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Abstract. We prove that loop vortices are created by a point-like magnetic
dipole in an infinite superconductor space. The geometry of the vortex sys-
tem is obtained through analytic solutions of the linearized Ginzburg-Landau
equation described in terms of Heun functions, generalizing the traditional
hypergeometric behavior of such magnetic singularity.

1. Introduction

Three-dimensional superconducting structures allow interesting physical proper-
ties such as giant vortices or multi-vortex states, or even (for larger size) a combi-
nation of the two states. The traditional approach relies on the Ginzburg-Landau
(GL) free-energy minimization procedure, performed on a basis of linear combi-
nations of solutions of the corresponding linearized GL equation [9,21,28]. While
finite mesoscopic superconductor samples (size comparable to coherence length
ξ, and penetration depth λ) of different geometries, subjected to external uniform
magnetic field, have been theoretically investigated [4, 9, 17, 21, 27, 28, 31, 32],
there are no exact theoretical models proving that vortex states are possible in un-
bounded space. In this case the presence of an external applied magnetic field
is un-physical (requests infinite energy) and one needs to generate the magnetic
field from a localized source. A simple example of this type, which is investigated
in this paper, is a microscopic magnetic dipole placed at the origin of an infinite
three-dimensional superconducting space. Such types of magnetic field were stud-
ied in [25] and it was numerically demonstrated the existence of interconnected
vortex loops for spherical or prismatic boundaries. Attempts to solve similar equa-
tions in the presence of an electric dipole, have been made [22]. The Coulomb
problem for a class of general Natanzon confluent potentials was exactly solved in

215



216 Andrei Ludu

[16] by reducing the corresponding system to confluent hypergeometric differen-
tial equations. More recently in [2], the authors succeed to solve the eigenvalue
wave equation for an electron in the field of a molecule with an electric dipole mo-
ment by expanding the solutions of a second order Fuchsian differential equation
with regular singularities in a series of Jacobi polynomials with “dipole polyno-
mial” coefficients. However, in all these situations, separation and integration of
the Schrödinger equation was possible because the resulting second order ordinary
linear differential equations are of Fuchsian type, with maximum three regular sin-
gularities. Such equations can be mapped into several types of hypergeometric
differential equations.
For the magnetic dipole case the situation becomes more complicated because the
order of singularities growths above the hypergeometric range [20,26,33]. For ex-
ample, in the case of a charged particle moving on a sphere under a radial magnetic
field and Coulomb force the Schrödinger equation is transformed into a Heun equa-
tion. Separation of variables is still possible since the vector potential in this case
depends only on one spherical variable θ [23]. Another case of application of Heun
equation is presented by the interaction of three particles in a plane, with a perpen-
dicular magnetic field [24]. Here the Schrödinger equations brake into biconfluent
Heun’s equations because of higher order singularities induced by the Coulom-
bian interaction. Similar problems related to magnetic field (finite-gap potentials,
Fokker-Planck, central two-point connection, generalized central potentials up to
order 1/r6, Hawking radiation, etc.) were approached in literature and usually the
resulting leading differential equation for the wave function reduces to one of the
Heun’s differential equations [10]. An interesting review and study on the use of
the Heun’s type of differential equations as generalizations of the hypergeometric
ones, in relation to supersymmetry, is given in [29], where a two Coulomb-center
problem is solved based on a self-adjoint separation of coordinates in prolate spher-
oidal coordinates.
The paper is organized as follows. In Section 2 we introduce the theoretical formal-
ism and we solve analytically the linearized equation the eigenfunction problem.
In Section 3 we obtain solutions for the full nonlinear Ginzburg-Landau problem
by minimizing the free energy, and we present surfaces of constant order parame-
ter value in order to identify the multi-vortex structures generated by the magnetic
dipole in the mesoscopic superconducting sphere.

2. The Linear Equation

The free-energy in the GL theory is given by the functional [9]

F =

∫
V

dv

V

[
1

2m
|P⃗Ψ|2 + α|Ψ|2 + β

2
|Ψ|4 + h⃗2

8π

]
(1)
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where Ψ(r⃗) is the order parameter, q,m are the Cooper pairs charge and mass, and
α < 0, β > 0 are the second-order phase transition coefficients. If we investigate
the order parameter in a region smaller than the penetrating length λ, yet compa-
rable to the coherence length ξ, we can neglect the contribution to the free-energy
of the term responsible by the expulsion of magnetic flux from the superconductor
[4,9,31]. The singularity of the magnetic field consists in an infinitesimal magnetic
dipole of relative strength µ = µmagn/µ0 placed at the origin and directed along
the z axis. The GL equation become

1

2m
P⃗ 2Ψ+ αΨ+ β|Ψ|2Ψ = 0 (2)

where the electromagnetic momentum P⃗ is given by

−→
P =

~
i

−→∇(r, θ, φ)− qµ

c

sin θ

r2
−→eφ· (3)

The linear GL eigenvalue problem associated to equation (2) consists in substi-
tuting |Ψ|2 from the last term with a constant denoted Λ > 0. In dimensionless
variables Ψ →

√
−α/βΨ, r⃗ → r⃗/ξ with ξ = ~/

√
−2mα the linearized equation

becomes
P⃗ 2

~2
= −

(
−→∇ − qµ

c

sin θ

r2
−→eφ

)2

Ψ = (1− Λ)Ψ ≡ EΨ (4)

where we have the physical condition E < 1 requested by the normalization
|Ψ|2 = 1. The operator in equation (4) is essentially self-adjoint, [17], so its
spectrum is positive, continuous, and unbounded from above by the Leinfelder-
Simader, [8], and Miller-Simon theorems [19]). In the following we use dipole
coordinates, [30], defined by

a =
r

sin2 θ
, b =

r2

cos θ
· (5)

Usually the dipole coordinates are used in systems controlled by magnetic dipolar
terms, where the field lines have strong anisotropy like terrestrial ionosphere, solar
corona, magnetostars, toroidal magnetic moments in atomic physics, etc. [11]. The
coordinates curves are either double-intersecting loops for a =const., or tangent
loops for b =const., Fig.1. The surfaces of coordinates defined by a =const.
follow the field lines of the magnetic dipole.
In dipole coordinates the electromagnetic momentum has the expression

−→
P =

~
i

−→
∇(a, b, φ)− χ

a
−→eφ (6)

where we denoted χ = qµ/c. In the following we investigate only solutions with
good orbital quantum number L (vorticity), i.e., Ψ = Φ(a, b)eiφL. By introducing
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Figure 1. Curves of orthogonal coordinates of constant a = 6, 8, 10
(red loops), and constant b = 12, 8, 24 (black loops) in the x = 0
plane. The dipole is directed along z axis with arrows describing the
magnetic field.

equation (6) in equation (4), we obtain a partial differential equation in (a, b)(
a

r

)3(
1 + 3

r4

b2

)(
d2Φ

da2
+

4

1 + 3r4

b2

1

a

dΦ

da

)
+

(
1 + 3

r4

b2

)
b2

r6
d

db

(
b2
dΦ

db

)
− a

r3

(
L− χ

a

)2

Φ+ EΦ = 0 (7)

where the real number E < 1 is a free parameter.
In order to obtain a separation of the dipole variables (a, b) we investigate solutions
of equation (7) in the range a >> b, which describes points close to the z-axis.
The reason for this hypothesis is that the order parameter has a much stronger
a−dependence than the one on b. Consequently, |Ψ| =const. are similar to sur-
faces a =const. Under this hypothesis equation (7) reduces to the form

∂2Φ

∂a2
+

4

a

∂Φ

∂a
+

b2

a6
∂

∂b

(
b2
∂Φ

∂b

)
− 1

a2

(
L− χ

a

)2

Φ+ EΦ = 0 (8)

and we can factorize the b-dependence from the a-dependence

Φ(a, b) = Q(a)

(
e−

c1
b + C0e

c2
b

)
(9)
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where c1 and c2 are the constants of integration. The resulting equation for Q(a)
is

a6
d2Q

da2
+ 4a5

dQ

da
+ (c2 − χ2a2 + 2Lχa3 − L2a4 + Ea6)Q = 0. (10)

Equation (10) is an ordinary differential equation of order two with meromorphic
coefficients. It has two irregular singularities of rank 2, a = 0,∞, [12], and con-
sequently there are no convergent solutions in terms of Frobenius series.
In the following, we study the solutions with c1 = 0 because we expect these
subspace of solutions to fulfill the hypothesis above about the |Ψ|2 iso-surfaces
laying along the dipole surface coordinates a = const. For these solutions equation
(10) becomes

d2Q

da2
+

4

a

dQ

da
+

(
−χ2

a4
+

2Lχ

a3
− L2

a2
+ E

)
Q = 0. (11)

Equation (11), i.e., the “dipole equation”, has two asymptotic solutions. In the far
range limit a → ∞, by neglecting higher order terms in 1/a, we have

Q∞(a) = a−
3
2

(
C1J√

L2+ 9
4

(
√
Ea) + C2Y√

L2+ 9
4

(
√
Ea)

)
(12)

where J, Y are the Bessel functions of the first and the second kind, respectively,
and C1,2 arbitrary constants of integration. In the close-range limit a → 0, by
neglecting lower orders in 1/a, we have

Q0(a) = e−
χ
a

[
C1M

(
2− L, 4;

2χ

a

)
+ C2U

(
2− L, 4;

2χ

a

)]
(13)

where M and U are the Kummer and Tricomi confluent hypergeometric func-
tions, respectively.
In the following, by using the transformations

Q(z̃) = z̃ξ0eξ1z̃−
ξ−1
z̃ y(z̃), a → z̃ = aλ1/4/(

√
iχ) (14)

we map the dipole equation equation (10) into a symmetric canonical double-
confluent Heun equation in y(z̃) [6, 13–15, 26].

D̃2y+α

(
z̃+

1

z̃

)
D̃y+

[(
β1+

1

2

)
αz̃+

(
α2

2
−γ

)
+

(
β−1−

1

2

)
α

z̃

]
y = 0 (15)

where λ = E/χ2, D̃ = z̃(d/dz̃), and

α = ±2i
√
iλ1/4, β1 = 0, β−1 = ∓L, γ = L2 + 9/4. (16)

Working with the symmetrical canonical form provides a recursion relation for
the series coefficients of the analytic solution in only three terms. Also, this form
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depends on less parameters, and provides trivial relations between asymptotical
solutions at zero and infinity (central connection problem) [6, 15].
Since we study the no-boundary problem we construct the solutions of equation
(15) based on the asymptotic behavior for z̃ → ∞. The continuation of this so-
lution towards the origin is performed through the central connection relations
between asymptotic solutions, such that the behavior at zero of the fundamental
solution fulfills the regularity condition for Ψ in zero.
In order to obtain a first fundamental solution for DCHE we use the asymptotic
construction of the solution of equation (15) following the receipt in [26]. The
functions

y∞1(α, β, γ; z̃) = Θ(α, β, γ; z̃)
(17)

y∞2(α, β, γ; z̃) = ie−iπβ1e−αz̃Θ(eiπ/2α, β−1,−β1, γ; e
iπ/2z̃)

where the holomorphic function Θ is defined as

Θ(α, β, γ; z̃) = (αz̃)−β1− 1
2

∞∑
n=0

Θn(αz̃)
−n (18)

in the range on arg (αz̃) ∈ (−π/2, 5π/2), with coefficients uniquely given by the
three-term recursion relation

Θ±
n =

1

n

[(
α2

2
−γ+

(
n+β1−

1

2

)2

+

)
Θ±

n−1−α2(n+β1−β−1−1)Θ±
n−2

]
(19)

with n ∈ N, Θ±
−1 = 0,Θ±

0 = 1, constitute a fundamental solution for the symmet-
ric canonical DCHE, equation (15). The signs ± represent the choice for one of the
two solutions for the reduced parameters α, β−1 in equation (16). The second so-
lution y∞2 is generated from the first one by application of the group operator T1,
and it is linear independent from the first, as one can check through the Wronskian
calculation.
The solution in equation (18) provides a unique asymptotic behavior for z̃ → ∞
in the forms

y∞1(z̃) = (αz̃)−β1− 1
2

[
1 + O

(
1

z̃

)]
, arg(αz̃) ∈

(
−π

2
,
5π

2

)
(20)

y∞2(z̃) = e−αz̃(αz̃)β1− 1
2

[
1 + O

(
1

z̃

)]
, arg(αz̃) ∈

(
−3π

2
,
3π

2

)
.

The parameters α, β±1 control the behavior of the solution at z̃ → ∞, while χ con-
trols the behavior in zero. Depending on the sign of the eigenvalue λ < 1/χ2 there
are possible several combinations of signs in equations (17) which fulfil the request
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for the argument of the expression αz̃ to belong in the prescribed sectors, equations
(20), assuring holomorphic solutions on a ∈ (0,∞). It is important to take into ac-
count the allowed combinations, because in the real variables A(a) holomorphism
assures analyticity of the order parameter, which is essential for the self-adjoint
property of the generic equation equation (4). For example, if λ < 0 there are
only five admissible combinations of signs among the 32 possible combinations in
α = ±2(

√
−i)1,2(λ

1/4)1,...,4, and in (
√
i)1,2 as part of the substitution a → z̃. For

0 < λ < 1/χ2 there are more favorable cases, and only five forbidden combina-
tions of signs. We do not table here all these combinations, because we show in the
following that all these reduce to one single viable solution. By performing back
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Figure 2. Examples of solutions, equations (21) and (23), for L = 0
(E = −30,−2), L = 3 (E = −35,−2). We present the case of four
different values of relative dipole strength, χ = 1, 3, 6, 8. They are
plotted from gray to black, correspondingly, the stronger dipole being
associated to the darkest line.

the substitutions in the independent and dependent variable, we obtain the physical
solutions for the a dependent part of the order parameter. Namely, from y∞1 we
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obtain the solution

A∞1(a) =

(
χ

a

) 3
2

exp

[
±1i

E1/2a

χ2
±2

χ

a

](
±32i

E1/2a

χ2

)− 1
2

×
∞∑
n=0

Θ±3
n

(
±32i

E1/2a

χ2

)
n

(21)

and recursion relation for the series coefficients

Θ±
n =

1

n

[(
n2 − n− L2 − 2− 2i

E1/2

χ

)
Θ±

n−1

+ 4i(n± L− 1)
E1/2

χ
Θ±

n−2

]
. (22)

From y∞2 we have respectively

A∞2(a) = i

(
χ

a

) 3
2

exp

[
∓1i

E1/2a

χ2
±2

χ

a

](
∓32i

E1/2a

χ2

)±3− 1
2

×
∞∑
n=0

Ω±3
n

(
∓32i

E1/2a

χ2

)
n

(23)

with recursion relation

Ω±
n =

1

n

[(
n2 − n− 2± L∓ 2nL+ 2i

E1/2

χ

)
Ω±
n−1

− 4i(n∓ L− 1)
E1/2

χ
Ω±
n−2

]
. (24)

In these equations the symbols ±i mean that we can choose the sign plus or minus
in an arbitrary, independent way for different j values. Also, the ± having the
same subscript should be synchronized in all expressions. We present in Fig. 2
some examples of the solutions in equations (21) and (23). We notice that in gen-
eral solutions intersect for different values of the parameters. For large negative
energies the solutions become divergent at infinity, which means that the conver-
gence radius of the series was exceeded, or from the physical point of view, such
energies are unlikely to be realized. Higher values for angular momentum shrink
the wave functions towards the origin, and left it oscillating with smaller amplitude
towards the surface of the sample.
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2.1. Qualitative Analysis of the Linear Solutions

Equations (21)-(24) represent the most general set of exact solutions of the lin-
earized dipole equation. These solutions depend parametrically on χ,L and E.
It is useful to mention that for positive energies, 0 < E < 1, the solutions are
bounded on [0,∞] and are oscillating functions. Their asymptotic value towards
a → ∞ is a linear combination of Bessel functions of real argument and imaginary
order. In the range of negative energies, E < 0, the solutions have real exponential
decay towards infinity, asymptotically described by Bessel functions of imaginary
argument and real order. In this range the solutions are still bounded, do not oscil-
late. However, under some constrains, they can be truncated to polynomials.
Such special truncations, very useful for analytic and numeric calculation, are pos-
sible for E < 0, and only for the series coefficients that have negative sign in front
of L, in their second term on the right hand side, of the recursion relations. For
each L value there is one unique value of the energy which provides the truncation
of the series into a quasi-polynomial (the series reduces to a polynomial, but the
exponentials and powers in front of it, equations (21) and (23), still remain. The
algorithm is simple. We arrange for any L that the coefficient of the second term
on the right hand side in the expression of Θ−

n (Ω+
n ) to cancel, that is n−L−1 = 0,

which fixes n = L + 1. Next we solve the equation Θ−
L = 0 (Ω+

L = 0) for E.
These two conditions guarantee the cancelation of all terms with n > L, so the
series reduces to a polynomial. For example if we choose L = 1 we have the
solution

A∞1(a) =
χ2

√
3a2

e
− 3a

2χ
−χ

a , E = −9χ2

4
· (25)

Another example for L = 3 reads

A∞1(a) =
χ2

√
w1a2

e
−w1a

2χ
−χ

a

[
1 + Θ−

1

χ

w1a
+Θ−

2

(
χ

w1a

)2]
(26)

with

E = −χ2w2
1

4

where Θ−
1,2 are obtained from equation (22). Example of quasi-polynomial solu-

tions are given in Fig. 3. Quasi-polynomial can be constructed for negative energies
an d only odd angular momenta. For A∞2 the majority of solutions are with E > 0
so they do not provide quasi-polynomials.
The regular behavior of the solutions in the a → ∞ limit is guaranteed by the
asymptotic construction in equations (17), through the general theory of the Heun’s
differential equation. For any value of the energy and angular momentum, these
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Figure 3. Example of linear order parameter quasi-polynomial solu-
tions, equations (25) and (26), for L = 1 (dotted line wave functions),
L = 3 (solid line) for three different values of the dipole strengths
(χ = 0.4, 1, 5). We represent the increasing of strength by the increas-
ing of thickness of plotted lines. The corresponding energies for the
cases where the series truncate are plotted in the smaller window. For
small dipole strength values the levels at different angular moments are
almost degenerated.

solutions approach zero for a → ∞, since, from the asymptotic expressions of
y∞1,2 the leading term to infinity is

a−2e
− i

√
Ea

χ2 .

Consequently, no matter of the sign of E the exponential has either negative real
coefficient, or imaginary coefficient, so the a → ∞ limit of the magnitude of the
solutions is zero in any situations. Towards ∞ both solutions approach zero by
dumped oscillations because, for very large value of a, the dipole equation reduces
to a modified Bessel equation. Hence, the solution in equations (17) approaches
asymptotically at infinity the product between a−3/2 and a combination of Bessel
functions, equation (12). For example, it is enough to use just the first four terms in
equation (18) to note this asymptotical behavior, see Fig. 4. This behavior can be
proved by comparing the asymptotic behavior of solution in equation (12) towards
infinity.
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Figure 4. Asymptotic behavior at ∞ of the analytic solution of the
dipole equation. The real part of the sum of the first four terms in the
series solutions, equation (21), (continuous line) is compared with the
Bessel function times exponential and power solutions, equation (27),
of the asymptotic form of the dipole equation (dotted line) for large
values of a. We compared for L = 0 for two different energies, and for
L = 1, 3 for the maximum admissible value of the energy E, (χ = 1).

In order to have an evaluation of the asymptotic behavior of solutions towards
infinity, more accurate than the one in equation (20), we need to use the canonical
form equation (15). So, by neglecting terms in 1/z in this equation we reduce it to
a Bessel asymptotic form with exact solutions for a → ∞

A∞ → ABessel =

(
χ

a

) 3
2

e−
χ
a

[
C1J√

9
4
+L2+ 2iE1/2

χ

(
E1/2a

χ2

)

+ C2Y√
9
4
+L2+ 2iE1/2

χ

(
E1/2a

χ2

)]
(27)

where J, Y are the Bessel functions of first and second kind, respectively.

3. Vortex Patterns

The solution for the nonlinear dipole equation ΨNL(a, b, φ) can be constructed as
a linear combination of exact analytic solutions of the linear problem, equations
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(21) and (23). We introduce the following notation for the linear solutions basis

ΨL,E(a, φ) = Q∞1(L,E; a)eiLφ. (28)

We search nonlinear solutions of the form

ΨNL(a, φ) =

Lmax∑
L=0

∫ Emax(L)

0
CL,EΨL,E(a, φ)dE (29)

with CL,E parameters to be determined. In order to generate physical solutions for
the full nonlinear GL problem, the expression equation (29) is plugged in the Gibbs
free energy expression equation (1) and this integral is minimized in the space of
parameters CL,E .

7 8 9

4 5 6

1 2 3

Figure 5. Contour plots of the intersection of surfaces |ΨNL| = 0.9
with the plane z = 0.8R. We choose a = 100, L1 = 0, L2 = 3, E1 =
0, E2 = 1. When the strength is increased, χ = 0.6, 0.8, . . . , 2.2, we
plot different frames, from 1, . . . , 9, respectively. Three vortex loop
structure is formed from an initially connected domain around the ori-
gin. For higher dipole strength three symmetric loops (frames 2-6) are
generated and grow together with the core. In frame 7 they tend to
brake into open vortices and become unstable. For higher values of χ,
frames 8-9, three new loops are formed again, and so on.

In the following we prove that it is enough to investigate order parameters built
by only two linear solutions (see similar approaches in [27, 28]). This limitation
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Figure 6. Same three vortex loop dynamics from Fig. 5, except we
overlap frames 1-4 and 6-8 in the left graphics, and overlap frames 5,9
in the right graphics.

does not reduce the generality of the treatment and has enough structure to put into
evidence the existence of multi-vortex patterns. We have

ΨNL = C1Q∞1,L1,E1(a)e
iL1φ + C2Q∞1,L2,E2(a)e

iL2φ (30)

with C1,2 free real coefficients. We transform the Gibbs free energy functional,
written in the above chosen dimensionless units (F → F/F0 = βF/α2) and in the
approximation of sufficient small samples, in the form

F = 2

∫
V

dv

V

(
1

~2
ΨNL∗|P⃗ |2ΨNL − |ΨNL|2 + 1

2
|ΨNL|4

)
. (31)

Following the standard numerical procedure for minimization, [4, 9, 21, 27, 28, 31,
32], we plug the test function equation (30) in the functional equation (31) and
look for minima. With the notations

Di =

∫
dv

V
(ΨNL)4∞1,Li,Ei

, Si =

∫
dv

V
(ΨNL)2∞1,Li,Ei

(32)

D =

∫
dv

V
(ΨNL)2∞1,L1,E1

(ΨNL)2∞1,L2,E2

where the integrals are evaluated all over R3. We calculate the free energy func-
tional equation (31) for the functions in equation (30). The the integration over
b produces a multiplicative constant in front of each symbol from equations (32).
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Since the space of free parameters for the F minimization is two-dimensional, we
can use the Hessian matrix method to find the minima of F . The resulting ex-
pression for F is much simplified because we use for test functions the analytical
solutions of the linearized problem. By introduction equation (30) in equation (31),
and by using equation (32) and the orthonormality properties of Q∞1, we obtain,
[4, 7], the following values for the two coefficients that minimize the free energy

C1 = ±

√
−(E1 − 1)D2S1 + 2(E2 − 1)DS2

D1D2 − 4D2

(33)

C2 = ±

√
−(E2 − 1)D1S2 + 2(E1 − 1)DS1

D1D2 − 4D2
·

For these value of the coefficients the Gibbs free energy equation (31) becomes

F [C1,2] = [−(E1 − 1)2D2S
2
1 − (E2 − 1)2D1S

2
2

+ 4(E1 − 1)2(E2 − 1)2DS1S2]× (D1D2 − 4D2)−1. (34)

Consequently, when we restrict to combinations of two linear eigenfunctions, sta-
ble nonlinear solutions of the GL problem are provided by equation (30) with the
coefficients from equations (33), while the physical energy of the system is given
by equation (34). It results that for every set of parameters E1,2, L1,2, and χ we
can find a nonlinear solution ΨNL(a, φ) which minimizes the free energy.
In order to describe multi-vortex states of vorticity L we need to prove the existence
of stable solutions of the type equation (30) with the property that it exists a number
av ∈ (0,∞) such that the equation |ΨNL(av, φ)| = 0 has n distinct solutions
for φ ∈ [0, 2π), denoted φj , j = 1, 2, . . . , n. Indeed, since the solutions Φ are
analytic, there are always neighborhoods of av on which |ΨNL| is arbitrary small
for the corresponding roots φj . The surfaces described by the values of a in these
neighborhoods are isoplots of multi-vortex structure, and the centerlines of the
vortices are the curves obtained by the intersections of the a = av and φ = φj

surfaces. For example, if we choose L1 = 0, and L2 = 3 we expect to find a
structure with L2 − L1 = 3 disjoint vortices.
We can prove the following final result: for any χ, and for any pair L1,2, there is
always a pair E1,2 such that the nonlinear solution of the GL equation in the form
of equation (30), with coefficients given by equations (33) for the set L1,2, E1,2

provides a confined multi-vortex state of vorticity n = |L2 − L1|. The stability
of such states is described by the relative values of the corresponding free energy,
equation (34). The proof consists in showing that we can always find a number
av ∈ (0,∞) such that the equation in φ
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−
C1Q∞1,L1,E1(a)

C2Q∞1,L2,E2(a)

∣∣∣∣
a=av

= ei(L2−L1)φ

has n solutions φj ∈ [0, 2π), j = 1, 2, . . . , n. The sufficient condition is to show
that we can find k1,2 such that∣∣∣∣C1Q∞1,L1,E1(av)

C2Q∞1,L2,E2(av)

∣∣∣∣ arg(C1Q∞1,L1,E1(av)) ≥ 1 (35)

for av < ∞. It results that it always exists some av for any χ,L1,2 such that this
condition is fulfilled for at least on set of E1,2 because the functions Q∞1,Li,Ei(a)
have asymptotical Bessel type of oscillating behavior towards ∞. Consequently,
the numerator Q∞1,L1,E1(a) is arbitrary small at least at a point where the denom-
inator is different from zero (linear independent solutions with Bessel function
asymptotic behavior have isolated zeros, and different zeros for different orders).
The value av is chose to be the one which provides the minimum value of F among
all minima for different E2. The angular positions of the vortices central lines are
given by

φj =

[
arccos

(1 +

(
|C2Q∞1,L2,E2

(av)|
|C1Q∞1,L1,E1

(av)|

)2

2
|C2Q∞1,L2,E2

(av)|
|C1Q∞1,L1,E1

(av)|

)

+arg(C1Q∞1,L1,E1(av))− arg(C1Q∞1,L2,E2(av))± jπ

]
· (L1 − L2)

−1

with j = 1, 2, . . . , |L1 −L2|, and | · | and arg being the modulus and the argument
of the complex numbers. To visualize a simple example of a multi-vortex state,
we choose a large value for av = 100, and we choose L1 = 0, k1 = 0, and
L2 = 0, . . . , 4.
In Fig. 5 we present a dynamical situation, namely the generation of a compact
structure of three vortex loops. While the dipole strength is increased from 0.6 to
2.2 a ferromagnetic central domain is formed and three vortex loops are generated
out of this core. The loops grow in size together with the core, and this can be
noticed in frames 2-6 of Fig. 5 initially the horizontal cross section at z = 0.8R
intersect the tops of the loops (frames 2,4), then the cross section intersects the
middle of loops (each loop cut twice by this pane, frames 5,9), and then the plane
intersects the core, too (frames 3,6,8). In Fig. 6 we plot the same three vortex loops
dynamics, except we overlap frames 1-4, 6-8 from Fig. 5 in the left graphics, and
we overlap frames 5,9 in the right graphics of Fig. 6. In this representation one can
see that the vortices are indeed separated from the core, forming a loop structure.
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Finally, we plot in Fig. 7 the Gibbs free energy of the configurations presented in
Fig. 5 and Fig. 6 which proves the stability of the obtained loop vortices.
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Figure 7. Free energy plot versus the strength of the magnetic dipole
for L1 = 0, L2 = 3. One can notice phase transitions between different
geometries of the vortices towards minimum of the free energy.

4. Conclusions

We investigate the existence of confined vortex loops in a superconducting infi-
nite space, where the magnetic field is generated by a point-like magnetic dipole
placed at the origin. We use a Ginzburg-Landau model in the approximation of
weak magnetic field. The Euler-Lagrange PDE equations emerging from this free
energy functional reduce to a magnetic Schrödinger equation. Exact solutions are
obtained in dipole coordinates a, b, φ. In order to integrate the linearized dipole
equation we confine our calculations in regions closer to the poles of the sphere.
Also, we consider that the gradient of the order parameter function is mainly di-
rected radial and orthogonal to the magnetic dipole field lines. Consequently, the
order parameter is almost constant along these lines, and the coordinate surfaces
a =const. describe the vortex surfaces. We found that the exact solution of the
dipole equation obtained through this procedure in the form of Heun functions are
enough to prove the occurrence of spontaneous vortex phase, where vortices in-
terconnect at the origin. We study the analytic solutions of the linearized dipole
equation by mapping it into a double confluent Heun equation. We build linear
combinations of two solutions of the linearized dipole equation and look for con-
fined vortex structures. Among these combination of linear solutions we choose
those that minimize the free energy functional and we consider them as solutions



Vortex Patterns Beyond Hypergeometric 231

of the full nonlinear problem. We prove that multi-vortex states are possible even
without the presence of an external applied field, and they are generally character-
ized by confined vortex loops. We determine the symmetries of the confined phase
starting from solutions of the linearized Ginzburg-Landau, and we also compare
these analytic results with previous numerical results [9, 25].
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