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Abstract. The Kepler problem for planetary motion is a two-body dynamic
model with an attractive force obeying the inverse square law, and has a direct
analogue in any dimension. While the magnetized Kepler problems were
discovered in the late 1960s, it is not clear until recently that their higher
dimensional analogues can exist at all. Here we present a possible route
leading to the discovery of these high dimensional magnetized models.

1. The Kepler Problem and its High Dimensional Analogues

The Kepler problem is the mathematical model for a solar system with a single
planet or an atom with a single electron, depending on whether it is considered
classically or quantum mechanically. At the classical level, this is a dynamic prob-
lem with configuration space R3

∗ := R3 \ {0} and equation of motion

r′′ = − r

r3
(1)

where r is a function of time t taking value in R3
∗, r = |r| and r′′ is the second

time-derivative of r. Since the force on the left hand side of equation (1) is a central
force, the angular momentum L := r × r′ is a constant of motion. A hidden fact
is that the Runge-Lenz vector A := L× r′ +

r

r
is a constant of motion. Although

the Runge-Lenz vector has been re-discovered several times [3], ironically, neither
Carl Runge nor Wilhelm Lenz discovered it.
The intrinsic version of the angular momentum is the two-vector

L := r ∧ r′
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in term of which, the Runge-Lenz vector can be written as

A := r′yL+
r

r

where y is the interior product. Note that L and A are still constants of motion
even if we replace the configuration space R3

∗ by Rn
∗ for a generic positive integer

n. This implies that a dynamic problem with equation (1) as its equation of motion
in Rn

∗ behaviors like the Kepler problem. In fact, a simple computation shows that
L ∧A = 0 and

L ∧ r = 0, r −A.r = |L|2. (2)

Therefore, if L ̸= 0, equation (2) implies that r lies in a plane determined by L,
moreover, the orbit is a conic with the Runge-Lenz vector A as its eccentricity
vector. It is not hard to see that the total energy for a motion with this orbit is

E = −1− |A|2

2|L|2
· (3)

Hereafter, this analogous dynamical problem in dimension n shall be referred to as
the Kepler problem in dimension n, and its non-colliding orbits (i.e., the ones with
L ̸= 0) shall be referred to as the Kepler orbits.
To continue the discussion in this article, we need to review the notions of poly-
vectors in the Euclidean space Rn or the Lorentz space R1,n, plus the wedge prod-
uct, interior product, and inner product involving the poly-vectors.

1.1. Notations and Conventions

Boldface Latin letters are reserved for vectors in the Euclidean space Rn only,
and the inner product (i.e., the dot product) of the vectors u and v is written as
u.v. Vectors in the Lorentz space R1,n are referred to as Lorentz vectors. For the
Lorentz vectors a = (a0,a) and b = (b0,b), the (Lorentz) inner product of a and
b, written as a.b, is defined as

a0b0 − a.b.

The vector r is reserved for a point in Rn, and the Lorentz vector x is reserved for
a point in R1,n. We often write x = (x0, r) rather than (x0,x). For the standard
basis vectors e0, e1, . . . , en in R1,n, we have e0.e0 = 1 and ei.ei = −1 for i > 0.
When we view the Lorentz ei (i > 0) as a vector inside the subspace Rn, we write
it as ei.
Let V be either Rn or R1,n, and let k > 0 be an integer. A k-vector in V is just an
element of ∧kV . A one-vector is just a vector. A k-vector is called decomposable
if it is the wedge product of k vectors.
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The inner product extends from vectors to poly-vectors and is denoted by ⟨ , ⟩. By
definition, for vectors u1, . . . , uk and v1, . . . , vk in V , let [ui.vj ] be the square
matrix whose (i, j)-entry is ui.uj . Then

⟨u1 ∧ . . . ∧ uk, v1 ∧ . . . ∧ vk⟩ = det[ui.vj ].

We define the interior product y as the adjoint of the wedge product with respect
to the inner product for poly-vectors: for poly-vectors X , u, and v in V with
degX + deg u = deg v, we have

⟨X ∧ u, v⟩ = ⟨u,Xyv⟩.

For any poly-vector X , we write X2 for ⟨X,X⟩. When ⟨X,X⟩ ≥ 0, we write |X|
for

√
⟨X,X⟩. We always write r for |r|. Finally, we remark that a poly-vector X

in Rn is also viewed as a poly-vector X in R1,n in a natural way.
By an orthochronous Lorentz transformation of R1,n we mean a Lorentz transfor-
mation which leaves invariant the future light cone. The group of orthochronous
Lorentz transformations of R1,n shall be denoted by O+(1, n), a Lie subgroup of
O(1, n) of index two. We shall let Strn be the subgroup of GL(n + 1,R) which
leaves the future light cone invariant, so Strn = R+ ×O+(1, n).

2. The Light Cone Formulation

The Kepler problem in dimension n has a mathematically appealing formulation
in the Lorentz space R1,n, as explicitly pointed out in reference [10]. To see this,
we observe that Rn

∗ is diffeomorphic to the future light cone

{x ∈ R1,n ; x2 = 0, x0 > 0}

so the Kepler problem in dimension n can be reformulated as a dynamic problem
on the future light cone. As a result, an oriented Kepler orbit in Rn

∗ can be reformu-
lated as an oriented curve inside the future light cone, i.e., the intersection of the
cylinder over the oriented Kepler orbit with the future light cone. This intersection
turns out to be a conic section, a reason why a Kepler orbit must be a conic. To see
the intersection plane for this conic section, we first write A for (1,A) and observe
that L ∧ A = L ∧ e0 ̸= 0. Then, for x on the future light cone, since equation (2)
can be recast as x ∧ (L ∧A) = 0, A.x = |L ∧A|2 or equivalently

m ∧ x = 0, a.x = 1 (4)

where

m =
L ∧A

|L ∧A|
, a =

A

|L ∧A|2
· (5)

The intersection plane is the affine plane defined by equation (4).
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In summary, in the light cone formulation, a Kepler orbit (i.e., non-colliding orbit)
is the intersection of the future light cone with an affine plane defined by equation
(4), where m is a decomposable three-vector in R1,n with m2 = 1 and e0∧m = 0,
a is a vector with a0 > 0 and m ∧ a = 0. Note that, in this formulation, formula
(3) becomes

E = − a2

2a0
· (6)

2.1. A Potential Connection with Lorentz Transformations

The linear action of Strn on R1,n leaves invariant the future light cone and turns
an affine plane into another affine plane, so it seems that a Kepler orbit would be
transformed into another Kepler orbit. However, this cannot be true.
To see this, we first introduce the space M+ consisting of pairs (m, a) where m is a
decomposable three-vector in R1,n with m2 = 1, and a is a vector with m∧a = 0,
a2 > 0 and a0 > 0. Next, we observe that the set of oriented elliptic Kepler orbits
can be parametrized by the subspace

M0
+ := {(m, a) ∈ M+ ; m ∧ e0 = 0}

of M+. Since dimM+ = dimM0
++(n−2), for n ≥ 3, M0

+ is a proper subspace
of M+. Finally we observe that the corresponding action of Strn on M+

Strn ×M+ → M+, ((α,Λ), (m, a)) 7→ (Λ.m, α(Λ.a))

is transitive, so the action of Strn can take a point in M0
+ to a point outside of

M0
+. Consequently the linear action of Strn on R1,n can take a Kepler orbit to a

conic section which is not a Kepler orbit.
Could these extra conic sections be orbits of some additional dynamic models?
The answer is yes provided that n is an odd integer. When n = 3, these additional
dynamic models are Kepler problem’s magnetized companions [6, 15], under the
name MIC-Kepler problems or MICZ-Kepler problems. When n = 5, they are
the Iwai’s SU(2)-Kepler problems [4]. For n ≥ 7, they are the models discovered
recently by present author [11].

3. MICZ Kepler Problems

An MICZ Kepler problem is the mathematical model for a hypothetical hydrogen
atom where the nucleus is dyon. Here the equation of motion is

r′′ = − r

r3
+ µ2 r

r4
− r′ × µ

r

r3
(7)

with the parameter µ being the magnetic charge of the nucleus. These models
are so similar to the Kepler problem so that the solution of them are nearly direct
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repetition of the solution for the Kepler problem. For example, the constants of
motions are1

L = r ∧ r′ + µ
∗r
r
, A = r′yL+

r

r
and equations (4) and (5) stay the same, except that we no longer have e0∧m = 0.
Equation (6) stays the same, too. It was demonstrated in reference [9] that the
set of bounded oriented orbits of MICZ Kepler problems is parametrized by M+,
hence admits a transitive action of Str3.

4. High Dimensional Analogues of MICZ Kepler Problems

The high-dimensional analogue of equation (7) is far from straightforward. The
reason is that, if k > 1, instead of governing motions on R2k+1

∗ , the equation of
motion governs motions on a manifold Pµ which fibers over R2k+1

∗ .
To describe the fiber bundle Pµ → R2k+1

∗ , we let G = SO(2k) and consider the
canonical principal G-bundle over S2k

SO(2k + 1)y
S2k.

This bundle comes with a natural connection

ω(g) := Prso(2k)
(
g−1dg

)
where g−1dg is the Maurer-Cartan form for SO(2k + 1), so it is an so(2k + 1)-
valued differential one-form on SO(2k + 1), and Prso(2k) denotes the orthogonal
projection of so(2k + 1) onto g := so(2k).
Under the map

π : R2k+1
∗ → S2k, π(r) = r

r

the above bundle and connection are pulled back to a principal G-bundle

Py
X := R2k+1

∗

with a connection which is usually referred to as the generalized Dirac monopole
[2, 7]. Now

Pµ → R2k+1
∗

is the associated fiber bundle with fiber being a certain co-adjoint orbit Oµ of G,
the so-called magnetic orbit [11] with magnetic charge µ ∈ R.

1Here ∗ is the Hodge-star operator.
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To describe Oµ, let us use Ma,b (1 ≤ a, b ≤ 2k) to denote the element of g such
that, in the defining representation of g, Ma,b is represented by the skew-symmetric
real matrix whose (a, b)-entry is −1, (b, a)-entry is 1, and all other entries are 0.
For the invariant metric ( , ) on g, we take the one such that Ma,b (1 ≤ a < b ≤ 2k)
form an orthonormal basis for g. Via this invariant metric, one can identify g∗ with
g, hence co-adjoint orbits with adjoint orbits. By definition, for any µ ∈ R

Oµ := SO(2k).
1√
k
(|µ|M1,2 + . . .+ |µ|M2k−3,2k−2 + µM2k−1,2k).

It is easy to see that Oµ = {0} if µ = 0 and is diffeomorphic to SO(2k)/U(k) if
µ ̸= 0.
We are now ready to describe the equation of motion for the magnetized Kepler
problem in dimension 2k+1. Let r: R → X be a smooth map, and ξ be a smooth
lifting of r

Pµ

ξ ↗
y

R r−→ X

Let AdP be the adjoint bundle P ×G g → X , d∇ be the canonical connection, i.e.,
the generalized Dirac monopole on R2k+1

∗ = X . Then the curvature Ω := d2∇ is a
smooth section of the vector bundle ∧2T ∗X ⊗AdP . The equation of motion is

r′′ = − r

r3
+

µ2

k

r

r4
+ (ξ, r′yΩ), Dξ

dt
= 0. (8)

Here
Dξ

dt
is the covariant derivative of ξ, ( , ) refers to the inner product on the

fiber of the adjoint bundle coming from the invariant inner product on g, and two-
forms are identified with two-vectors via the standard euclidean structure of R2k+1.
equation (8) defines a super integrable model, referred to as the classical Kepler
problem with magnetic charge µ in dimension 2k + 1, which generalize the clas-
sical MICZ-Kepler problem. Indeed, in dimension three, the bundle is topological

trivial, ξ = µM12, and Ω =
∗(
∑3

i=1 x
i dxi)

r3
M12, then equation (8) reduces to

equation (7), i.e., the equation of motion for the MICZ-Kepler problem with mag-
netic charge µ. In dimension 5, it is essentially Iwai’s SU(2)-Kepler problem, cf.
reference [4].
The equation of motion appears to be mysterious, but it does not. As demonstrated
in [11], with a key input from the work of Sternberg, Weinstein, and Montgomery
[14], it emerges naturally from the notion of universal Kepler problem in reference
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[12]. As a side remark, we would like to point out that the quantum magnetized
Kepler problems were obtained much earlier in [8].

4.1. Orbits

While the orbits for the magnetized Kepler problems in dimension three have been
thoroughly studied from the very beginning [6], in higher dimensions, in view of
the fact that the equation of motion is a bit more sophisticated, one might expect
that the orbits are a bit hard to find. That is probably the reason why the orbits for
Iwai’s SU(2)-Kepler problems were never investigated in [4] and the subsequent
papers [5].
The second of equations in (8) implies that an orbit inside Pµ is the horizontal
lifting of its projection onto R2k+1

∗ . So it suffices to understand the projection of
the orbit onto R2k+1

∗ . This projection curve was found [1] to be either a part of
straight line (colliding orbit) or a conic (non-colliding orbit).

4.2. Outlook

An interesting further study is to work out the geometric quantization of the clas-
sical models introduced here so that one can reproduce the quantum models intro-
duced in reference [8]. It is expected also that the earlier work carried out by I.
Mladenov and V. Tsanov [13] for the Kepler problems in higher dimensions or the
MICZ Kepler problems shall serve as a good guidance in such studies.
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