψ̇b
= α2Gābψ̇

ā + α1iGābψ
ā (4)

πā =
∂L

∂ψ̇ā
= α2Gābψ̇

b − α1iGābψ
b (5)

πāb =
∂L

∂Ġāb

= α3

[
Gbā + α9ψ

āψb
]
+ 2Ω[ψ,G]bādc̄Ġc̄d. (6)

The energy of our n-level Hamiltonian system is given as follows

E = ψ̇ā ∂L

∂ψ̇ā
+ ψ̇b ∂L

∂ψ̇b
+ Ġāb

∂L

∂Ġāb

− L

= α2Gābψ̇
āψ̇b−(α4Gāb + α5Hāb)ψ

āψb+Ω[ψ,G]ābc̄dĠābĠc̄d+κ
(
Gābψ

āψb
)2
.

Inverting the expressions (4)–(6) we obtain that

ψ̇ā =
1

α2
Gbāπb −

α1

α2
iψā, ψ̇b =

1

α2
Gbāπā +

α1

α2
iψb

(7)

Ġāb =
1

2
Ω[ψ,G]−1

ābc̄d

(
πc̄d − α3

[
Gdc̄ + α9ψ

c̄ψd
])

where

Ω[ψ,G]−1
ābc̄d = Λ[ψ,G]−1

ābc̄d

− α8

1 + α8θ[ψ,G]
Λ[ψ,G]−1

ābēfψ
ēψfΛ[ψ,G]−1

c̄dḡhψ
ḡψh

Λ[ψ,G]−1
ābc̄d =

1

α6
λ[ψ,G]−1

ād λ[ψ,G]
−1
c̄b

− α7

α6 (α6 + nα7)
λ[ψ,G]−1

āb λ[ψ,G]
−1
c̄d

λ[ψ,G]−1
āb = Gāb −

α9

1 + α9Gēfψēψf
GādGc̄bψ

c̄ψd

and

θ[ψ,G] = Λ[ψ,G]−1
ābc̄dψ

āψbψc̄ψd =
α6 + (n− 1)α7

α6 (α6 + nα7)

(
Gābψ

āψb

1 + α9Gc̄dψc̄ψd

)2

.
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So, finally the Hamiltonian has the following form

H =
1

α2
Gbāπāπb +

1

4
Ω[ψ,G]−1

ābc̄dπ
ābπc̄d

+
α1

α2
i
(
ψbπb − ψāπā

)
− α3

2
Ω[ψ,G]−1

ābc̄d

[
Gbā + α9ψ

āψb
]
πc̄d

+
α2
3

4
Ω[ψ,G]−1

ābc̄d

[
Gbā + α9ψ

āψb
] [
Gdc̄ + α9ψ

c̄ψd
]

−
[(
α4 −

α2
1

α2

)
Gāb + α5Hāb

]
ψāψb + κ

(
Gābψ

āψb
)2
.

5. The Special Cases

5.1. The Pure Dynamics for the Scalar Product G

The equations of motion for the pure dynamics of scalar product G while the wave
function ψ is fixed are written as follows

Ω[ψ,G]bādc̄G̈c̄d =
(α4

2
− κGc̄dψ

c̄ψd
)
ψāψb

+α7G
dēGfc̄Ġc̄dĠēf

(
Gbā + α9ψ

āψb
)

+α6Ġc̄dĠēf

(
γ[ψ,G]bēf c̄dā + γ[ψ,G]fādēbc̄ − γ[ψ,G]bēdāf c̄

)
where

γ[ψ,G]fēdc̄bā = GfēGdc̄
(
Gbā + α9ψ

āψb
)
.

If we additionally suppose that α4 = α8 = α9 = κ = 0, then the above expression
simplifies significantly(

α6G
bc̄Gdā + α7G

bāGdc̄
)(

G̈c̄d − Ġc̄fG
fēĠēd

)
= 0.

Hence, the pure dynamics of the scalar product is described by the following equa-
tions

G̈āb − ĠādG
dc̄Ġc̄b = 0.

Let us now demand that ĠG−1 is equal to some constant value E, i.e., Ġ = EG,
then

G̈ = EĠ = E2G

and
ĠG−1Ġ = EGG−1EG = E2G.

Therefore our equations of motion are fulfilled automatically and the solution is as
follows

G(t)āb = [exp(Et)]c̄ āG0c̄b.
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Similarly if we demand that G−1Ġ is equal to some other constant E′, then

Ġ = GE′, G̈ = ĠE′2 = GE′2

ĠG−1Ġ = GE′G−1GE′ = GE′2.

The equations of motion are also fulfilled and the solution is as follows

G(t)āb = G0ād

[
exp(E′t)

]d
b.

The connection between these two different constants E and E′ is written below

Ġ(0) = Ġ0 = G0E
′ = EG0.

5.2. Usual and First-Order Modified Schrödinger Equations

The second interesting special case is obtained when we suppose that the scalar
product G is fixed, i.e., the equations of motion are as follows

α2ψ̈
a − 2α1iψ̇

a +
(
2κGc̄dψ

c̄ψd − α4

)
ψa − α5H

a
bψ

b = 0.

Then if all constants of model vanish except of the following ones

α1 =
~
2
, α5 = −1

we end up with the well-known usual Schrödinger equation

i~ψ̇a = Ha
bψ

b.

Its first-order modified version is obtained when we suppose that G is a dynamical
variable and α2 is equal to zero, i.e.,

i~ψ̇a = Ha
bψ

b −
[
i~
2
+ α3α9

]
Gac̄Ġc̄bψ

b

+
(
2κGc̄dψ

c̄ψd − α4

)
ψa − 2α8G

ac̄Ġc̄bψ
bĠēdψ

ēψd

−2α9G
ac̄
(
α6Ġc̄dĠēb + α7Ġc̄bĠēd

)
ψb
(
Gdē + α9ψ

ēψd
)

and

2Ω[ψ,G]bādc̄G̈c̄d =

[
i~
2
− α3α9

]
ψāψ̇b −

[
i~
2
+ α3α9

]
ψ̇āψb

−2Gdā
[
α6G

bē
(
Gfc̄ + α9ψ

c̄ψf
)

+ α7G
bc̄
(
Gfē + α9ψ

ēψf
)]
Ġc̄dĠēf

−
(
2κGc̄dψ

c̄ψd − α4

)
ψāψb − 2Ω̇[ψ,G]bādc̄Ġc̄d.
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We can rewrite the above equation of motion for ψ in the following form

i~ψ̇a = Heff
a
bψ

b

where the effective Hamilton operator is given as follows

Heff
a
b = Ha

b −
[
i~
2
+ α3α9

]
Gac̄Ġc̄b

+
(
2κGc̄dψ

c̄ψd − α4

)
δab − 2α8G

ac̄Ġc̄bĠēdψ
ēψd

−2α9G
ac̄
(
α6Ġc̄dĠēb + α7Ġc̄bĠēd

)(
Gdē + α9ψ

ēψd
)
.

Final Remarks

Let us summarize the presented ideas. We started from introducing the first- and
second-order in time modified Schrödinger equation for a finite-level quantum sys-
tem. We also constructed the “direct nonlinearity” as a non-quadratic term in the
Lagrangian and included the scalar product metric into the dynamical variables for
which we obtained the separate equations of motion. As usually in high-symmetry
problems the structure of Lagrangian and resulting equations of motion is very
beautiful but strongly nonlinear which prevented us from finding a rigorous ana-
lytical solution of the problem. Nevertheless, there is the special case when we
fixed the behaviour of the wave function and the resulting behaviour of the scalar
product allowed the rigorous exponential solutions, including ones infinitely grow-
ing and exponentially decaying in the future. This makes some hope for describing
some quantum decay/reduction phenomena, although the full answer will be pos-
sible only when we find a rigorous solution for the total system.
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