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Abstract. Newton–Lorentz equations describing the motion of charged par-
ticles in the equatorial plane of a magnetic dipole field are considered. The
parametric equations of the trajectories of the particles are obtained explicitly
in terms of Jacobi elliptic functions and elliptic integrals.

1. Introduction

In this article we consider the system of Newton–Lorentz equations describing the
planar motion of a charged particle in the equatorial plane of a magnetic dipole
field. This system belongs to the class of dynamical systems of two degrees of
freedom whose integrability in the Liouville–Arnold sense (see, e.g., [1, Section
5]) has been studied recently by the present authors in [2].

The magnitude of the magnetic dipole field depends only on the distance from the
origin and hence, see [3], the corresponding Newton–Lorentz system is integrable
by quadratures since it possesses two functionally independent integrals of motion,
one of which is the speed of the particle. Here, our aim is using the techniques de-
veloped in [2] to express the parametric equations of the trajectories of the particles
explicitly in analytic form.
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2. Motion of Charged Particles in an Electromagnetic Field

2.1. Lorentz Force and Newton–Lorentz Equation

The electromagnetic force F acting on an electrically charged particle with electric
charge q is given by the Lorentz force law F = qE + q (dx/dt×B), (see [4,
§5.1.2]) where x is the position vector of the particle, which depends on the time
t, E and B are the electric and magnetic fields, respectively.
The motion of such a particle of mass m is described by the classical Newton–
Lorentz equation m d2x/dt2 = F that is

m
d2x

dt2
= qE+ q

(
dx

dt
×B

)
· (1)

2.2. Magnetic Dipole Field

Consider a magnetic dipole - a “small” circular loop of wire with area A lying in
the XOY plane (“equatorial” plane of the dipole), centered at the origin O, and
carrying a current I running counterclockwise as viewed from the positive OZ axis
(see Fig. 1).

Figure 1. A magnetic dipole field.

The magnetic field of such a dipole is stationary and has the form

B (x) =
µ0

4π

1

|x|3
[3 (m · x̂) x̂−m] (2)

(see, e.g, [4, pp. 244–246]) where x̂ = x/ |x|, µ0 is the magnetic permeability in
vacuum and m = IAk is the field source’s magnetic dipole moment (here, k is the
unit vector along the coordinate axis OZ).
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2.3. Motion of Particles in the Equatorial Plane of a Magnetic Dipole Field

Suppose that a charged particle moves without leaving the equatorial plane of a
magnetic dipole, i.e., the XOY plane (see Fig. 1). Denote by r its position vector
and let r = |r| =

√
x2 + y2. Then, on account of equations (1) and (2), the

equation of motion of the particle written in scalar representation reads

d2x

dt2
+

σ

r3
dy

dt
= 0,

d2y

dt2
− σ

r3
dx

dt
= 0, σ =

µ0IA

4πm
> 0 (3)

which is an integrable dynamical system of the Frenet-Serret type (cf. [2]) since it
has the following two functionally independent first integrals(

dr

dt

)2

=
1

r4
(
νr2 − εr + σ

) (
νr2 + εr − σ

)
,

dθ

dt
=

1

r2

(
ε− σ

r

)
(4)

where θ is the polar angle (see Fig. 1), ν ≥ 0 and ε are constants of integration
(integrals of motion). Actually,

√
ν is the speed of the particle.

3. Analytic Solution of the Equations of Motion

3.1. General Solution in Terms of the Weierstrass Elliptic Function ℘

In terms of a new variable τ , which is such that

dt

dτ
= r2 (5)

the first integrals (4) take the form(
dr

dτ

)2

= ν2r4 − ε2r2 + 2σεr − σ2 (6)

and
dθ

dτ
= ε− σ

r
· (7)

Thus, to find the solutions of the considered system (3) one can first find the general
solution r(τ) of equation (6), which involves only the variable r, and then using
this result and integrating equation (7) to obtain the polar angle

θ(τ) =

∫ (
ε− σ

r(τ)

)
dτ. (8)

Rewriting equation (6) in the form(
dr

dτ

)2

= P [r] , P [r] = a0r
4 + 4a1r

3 + 6a2r
2 + 4a3r + a4
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where

a0 = ν2, a1 = 0, a2 = −ε2

6
, a3 =

εσ

2
, a4 = −σ2 (9)

it becomes obvious (see [5, §20.6]) that its general real-valued solution can be
written in the form

r (τ) = r̊ +
1

4

P1 [̊r]

℘ (τ ; g2, g3)− 1
24P2 [̊r]

(10)

where r̊ is a real root of the polynomial P [r], ℘ (τ ; g2, g3) is the Weierstrass elliptic
function, and

g2 = a0a4−4a1a3+3a22, g3 = a0a2a4+2a1a2a3−a32−a0a
2
3−a21a4 (11)

P1 =
dP

dr
, P2 =

d2P

dr2
· (12)

Now, taking into account equations (9) and (12) we can express equations (10) and
(11) as follows

r (τ) = r̊ + 6
r̊
(
2̊r2ν2 − ε2

)
+ εσ

12℘ (τ ; g2, g3) + ε2 − 6̊r2ν2
(13)

and

g2 =
1

12
ε4 − ν2σ2, g3 =

1

216
ε2

(
ε4 − 18ν2σ2

)
. (14)

3.2. Expression of the Solution in Terms of the Jacobian Elliptic Functions

Let us consider first the discriminant ∆ = g32 − 27g23 of the polynomials P [r] and
R[r] = 4r3 − g2r − g3 (see, e.g., [6, pp. 40-44]). According to equations (14) it
has the form

∆ =
1

16
v4σ4(ε2 − 4νσ)(ε2 + 4νσ).

Evidently, ∆ > 0 if and only if ε2 > 4νσ since ν > 0 and σ > 0 as was
indicated in Subsection 1.3, otherwise ∆ < 0. It is well known that if ∆ ̸= 0, then
the Weierstrass elliptic function ℘ (τ ; g2, g3) can be expressed in terms of Jacobi
elliptic functions (cf. [7, pp. 649–652]) as follows
i) if ∆ > 0, which means ε2 > 4νσ in view of the above considerations, then

℘ (τ ; g2, g3) = e3 +
e1 − e3

sn2 (
√
e1 − e3 τ, k)

(15)

where sn(·, ·) is the sine Jacobian elliptic function with elliptic modulus

k =

√
e2 − e3
e1 − e3

(16)
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and e1 > e2 > e3 are the roots of the cubic polynomial R[r], which are real in this
case. Using equations (14) they can be written in the form

e1 =
ε2

24
+

√
ε4 − 16ν2σ2

8
, e2 =

ε2

24
−

√
ε4 − 16ν2σ2

8
, e3 = − ε2

12
·

(17)
ii) if ∆ < 0, which means ε2 < 4νσ as mentioned above, then the polynomial
R[r] has one real root

e2 = − ε2

12
(18)

as well as a couple of complex conjugated roots and

℘ (τ ; g2, g3) = e2 +H2
1 + cn

(
2
√
H2 τ, k

)
1− cn

(
2
√
H2 τ, k

) (19)

where cn(·, ·) is the cosine Jacobi elliptic function, while

k =

√
1

2
− 3e2

4H2
, H2 =

√
3e22 −

g2
4
· (20)

In both cases k denotes the elliptic modulus of the corresponding elliptic functions.
In Case i), substituting equation (15) in equation (13) and using equations (16) and
(17) one obtains

r (τ) = r̊ −
4
(
ε2r̊ − εσ − 2ν2r̊3

)
sn2(λτ, k)

√
ε4 − 16ν2σ2 + ε2 − 4ν2r̊2sn2(λτ, k)

(21)

where

λ =

√√
ε4 − 16ν2σ2 + ε2

2
√
2

, k =

√
ε4 − ε2

√
ε4 − 16ν2σ2 − 8ν2σ2

2
√
2νσ

· (22)

In Case ii), substituting equation (19) in equation (13) and using equations (14),
(18) and (20) one obtains

r (τ) = r̊ +

(
ε2r̊ − εσ − 2ν2r̊3

)
(cn(λτ, k)− 1)

ν (σ − νr̊2) + ν (σ + νr̊2) cn(λτ, k)
(23)

where

λ =
√
2νσ, k =

√
1

2
+

ε2

8νσ
· (24)

Let us remark that in the limiting cases k = 0 and k = 1 in which ∆ = 0 the ex-
pressions in the left-hand sides of equations (21) and (23) reduce to trigonometric
or hyperbolic functions.
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It is noteworthy that the roots of the polynomial P [r], of which at least one needs
to be used in the expressions (10), (21) and (23), can be straightforwardly written
in the form

α =
ε−

√
ε2 − 4νσ

2ν
, β =

ε+
√
ε2 − 4νσ

2ν

γ = −ε+
√
ε2 + 4νσ

2ν
, δ = −ε−

√
ε2 + 4νσ

2ν
·

In Case i), all these roots are real since ε2 > 4νσ under the corresponding assump-
tions, while in Case ii) only the roots γ and δ are real since ε2 < 4νσ in this case.
Graphs of the polynomial P [r] corresponding to two different sets of parameters
ν, ε, and σ are depicted in Fig. 2.

Figure 2. Graphs of the polynomial P [r] with ν = 1, ε = 2, σ =
0.956, α = 0.790238, β = 1.20976, γ = −2.39857, δ = 0.398571
(left) and ν = 1, ε = −2, σ = 2, γ = −0.732051, δ = 2.73205 (right).

4. Explicit Analytic Representation of the Trajectories

4.1. Analytic Representation of the Trajectories in Case i)

Making use of the result for the radius r(τ) given by equation (21) one can calcu-
late the polar angle in formula (8) in the following explicit form

θ (τ) = b1τ + b2Π(b3, am (λ, k) , k) (25)

where λ and k are given in equations (22), Π(·, ·, ·) denotes the incomplete elliptic
integral of the third kind and the real parameters b1, b2 and b3 are given by the
formulae

b1 =
ν2r̊2σ

ν2r̊3 − ε2r̊ + εσ
+ ε, b2 =

σ
(
ε2r̊ − εσ − 2ν2r̊3

)
λr̊ (ν2r̊3 − ε2r̊ + εσ)

b3 =
4
(
ε2r̊ − εσ − ν2r̊3

)
r̊
(√

ε4 − 16ν2σ2 + ε2
) ·
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Thus, equations (21) and (25) provide an explicit analytic parametrization of the
trajectories in Case i). Let us recall that in this case all the roots of the polynomial
P [r] are real and can be utilized for the purpose.

4.2. Analytic Representation of the Trajectories in Case ii)

In this case, using equation (23) for the function r(τ) and the expressions for the
roots γ and δ given above we obtain

r (τ) =
2σ

ε±
√
ε2 + 4νσ cn(λτ, k)

(26)

where the upper sign corresponds to r̊ = δ while the lower one corresponds to
r̊ = γ. Here, λ and k are given by equations (24).
Now, we can easily rewrite equation (8) for the respective polar angle in the explicit
form

θ(τ) =
ε

2
τ ∓ sign [sn(λτ, k))] arccos [dn(λτ, k)] (27)

where again the upper sign corresponds to r̊ = δ and the lower one – to r̊ = γ.
Thus, equations (26) and (27) provide an explicit analytic parametrization of the
trajectories in Case ii).

4.3. Examples

Finally, in Figs. 3, 4 and 5 we give several examples of trajectories obtained from
parametric representations (21), (25) and (26), (27).

Figure 3. Unbounded trajectories derived from parametric equations
(21), (25) with ν = 1, ε = 2, σ = 0.956, r̊ = 0.790238 (left, thin line),
r̊ = −2.39857 (left, thick line) and with ν = 1, ε = −2, σ = 0.956,
r̊ = −1.20976 (right, thin line), r̊ = 2.39857 (right, thick line)



290 Vassil Vassilev, Mariana Hadzhilazova, Peter Djondjorov and Ivaïlo Mladenov

Figure 4. Closed trajectories obtained from equations (21), (25) with
ν = 1, ε = 2, σ = 0.956, r̊ = 0.790238 (left) and ν = 1, ε = −3,
σ = 1.554, r̊ = −0.665734 (right).

Figure 5. Unbounded trajectories obtained using the parametric equa-
tions (26), (27) with ν = 1, ε = 2, σ = 2, r̊ = −2.73205 (left, thin
line), r̊ = 0.73205 (left, thick line) and ν = 1, ε = −2, σ = 2,
r̊ = −0.73205 (right, thin line), r̊ = 2.73205 (right, thick line). The
graph of the polynomial P [r] in the latter case is depicted in Fig. 2
(right).

5. Concluding Remarks

Let us recall that the system of Newton–Lorentz equations considered here de-
scribes the planar motion of a charged particle in the equatorial plane of the mag-
netic dipole field. This system falls into the class of two degrees of freedom dy-
namical systems of the so called Frenet–Serret type. It is integrable by quadratures
since it possesses two functionally independent integrals of motion.

In the present contribution, using the aforementioned property of the Newton–
Lorentz system we have presented in explicit form, via equations (21), (25) and
(26), (27), the parametric equations of its trajectories in terms of Jacobi elliptic
functions and elliptic integrals depending on the auxiliary variable τ . The time
dependence can be recovered by integrating equation (5).
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